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Advanced Graphics Lecture Notes
Neil Dodgson∗

University of Cambridge Computer Laboratory

Overview
This course provides students with a solid grounding in a variety of three-dimensional
modelling mechanisms. It also provides an introduction to radiosity, animation, graphics
cards, and current commercial uses of computer graphics.

Syllabus

• Introduction. Revision of the ray tracing and polygon scan conversion methods
of making images from 3D models; the pros and cons of each approach. Current
uses of computer graphics in animation, special effects, Computer-Aided Design
and marketing. [0.75 lecture]

• The polygon. Drawing polygons. Graphics cards. Polygon mesh management:
data structures. [0.75 lecture]

• Ray tracing. The primitive geometric shapes used in ray tracing: plane, polygon,
sphere, cylinder, cone, box, disc, torus. Ray intersection calculations and normal
calculations for these. Converting the primitives into polygons for use in polygon
scan conversion. [1.5 lectures]

• Splines for modelling arbitrary 3D geometry (splines are the standard 3D
modelling mechanism for Computer-Aided Design). Features required of surface
models in a Computer-Aided Design package. Bézier curves and surfaces. B-
splines, from uniform, non-rational B-splines through to non-uniform, rational B-
splines (NURBS). [2.5 lectures]

• Subdivision surfaces (an alternative mechanism for representing arbitrary 3D
geometry, now widely used in the animation industry). Introduction to subdivision.
Pros and cons when compared to NURBS. [2 lectures]

• Implicit surfaces and voxels. 3D pixels and the marching cubes algorithm;
medical applications of this. [1 lecture]

∗Written 10/99, modifications made 09/00, 10/02, 09/04, 04/06, 03/07. c©1999, 2000, 2002, 2004, 2006,
2007 Neil A. Dodgson
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2 Advanced Graphics Lecture Notes

• Other ways to create complex geometry. Generative models: extrusion, rev-
olution, sweeping, generalised cylinders. Constructive solid geometry (CSG): set
theory applied to solid objects; different implementations of this using ray tracing
and polygons. [1 lecture]

• Radiosity. Accurate calculation of the diffuse inter-reflections in a scene. [1.5 lec-
tures]

• Computer animation. A brief introduction to some techniques in animation.
[1 lecture]

Objectives
On completing the course, students should be able to

• produce equations for each geometric primitive, derive a ray/primitive intersection
algorithm for each, describe how each can be approximated by polygons

• define NURBS basis functions, understand the use of NURBS curves and surfaces
in 2D and 3D modelling

• describe and explain how to use generative models, constructive solid geometry,
implicit surfaces, voxel rendering and subdivision surfaces; describe how each rep-
resentation can be converted to polygons

• be able to compare and contrast ray tracing with polygon scan conversion

• be able to explain the basic radiosity algorithm

Why Advanced Graphics? The title “Advanced Graphics” dates from the year in
which the course was first proposed. At this time a 16 lecture course on various ad-
vanced topics in graphics was envisaged. The course is now 12 lectures long. Today, it
is mainly concerned with 3D modelling techniques, so the course title is, perhaps, a lit-
tle misleading. Computer Laboratory policy is, however, to minimize changes to course
titles. 3D modelling is important because it underpins all of the practical uses of 3D
computer graphics.

What’s examinable? Everything except where explicitly noted otherwise. This means
that anything that is covered in the lectures is examinable, even if it is not in the notes,
unless I say otherwise, and that anything that is in the notes is examinable, unless noted
otherwise.

Lecture handouts and supervision material Some of the lecture course material
is available on the web1. This material is also printed out to provide these lecture notes.
Other material is bound in with these notes (this material cannot be put on the web
for copyright reasons). There are exercises scattered throughout the notes. These can
usually be found at the end of sections. My thanks to Dr Jonathan Pfautz and Dr Andy
Penrose for some of the exercises.

1http://www.cl.cam.ac.uk/Teaching/current/AdvGraph
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Book list and their abbreviations The following books are referred to in the course.
Each is preceded by the abbreviation used in these notes to refer to that book.

• FvDFH Foley, J.D., van Dam, A., Feiner, S.K. & Hughes, J.F. (1990). Computer
Graphics: Principles and Practice. Addison-Wesley (2nd ed.). The traditional
“bible” of Computer Graphics. It tends to be terse but it has wide coverage of
all of the basics.

• F&vD Foley J.D. & van Dam, A. (1984). Fundamentals of Interactive Computer
Graphics. Addison-Wesley (1st ed.). The earlier version of FvDFH. It contains
only about half of the material of the second edition, but is still comprehensive
about the basics of computer graphics.

• SSC Slater, M., Steed, A. & Chrysanthou, Y. (2002). Computer Graphics & Virtual
Environments. Addison Wesley. A more recent book which covers all the basics.
Also has sections on Constructive Solid Geometry (Ch. 18), Quadrics (also Ch. 18),
Radiosity (Ch. 15), and an introduction to Bézier and B-Spline curves and surfaces
(Ch. 19).

• Buss Buss, S.R. (2003). 3-D Computer Graphics. Cambridge University Press.
Another recent book which has the best description of radiosity (Ch. XI) that I
have ever read. It also contains chapters on Bézier curves (VII), B-Splines (VIII),
ray tracing (IX and X) and animation (XII).

• R&A Rogers, D.F. & Adams, J.A. (1990). Mathematical Elements for Computer
Graphics. McGraw-Hill (2nd ed.). A good coverage of the mathematics of the 2D
and 3D representation of shape as it was understood in the year of publication.
Explains Bézier, B-spline, and NURBS curves and surfaces in great detail. Also
covers conics and quadrics.

• Farin Farin, G. (2002, 5th ed.; 1997, 4th ed.). Curves and Surfaces for CAGD.
Morgan Kaufmann (5th ed.). Academic Press (4th ed.). A good alternative source
for information on Bézier, B-Spline, NURBS, and conics. Regularly updated since
its original publication in 1988.

• W&W Warren, J. & Weimer, H. (2002). Subdivision Methods for Geometric Design.
Morgan Kaufmann. The only book on the market devoted entirely to subdivision
methods.

• GG I-V Graphics Gems I (1990) to Graphics Gems V (1995). Academic Press. A
collection of five books containing a wide variety of algorithms for use in computer
graphics. A wide range of tips, tricks and techniques is included.

Other material in the handout In addition to the lecture notes that you are reading
now, I have included copies of the following:

1. Lorenson and Cline’s 1987 SIGGRAPH paper “Marching cubes: a high resolution
3D surface construction algorithm”, Proc SIGGRAPH ’87, pages 163–169. This is
relevant to the section on voxels and marching cubes (section 8.3.2).
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Figure 1: A basic ray traced model showing refraction and shadowing.

2. Extracts from Rogers and Adams (R&A): table 4-8 (conics), figure 6-18 (quadrics),
and parts of sections 6-2 (surfaces of revolution), 6-3 (sweeps), 5-8 (Bézier curves),
5-9 (B-splines), and 5-13 (NURBS). These extracts are relvant to the corresponding
sections of this course.

3. Chapter XI, “Radiosity” from Buss. This is used in the Radiosity section of this
course.

Note on copyright material The items in the above list are copyrighted material pro-
vided under the University of Cambridge’s license from the Copyright Licensing Agency.
This allows us to make one copy for each student and supervisor (“tutor”) on the course
within certain limits. These are: no more than three works and no more than 5% or
one whole article or chapter from each work. This material is provided solely for the
student’s own study. Further copying of this handout is a breach of copyright.
Be warned: to fit inside these limits I have heavily edited the extracts from R&A. In
particular, I have included none of the worked examples. To thoroughly understand the
material I suggest that you read this extract and then borrow (or buy) a copy of R&A in
order to go through the examples.

1 Basic 3D modelling

1.1 Ray tracing vs polygon scan conversion

These are the two standard methods of producing images of three-dimensional solid ob-
jects. They were covered in some detail in the Part IB course. If you want to revise them
then check out FvDFH sections 14.4, 15.10 and 15.4 or F&vD sections 16.6 and 15.5.
Line drawing is also used for representing three-dimensional objects in some applica-
tions. It is briefly covered later on.
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1.1.1 Ray tracing

Ray tracing has the tremendous advantage that it can produce realistic looking images.
The technique allows a wide variety of lighting effects to be implemented. It also permits
a range of primitive shapes that is limited only by the ability of the programmer to write
an algorithm to intersect a ray with the shape. It is considered by many to be the natural
or obvious way to render 3D objects.

Ray tracing works by firing one or more rays from the eye point through each pixel.
The colour assigned to a ray is the colour of the first object that it hits, determined by
the object’s surface properties at the ray-object intersection point, the illumination at
that point, and contributions from any reflection or refraction that occurs at that point.
The colour of a pixel is some average of the colours of all the rays fired through it. The
power of ray tracing lies in the fact that secondary rays are fired from the ray-object
intersection point to determine its exact illumination (and hence colour). This spawning
of secondary rays allows reflection, refraction, and shadowing to be handled with ease.
A simple raytraced image can be seen in Figure 1 and the basic algorithm in Figure 13.

Ray tracing’s big disadvantage is that it is slow. It takes minutes, or hours, to render
a reasonably detailed scene. Ray tracing was first implemented in hardware by a Cam-
bridge company, Advanced Rendering Technologies2, in the late 1990s. The quality of
the images that they can produce is high compared with polygon scan conversion. This
is their main selling point. However, ray tracing is so computationally intensive that it
is not possible to produce images at the same speed as hardware assisted polygon scan
conversion. Other researchers are trying to do this by using multiple processors (dozens
to hundreds), but ray tracing will always be slower than polygon scan conversion.

Ray tracing therefore is only used where the visual effects cannot be obtained us-
ing polygon scan conversion. This means that it is, in practice, used by a minority of
movie and television special effects companies, advertising companies, and enthusiastic
amateurs.

1.1.2 Example

The kitchen in Figure 2 was rendered using the ray tracing program Rayshade3. Rayshade
has not been updated for over a decade. An alternative ray tracer, which is kept up to
date, is POVray4, with which you may like to experiment. It is worth visiting the POVray
website to see the stunning imagery which has been produced using the ray tracer .

The close-ups of the kitchen scene in Figures 3 and 4 show some of the power of ray
tracing. The kitchen sink reflects the wall tiles. The bench top in front of the kitchen
sink has a specular highlight on its curved front edge. The washing machine door is a
perfectly curved object (impossible to achieve with polygons). The inner curve is part
of a cone, the outer curve is a cylinder. You can see the floor tiles reflected in the door.
Both the washing machine door and the sink basin were made using CSG techniques
(see section 8.2). The grill on the stove casts interesting shadows (there are two lights
in the scene). This sort of thing is much easier to do with ray tracing than with polygon
scan conversion.

2http://www.artvps.com/
3http://graphics.stanford.edu/˜cek/rayshade/rayshade.html
4http://www.povray.org/
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Figure 2: A ray traced model of a kitchen design.

Figure 3: A close up of the kitchen sink.

Figure 4: Close up views of the washing machine door and the grill on the stove.
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Figure 5: A scan converted model of a city (courtesy of Jon Sewell).

1.1.3 Polygon scan conversion

This term encompasses a range of algorithms where polygons are rendered, normally
one at a time, into a frame buffer. The term scan comes from the fact that an image on
a CRT is made up of scan lines. Examples of polygon scan conversion algorithms are
the painter’s algorithm, the z-buffer, and the A-buffer (see your Part IB lecture notes,
FvDFH chapter 15, or F&vD chapter 15). In this course we will generally assume that
polygon scan conversion refers to the z-buffer algorithm or one of its derivatives, such as
the A-buffer.

The advantage of polygon scan conversion is that it is fast. Polygon scan conversion
algorithms are used in computer games, flight simulators, and other applications where
interactivity is important. To give a human the illusion that they are interacting with
a 3D model in real time, you need to present the human with animation running at
10 frames per second or faster for passive viewing on a monitor, TV, or movie screen.
Research at the University of North Carolina5 has experimentally shown that for im-
mersive virtual reality applications this is not high enough and at least 15 frames per
second is a minimum. Polygon scan conversion is capable of providing this sort of speed.
The NVIDIA6 GeForce8 graphics processing unit (GPU) architecture, for example, has
up to 128 parallel stream processors running at 1.35GHz. It can render up to 36.8 billion
textured pixels per second, and can render scenes containing several million triangles in
real time. While we might hope that scientific or medical applications were considered
important applications of computer graphics, it is the game industry that is driving the
development of graphics card technology.

One problem with polygon scan conversion is that it can only support simplistic light-
ing models, so images do not necessarily look realistic. For example: transparency can
be supported, but refraction requires the use of a texture-mapping technique called “re-
fraction mapping”; reflections can be supported, at the expense of rendering a “reflection
map” before rendering the scene; shadows can be produced using “shadow maps”. All of
these are more complicated methods than those used in ray tracing. Where ray tracing

5http://www.cs.unc.edu
6http://www.nvidia.com/
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Figure 6: An SGI O2 computer and components drawn with and without texture maps.

Figure 7: Left: some floating objects in a simulated environment. Right: a close up of
the red ball showing the reflection of the ball in the shiny floor.

is a clean and simple algorithm, polygon scan conversion uses a variety of tricks of the
trade to get the desired results. The other limitation of polygon scan conversion is that
it only has a single primitive: the polygon, which means that everything is made up
of flat surfaces. This is especially unrealistic when modelling natural objects such as
humans or animals, unless you use polygons that are no bigger than a pixel, which is
indeed what happens these days. An image generated using a polygon scan conversion
algorithm, even one which makes heavy use of texture mapping, will still tend to look
computer generated.

1.1.4 Examples

Texture mapping is a simple way of making a polygon scan conversion (or a ray tracing)
scene look better without introducing lots of polygons. The images in Figure 6 show a
scene both with and without any texture maps. Obviously this scene was designed to be
viewed with the texture maps turned on. This example shows that texture mapping can
make simple geometry look interesting to a human observer.

The images in Figure 7 were generated using polygon scan conversion. Texture map-
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Figure 8: An example of environment mapping: a silvered SGI O2 computer reflecting
an environment map of the interior of a cafe.

ping has been used to make the back and side walls more interesting. All the objects
are reflected in the floor. This reflection is achieved by duplicating all of the geometry,
upside-down, under the floor, and making the floor partially transparent. The close-up
shows the reflection of the red ball, along with a circular “shadow” of the ball. This
shadow is, in fact, a polygonal approximation to a circle drawn on the floor polygon and
bears no relationship to the lights whatsoever. You may need to look at the version of
these images on the Lab’s website to see the images more clearly and in colour.

Environment mapping (Figure 8) is another clever idea which makes polygon scan
conversion images look more realistic. In environment mapping we have a texture map
of the environment which can be thought of as wrapping completely around the entire
scene (you could think of it as six textures on the six inside faces of a big box). The
environment map itself is not drawn, but if any polygon is reflective then the normal to
the polygon is found at each pixel (this normal is needed for Gouraud shading anyway)
and from this, and a vector pointing to the eye, the appropriate point (and therefore
colour) on the environment map can be located. You may note that finding the correct
point on the environment map is actually a simple (and easily optimised) piece of ray
tracing.

1.1.5 Line drawing

An alternative to the above methods is to draw the 3D model as a wire frame outline.
This is obviously unrealistic, but is useful in particular applications. The wire frame
outline can be either see through or hidden lines can be removed (FvDFH section 15.3
or F&vD section 14.2.6). In general, the lines that are drawn will be the edges of the
polygons which would be drawn by a polygon scan conversion algorithm.

Line drawing was historically faster than polygon scan conversion. However, mod-
ern graphics cards can handle both lines and polygons at about the same speed. Line
drawing of 3D models is used in Computer Aided Design (CAD) and in 3D model design.
The software which people use to design 3D models tends to use line drawing in its user
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Figure 9: Screen shots from commercial flight simulators (circa 1995).

Figure 10: The real cockpit of a commercial flight simulator: an exact replica of the
equivalent airplane’s cockpit.

interface with polygon scan conversion providing preview images of the model. I find it
interesting that, when R&A was first written in 1976, the authors had only line drawing
algorithms with which to illustrate their 3D models. Only one figure in the entire book
did not use exclusively line drawing: Fig. 6-52, which had screen shots of a prototype
polygon scan conversion system. Technology has moved on enormously since then.
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1.1.6 Applications of computer graphics

Visualisation generally does not require realistic looking images. In science we are
usually visualising complex three dimensional structures, such as protein molecules,
which have no “realistic” visual analogue. In medicine we generally prefer an image
that helps in diagnosis over one which looks beautiful. Polygon scan conversion is there-
fore normally used in visualisation (although some data require voxel rendering – see
section 8.3.2).

Simulation uses polygon scan conversion because it can generate images at interac-
tive speeds. At the high (and very expensive) end a great deal of computer power is used.
In 1990, the most expensive flight simulators (those with full hydraulic suspension and
other fancy stuff) cost about £10M, of which £1M went on the graphics kit. Similar ren-
dering power is available today on a graphics card which costs a hundred pounds and fits
in a PC. Figure 9 shows screen shots from two commercial flight simulators in the mid-
1990s; Figure 10 shows the simulator’s cockpit, which is an exact physical replica of the
cockpit on a real aircraft. Although the cost of the graphics has dropped dramatically,
the cost of the physical kit has not.

3D games (for example Quake7 and Unreal8) use polygon scan conversion because it
gives interactive speeds. A lot of other “3D” games (for example SimCity9, Civilisation,
Diablo10) use pre-drawn sprites (small images) which they simply copy to the appropri-
ate position on the screen. This essentially reduces the problem to an image compositing
operation, requiring much less processor time. The sprites can be hand drawn by an
artist or created in a 3D modelling package and rendered to sprites in the company’s
design office. Donkey Kong Country (mid-1990s), for example, was the first game to use
sprites which were ray traced from 3D models.

You may have noticed that the previous sentence is the first mention of ray tracing
in this section. It transpires that the principal uses of ray tracing, in the commercial
world, are in producing a small quantity of super-realistic images for advertising and in
producing a small proportion of the special effects for film and television. Despite what
you may have expected, most special effects are done using sophisticated polygon scan
conversion algorithms.

The first movie to use 3D computer graphics was Star Wars11 [1977]. Graphics were
not used for the space ships , animals or sets, however. You may recall that there were
some line drawn computer graphics toward the end of the movie in the targeting inter-
fere on the X-wing fighter. All of the spaceship shots, and all of the other fancy effects,
were done using models, mattes (hand-painted backdrops), and hand-painting on the
actual film. Computer graphics technology has progressed incredibly since then. The
twenty-fifth anniversary re-release25th of the Star Wars trilogy included a number of
computer graphic enhancements, all of which were composited into the original movie.

Twenty years on we saw computer graphics effects of the kind found in movies such
as the (rather bloodythirsty) Starship Troopers12 [1997]. Most of the giant insects in

7http://www.idsoftware.com/games/quake/quake3-gold/
8http://www.unreal.com
9http://www.simcity.com/

10http://www.blizzard.com/diablo2/
11http://www.starwars.com/
12http://www.imdb.com/title/tt0120201/
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the movie are completely computer generated. The spaceships are a combination of
computer graphic models and real models. The largest of these real models was 18’ (6m)
long: so it was obviously still worthwhile spending a lot of time and energy on the real
thing.

Special effects are not necessarily computer generated. Compare King Kong [1933]13

with King Kong [2005]14. The plot has barely changed, but the special effects have
improved enormously: changing from hand animation (and a man in a monkey suit) to
swish computer generated imagery. Not every special effect you see in a modern movie
is computer generated. In Starship Troopers, for example, the explosions are real. They
were set off by a pyrotechnics expert against a dark background (probably the night
sky), filmed, and later composited into the movie. In Titanic15 [1997] the scenes with
actors in the water were shot in the warm Gulf of Mexico. In order that they look as if
they were shot in the freezing North Atlantic, cold breaths had to be composited in later.
These were filmed in a cold room over the course of one day by a special effects studio.
Film makers obviously need to balance quality, ease of production, and cost. They will
use whatever technology gives them the best trade off. This is increasingly computer
graphics, but computer graphics is still not useful for everything by quite a long way.

In the three Lord of the Rings movies16, almost anything which could be shot in live
action was shot this way. Computer graphics were used only where they were easier
or cheaper or the only feasible way to do something. For example, in Return of the
King, the lava was originally to be produced by computer graphics simulation. When
the results were found to be not realistic enough, some of the shots were re-done using
real gunk flowing down a real model of a mountainside. Helms Deep, in The Two Towers,
consisted of some computer graphics, a small-scale model of the whole thing, a quarter-
scale model of the wall and citadel and a full-scale model of parts of the citadel for real
actors to perform on. Compositing all the component of any given shot is an interesting
image processing task. In a typical movie, each frame (at 24 frames per second) will have
anything from twenty to over a hundred separate elements which need to be composted
to make the final image.

Completely computer-generated movies have been with us for over a decade. Toy
Story17 [1995] was the world’s first feature length computer generated movie. Two more
were released in 1998 (A Bug’s Life18 [1998] and Antz19 [1998]). These were followed by
Toy Story 220 [1999], Dinosaur [2000], Shrek21 [2001], Monsters Inc22 [2001], Ice Age23

[2002], Finding Nemo [2003], and Shrek 2 [2004]. The genre is now well established and
there are several recent examples, with more in the pipeline. Note the subject matter
of these movies (toys, bugs, dinosaurs, monsters, sea life, fairytale characters). It is
still very difficult to model humans realistically and much research is being undertaken

13http://www.imdb.com/title/tt0024216/
14http://www.imdb.com/title/tt0360717/
15http://www.titanicmovie.com/
16http://www.lordoftherings.net/
17http://www.pixar.com/featurefilms/ts/index.html
18http://www.pixar.com/featurefilms/abl/index.html
19http://www.imdb.com/title/tt0120587/
20http://www.pixar.com/featurefilms/ts2/index.html
21http://www.shrek.com/
22http://www.pixar.com/featurefilms/inc/index.html
23http://www.iceagemovie.com/
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in the field of realistic human modelling. Final Fantasy24 [2001] was the first serious
attempt to represent fully human characters in a fully computer-generated movie.

1.1.7 Polygon scan conversion or ray tracing for special effect?
While ray tracing gives a better range of lighting effects than polygon scan conversion,
we usually get acceptable results with polygon scan conversion through the use of tech-
niques such as environment mapping and the use of enormous numbers of tiny poly-
gons. The special effects industry still dithers over whether to jump in and use ray
tracing. Many special effects are done using polygon scan conversion, with maybe a bit
of ray tracing for special things (giving a hybrid ray tracing/polygon scan conversion
algorithm).

Toy Story [1995], for example, used Pixar’s proprietary polygon scan conversion algo-
rithm. It took between one and three hours to render each frame (these frames have a
resolution of 1526×922 pixels) and over 800,000 CPU hours were absorbed in the making
of the movie (roughly a CPU century). More expensive algorithms can be used in less
time if you are rendering for television (I estimate that about one sixth of the pixels are
needed compared to a movie) or if you are only rendering a small part of a big image for
compositing into live action.

At the ACM SIGGRAPH25 conference in 1998 I had the chance to hear about the
software that some real special effects companies were using. Two of these companies
used ray tracing and two were pretty happy using polygon scan conversion.

BlueSky—ViFX Ray traced everything using CGI-Studio.

Digital Domain26 Used ray tracing provided by commercial software, except when
the commercial software cannot do what they want. Used MentalRay27 on Fifth
Element [1997]; used Alias28 models (NURBS) passed to Lightwave29 (polygons)
for one advertisement; used MentalRay30 plus Renderman31 for another advertise-
ment.

Rhythm + Hues32 Used a proprietry renderer, which was about ten years old in 1998.
It has been rewritten many times. They made only limited use of ray tracing.

Station X Used Lightwave33 plus an internally developed renderer which is a hybrid
between ray tracing and z-buffer.

At Eurographics 2002 and SIGGRAPH 2002, it was apparent that little had changed
over the intervening four years: the computers had got faster and artists were produc-

24http://www.imdb.com/title/tt0173840/
25http://www.siggraph.org/
26http://www.d2.com/
27http://www.mentalray.com/
28http://www.aliaswavefront.com/
29http://www.newtek.com/
30http://www.mentalray.com/
31http://www.pixar.com/renderman/
32http://www.rhythm.com/
33http://www.newtek.com/
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ing more detailed work but polygon scan conversion is still the technology of choice for
almost all commercial applications of computer graphics.

1.2 Exercises
1. Compare and contrast the capabilities and uses of ray tracing and polygon scan

conversion.

2. In what circumstances is line drawing more useful than either ray tracing or poly-
gon scan conversion.

3. (a) When is realism critical? (b) Give 5 examples of applications where different
levels of visual realism are necessary and explain what sort of rendering is needed
for each and why.

4. “The quality of the special effects cannot compensate for a bad script.” Discuss with
reference to movies that you have seen.

2 The polyyon
2.1 Polygon mesh management
In order to do polygon scan conversion or line drawing we need to know how to handle
polygon meshes.

2.1.1 Drawing polygons
In order to draw a polygon, you obviously need to know its vertices. To get the shading
correct you also need to know its normal. The direction of the normal tells you which
side is the front of the polygon and which is the back. Many systems assume one-sided
polygons: the front side is shaded and the back side either is coloured matt grey or black
or is not even considered. This is sensible if the polygon is part of a closed polyhedron.
In many applications, all objects consist of closed polyhedra; but you cannot guarantee
that this will always be the case, which means that you will get unexpected results if the
back sides of polygons are actually visible on screen.

The normal vector does not need to be specified independently of the polygon’s ver-
tices because it can be calculated from the vertices. As an example: assume a poly-
gon has three vertices, A, B and C. The normal vector can be calculated as: N =
(C−B) × (A−B).

Any three adjacent vertices in a polygon can be used to calculate the normal vector
but the order in which the vertices are specified is important: it changes whether the
vector points up or down relative to the polygon. In a right-handed co-ordinate system
the three vertices must be specified anti-clockwise round the polygon as you look down
the desired normal vector (i.e. as you look at the front side of the polygon). If there are
more than three vertices in the polygon, they must all lie in the same plane, otherwise
the shape will not be a polygon.

Thus, for drawing purposes, we need to know only the vertices and surface properties
of the polygon. The vertices naturally give us both edge and orientation information.
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The surface properties are such things as the specular and diffuse colours, and details of
any texture mapping which may be applied to the polygon. These things are generally
specified at the vertices (diffuse colour, specular colour, texture co-ordinates) for use in
Gouraud or Phong shading.

2.1.2 Interaction with polygon mesh data

The above is fine for drawing but, if you wish to manipulate the polygon mesh (for ex-
ample, in a 3D modelling package), then it is useful to know quite a lot more about the
connectivity of the mesh. For example: if you want to move a vertex, which is shared by
four polygons, you do not want to have to search through all the polygons in your data
structure trying to find the ones which contain a vertex which matches your vertex data,
you want some data structure which allows easy access to the relevant information.

The various versions of the winged-edge data structure are particularly useful for
handling polygon mesh data. The version shown in Figure 11 contains explicit links
for all of the relationships between vertices, edges and polygons, thus making it easy to
find, for example, which polygons are attached to a given vertex, or which polygons are
adjacent to a given polygon (by traversing the edge list for the given polygon, and finding
which polygon lies on the other side of each edge).

The vertex object contains the vertex’s co-ordinates, a pointer to a list of all edges
of which this vertex is an end-point, and a pointer to a list of all polygons of which the
vertex is a vertex. It also has a pointer to the vertex’s surface properties (such as colour
and texture coordinates).

The polygon object contains (a pointer to) the polygon’s surface property information
(such as its texture map), a pointer to a list of all edges which bound this polygon, and a
pointer to an ordered list of all vertices of the polygon.

The edge object contains pointers to its start and end vertices, and pointers to the
polygons which lie to the left and right of it.

Figure 11 shows just one possible implementation of a polygon mesh data struc-
ture. FvDFH section 12.5.2 describes another winged-edge data structure which con-
tains slightly less information, and therefore requires more accesses than the one shown
here to find certain pieces of information. The implementation that would be chosen de-
pends on the needs of the particular application which is using the data structure. The
trade-off is between ease of extracting information and ease of updating the data struc-
ture. F&vD section 13.2 and SSC pp. 170–172 also contain some information on polygon
meshes.

In general, we will want a polygon mesh to form a manifold surface. This is where
the surface is what a human would naturally think of as a surface, without any three-
way joins or other peculiar features; a surface which you could flatten onto a plane given
sufficiently many cuts and a bit of stretching here and there. Mathematically, a manifold
surface is where the neighbourhood of every point is topologically equivalent to a disc
(except at the edges of the manifold, where it is topologically equivalent to a half disc).
The principal upshot of this is that each edge in the polygon mesh can be the edge of
either one or two polygons, no more and no less.
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Figure 11: One version of the winged edge data structure.

2.2 Hardware polygon scan conversion quirks
A piece of polygon scan conversion hardware, such as the Silicon Graphics34 Reality
Engine or the NVIDIA35 GeForce family of graphics cards, has generally consisted of a
geometry engine and a rendering engine. The geometry engine will handle the transfor-
mations of all vertices and normals, and some of the shading calculations. The rendering
engine will implement the polygon scan conversion algorithm on the transformed data.
Modern graphics cards allow for user programming in both the geometry and rendering
engine. Machine instructions are provided for the usual operations (addition, multipli-
cation), and also for such necessary things as taking the dot product of two vectors. The
geometry and rendering engines both have multiple copies of the same hardware to al-
low for multiple vertices and polygons to be processed in parallel. These are generally
built with a SIMD (single instruction, multiple data) parallel processor architecture.
The architecture is optimised for processing graphics, so the user is somewhat limited is
what he or she can program. However, the most recent graphics cards allow for a good
deal of flexibility. Early generations of cards allowed a limited number of instructions.
For example, the NVIDIA GeForce 3 card (2001) had a maximum of 256 instructions in
the whole program, no more than twelve working registers, no jumps or loops, no ac-
cess to general memory. The latest NVIDIA GeForce 8 cards (2007) have thousands of
registers and allow up thousands of instructions, with jumps and loops. The introduc-
tion of jumps and loops causes interesting issues with the SIMD architecture, requiring

34http://www.sgi.com
35http://www.nvidia.com/



Neil Dodgson 17

Figure 12: Left: a triangle strip set. Right: a triangle fan set.

different pipes to be able to chose whether or not to execute any given instruction.
To give you an idea of the complexity which is possible, on the GeForce4 generation of

NVIDIA cards (2002), the information that is passed to the geometry engine, for a single
vertex, is position, weight, normal, primary and secondary colour, fog coordinate, and
eight texture coordinates; all sixteen of these are floating-point four-component vectors.
The output from the geometry engine is homogeneous clip space position, primary and
secondary colours for front and back faces of the polygon, fog coordinate, point size, and
texture coordinate set; where they are all again floating-point four-component vectors
except for the output fog coordinate and the point size36. Both geometry and rendering
engines have read access to the texture buffers. Graphics cards are now so powerful
that they are being used as general purpose co-processors for a variety of mathematics-
intense computation tasks, using texture buffers for storing intermediate results.

The latest (2007) generations of NVIDIA GeForce graphics cards (the GeForce 8 fam-
ily) and ATI chips (the Xenos chip used in the Xbox 360) have progressed (or reverted?)
to a unified shader model of processing, where any processor can handle either the ge-
ometry processing or the pixel processing. This allows more efficient distribution of the
processing load as appropriate to the objects being rendered on the screen.

2.2.1 Triangles only
When making a piece of hardware to render a polygon, it is much easier to make the
hardware handle a fixed number of vertices per polygon, than a variable number. Most
hardware implementations thus implement only triangle drawing. This is not a serious
drawback. Polygons with more vertices are simply split into triangles.

2.2.2 The triangle strip set and triangle fan set
In addition to simple triangle drawing, rendering hardware may also implement either
or both of the triangle strip set and triangle fan set to speed up processing through
the geometry engine (see Figure 12. Each triangle in the set has two vertices in common
with the previous triangle. Each vertex is transformed only once by the geometry engine,
giving a factor of three speed up in geometry processing.

36You are not expected to remember all of these input and output registers, but they give you an idea of
the complexity of the processing which can go on inside a graphics card.
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For example, assume we have triangles ABC, BCD, CDE and DEF. In naı̈ve triangle
rendering, the vertices would be sent to the geometry engine in the order ABC BCD
CDE DEF; each triangle’s vertices being sent separately. With a triangle strip set the
vertices are sent as ABCDEF; the adjacent triangles’ vertices overlapping.

A triangle fan set is similar. In the four triangle case we would have triangles ABC,
ACD, ADE and AEF. The vertices would again be sent just as ABCDEF. It is obviously
important that the rastering engine be told whether it is drawing standard triangles or
a triangle strip set or a triangle fan set.

2.2.3 The vertex cache

The triangle strip and fan sets work because there is a vertex cache which can hold
all the relevant data about two vertices. Around 2000, a vertex cache was introduced
to graphics cards. On the NVIDIA family of cards, the initial version held the twenty
most recently used vertices, hence obviating the need to be explicitly specify fan sets and
strip sets, although you still need to send the triangles to the card in some reasonably
coherent order and you do need to let the graphics card know that the triangles form
a set with the same surface properties. You also need to index the vertices so that you
refer to each by its index rather than by sending the (x, y, z) coordinates again.

2.3 Exercises
1. Calculate both surface normal vectors (left-handed and right-handed) for a triangle

with points (1, 1, 0), (2, 0, 1), (-1, -2, -1).

2. Confirm that the following statements provide a definition of a polygon mesh which
represents a manifold surface:

(a) A vertex belongs to at least two edges.
(b) A vertex is a vertex of at least one polygon.
(c) An edge has exactly two end points.
(d) An edge is an edge of either one or two polygons.
(e) A polygon has at least three vertices.
(f) A polygon has at least three edges.

3. Work out the algorithm that is required to modify a winged-edge data structure
when an edge is split. You may ignore surface property information for the poly-
gons and you may assume that the edge that is split is split exactly in half. The
algorithm could by called by the function call:

split_edge( vertex_list v, edge_list e,
polygon_list p, edge edge_to_split )

where the winged-edge data structure is made up of the three linked lists of objects
(vertices, edges, and polygons).
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4. [2002/7/9] Describe the situations in which it is sensible to use a winged-edged data
structure to represent a polygon mesh and, conversely, the situations in which a
winged-edged data structure is not a sensible option for representing a polygon
mesh. What is the minimum information which is required to successfully draw a
polygon mesh using Gouraud shading? [4 marks]

3 Ray tracing primitives
A primitive is a shape for which a ray-shape intersection routine has been written. More
complex objects can be built out of the primitives. Most ray tracers will have a variety of
primitives. They are limited only by the ability of the programmer to write a function to
analytically intersect a ray with the surface of the shape. The basic raytracing algorithm
is given in Figure 13. Figure 15 shows some of the common primitives.

For practical experience, download and play with either POVray37 or Rayshade38.

3.1 Mathematical preliminaries
3.1.1 Vector arithmetic
It is helpful to remember your vector arithmetic. A 3D vector is represented thus:

V =







x
y
z






(1)

For ease of writing such definitions in text we may say V = (x, y, z), where we under-
stand that this ordered triple is equivalent to the vector.
The magnitude of vector V is:

|V| =
√

x2 + y2 + z2 (2)

The dot product of two vectors, A = (xA, yA, zA) and B = (xB , yB, zB), is:

A · B = xAxB + yAyB + zAzB (3)

which could also be written as a matrix multiplication:

A ·B = ATB = [xAyAzA]







xB

yB

zB






(4)

The dot product is a scalar value equal to:

A ·B = |A||B| cos θ (5)

where θ is the angle between the two vectors. Note that this means that:

V · V = |V|2 (6)
37http://www.povray.org/
38http://graphics.stanford.edu/˜cek/rayshade/
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Select eye point (E), look point (L), and up vector
Set screen plane to be centred on L, perpendicular to vector EL
Set screen size and number of pixel
For each pixel {

Define D to be the vector from E to the centre of the pixel
Raytrace(E, D)

}

function Raytrace(E, D) returns Colour {
nearest t = ∞
nearest object = NULL
for each object {

find t, the smallest, non-negative real solution of
the ray/object intersection equation

if t exists {
if t < nearest t { nearest t = t ; nearest object = current object }

}
}
colour = black
if nearest object exists {

find normal vector, N , at intersection point
if object is reflective {

reflected colour=Raytrace(intersection point, reflection vector)
colour += reflection coeff * reflected colour

}
if object is refractive {

refracted colour = Raytrace(intersection point, refracted vector)
colour += refraction coeff * refracted colour

}
for each light {

if shadow ray(intersection point, light position) returns No Shadow {
calculate light’s colour contribution by doing the illumination calculations

using D, N , the current light, and the object properties
colour += lights colour contribution

}
}

}
return colour

}

Figure 13: A simplistic pseudocode version of the basic ray tracing algorithm. The func-
tion shadow ray can be found in Figure 14.
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function shadow ray(point1, point2) returns Shadow or No Shadow {
ray defined with E=point1, D=point2-point1
nearest t = ∞
nearest object = NULL
for each object {

find t, the smallest, non-negative real solution of
the ray/object intersection equation

if t exists {
if t < nearest t { nearest t = t }

}
}
if nearest t < 1 return Shadow
else return No Shadow

}

Figure 14: A simplistic pseudocode version of the function shadow ray used by the ray
tracing algorithm in Figure 13.

and hence:
|V| =

√
V ·V (7)

Also note that the dot product between two perpendicular vectors is always zero.
The cross product (vector product) of these two vectors is:

A×B =







yAzB − zAyB

zAxB − xAzB

xAyB − yAxB






(8)

The cross product is a vector that is perpendicular to both A and B. This is a very handy
way to make a new vector which is guaranteed perpendicular to a given vector. It also
means that:

A · (A ×B) = 0 (9)
B · (A ×B) = 0 (10)

though this may be getting a bit esoteric and so let’s move on.

3.1.2 Points and displacements
Both points and displacements are three-tuples of real numbers. However, they are
different beasts and must be treated differently. They point is an absolute position in
space relative to some fixed origin, O = (0, 0, 0). A displacement is an offset, specifying
a distance and direction but not an absolute position.

Only certain arithmetic operations are permitted on points and displacements. Let
P1,P2,P3, . . . represent points and D1,D2,D3, . . . represent displacements. Displace-
ments can be added,

D3 = D1 + D2, (11)
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but points cannot be added. The difference of two displacements is a displacement,

D3 = D1 −D2, (12)

The difference of two points is also a displacement:

D1 = P1 −P2. (13)

You can add a displacement to a displacement,

D3 = D1 + D2, (14)

or a displacement to a point,
P2 = P1 + D1, (15)

but not a point to a point. It is possible to take a weighted average of points,

Pnew = α1P1 + α2P2 + · · · + αkPk,
k
∑

i=1

αi = 1 (16)

provided that the weights sum to one, otherwise the operation makes no sense. To un-
derstand why this is so, add an offset, Do, to each point, P1 . . .Pk. Only if the αi sum to
one does Pnew also get offset by the same amount, as it should be.

If you transform your coordinate system, then all points scale, rotate, and translate
as you would expect. Displacements also scale and rotate but they do not translate.
To see why this is the case, consider D1 = P1 − P2. Let the two points be translated:
P′

1 = P1 + Do and P′

2 = P2 + Do. Then:

D′

1 = P′

1 −P′

2 (17)
= (P1 + Do) − (P2 + Do) (18)
= (P1 −P2) + (Do −Do) (19)
= (P1 −P2) (20)
= D1 (21)

3.2 Equation of a ray
A ray is defined by an origin or eye point, E = (xE , yE, zE), and an offset displacement,
D = (xD, yD, zD). The equation for the ray is:

P(t) = E + tD, t ≥ 0 (22)

This is equivalent to the three equations:

x(t) = xE + txD

y(t) = yE + tyD

z(t) = zE + tzD











t ≥ 0 (23)

When finding a ray-object intersection point, we are looking for the intersection point
with the lowest non-negative value of t.
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Figure 15: Some ray traced primitives: sphere, cylinder, cone, disc, torus, polygon

3.3 Equations for the primitives
3.3.1 Sphere
The sphere is the simplest finite object with which to intersect a ray. Practically any
ray tracing program will include the sphere as a primitive. Scaling a sphere by different
amounts along the different axes will produce an ellipsoid: a squashed or stretched
sphere. There is thus no need to include the ellipsoid as a primitive provided that your
ray tracer contains the usual complement of transformations (it would be a poor ray
tracer if it did not). There is, however, some subtlety in how normals are transformed in
such an anisotropically scaled object, which we discuss below in section 3.4.2.

The unit sphere, centred at the origin, has the implicit equation:

x2 + y2 + z2 = 1 (24)

In vector arithmetic, this becomes:
P ·P = 1 (25)

To find the intersection between this sphere and an arbitrary ray, substitute the ray
equation (Equation 23) in the sphere equation (Equation 24):

(xE + txD)2 + (yE + tyD)2 + (zE + tzD)2 = 1 (26)
⇒ t2(x2

D + y2
D + z2

D) + t(2xExD + 2yEyD + 2zEzD)

+(x2
E + y2

E + z2
E − 1) = 0 (27)

⇒ at2 + bt + c = 0 (28)
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⇒ t =
−b ±

√
b2 − 4ac

2a
(29)

where a = x2
D + y2

D + z2
D, b = 2xExD + 2yEyD + 2zEzD, and c = x2

E + y2
E + z2

E − 1. This
gives zero, one, or two real values for t. If there are zero real values then there is no
intersection between the ray and the sphere. If there are either one or two real values
then chose the smallest, non-negative value of t. This gives the intersection point (at
P (t)). If there are only negative values of t, then the line (of which the ray is a part)
does intersect the sphere, but the intersection point is not on the part of the line which
constitutes the ray. In this case there is again no intersection point between the ray and
the sphere.

An alternative formulation is to use the vector versions of the equations (Equa-
tions 22 and 25):

(E + tD) · (E + tD) = 1 (30)
⇒ t2(D · D) + t(2E ·D) + (E · E− 1) = 0 (31)
⇒ at2 + bt + c = 0 (32)

⇒ t =
−b ±

√
b2 − 4ac

2a
(33)

Where a = D · D, b = 2E · D, and c = E · E− 1. In other words, exactly the same result,
expressed in a more compact way. Graphics Gems I (p. 388) describes yet another way of
arriving at the same result.

You will remember, from Part IB, that we need to know the normal vector (which is,
of course, a displacement) at the intersection point in order to calculate the illumination
and/or find the reflection ray. For a sphere centred at the origin, the normal is a vector
passing through the origin and the point of intersection.

N = (x, y, z) − (0, 0, 0) (34)
= (x, y, z) (35)

Remember that points and displacements are different beasts. Equation 34 is the sub-
traction of one point from another while Equation 35 is a displacement. So (x, y, z) in
Equation 34 is a point while (x, y, z) in Equation 35 is a displacement.

To simplify the ray tracing algorithm, we may choose to assume that the normal
vector points out of the surface on the same side of the surface as the eye point. In
this case, we need to be careful about whether the eye point lies inside or outside of the
sphere. If the origin of the ray lies inside the sphere then the normal at the intersection
point is the negative of that in Equation 35, that is, for the case of E inside the sphere,

N = (−x,−y,−z). (36)

To check whether E is inside the unit sphere we simply need to check whether |E| < 1.

3.3.2 Cylinder
Intersecting a ray with an infinitely long cylinder is practically as easy as intersecting
one with a sphere. The tricky bit, if it can be called that, is to intersect a ray with
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a more useful finite length cylinder. This is achieved by intersecting the ray with the
appropriate infinitely long cylinder and then ascertaining where along the cylinder the
intersection lies. If it lies in the finite length in which you are interested then keep the
intersection. If it does not then ignore the intersection. Note that the ray tracer used
to render the cylinder in Figure 15 has cylinders without end caps. This is the correct
result if you follow the procedure outlined above. Adding end caps to your cylinders
requires extra calculations. We consider both cases in more detail below.

The infinite unit cylinder aligned along the z-axis is defined as:

x2 + y2 = 1 (37)

To intersect a ray with this, substitute Equation 23 in Equation 37.

(xE + txD)2 + (yE + tyD)2 = 1 (38)
⇒ t2(x2

D + y2
D) + t(2xExD + 2yEyD)

+(x2
E + y2

E − 1) = 0 (39)
⇒ at2 + bt + c = 0 (40)

⇒ t =
−b ±

√
b2 − 4ac

2a
(41)

where a = x2
D + y2

D, b = 2xExD + 2yEyD, and c = x2
E + y2

E − 1.
The finite open-ended unit cylinder aligned along the z-axis is defined as:

x2 + y2 = 1, zmin < z < zmax (42)

The only difference between this and Equation 37 being the restriction on z. To handle
this finite length cylinder, solve Equation 41 above. This gives, at most, two values of
t. Call these t1 and t2. Calculate z1 and z2 using Equation 23 (z1 = zE + t1zD and z2 =
zE + t2zD) and then check zmin < z1 < zmax and zmin < z2 < zmax. Whichever intersection
point passes this test and, if both pass the test, has the smallest non-negative value of t,
is the closest intersection point of the ray with the open-ended finite cylinder.

If we wish the finite length cylinder to be closed we must formulate an intersection
calculation between the ray and the cylinder’s end caps. The end caps have the formulae:

z = zmin, x2 + y2 ≤ 1 (43)
z = zmax, x2 + y2 ≤ 1 (44)

and we could find explicit intersections between the ray and these two discs. However,
for the cylinder, there is a more efficient trick: once you have calculated the solutions to
Equation 41 you will either know that there are no intersections with the infinite cylin-
der or you will know that there are one or two real intersection points represented by t1

and t2, which may be negative at this point in the algorithm. The previous paragraph
explained how to ascertain whether these correspond to points on the finite length open-
ended cylinder. Now, if z1 and z2 lie either side of zmin we know that the ray intersects
the zmin end cap, and can calculate the intersection point as:

t3 =
zmin − zE

zD
(45)
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A similar equation holds for the zmax end cap. Note that the ray may intersect both end
caps, for example when z1 < zmin and z2 > zmax. Also, note that a ray parallel to the
z-axis is a special case and needs to be handled separately. It is left as an exercise how
to check for and how to handle this case (see exercises below).

The normal vector of this cylinder, at intersection point (x, y, z) on the surface of the
infinite cylinder, will be (x, y, 0) or (−x,−y, 0) depending on whether the ray hits the
inside or outside surface first. For a finite cylinder, if the intersection point is on an end
cap, then the normal vector will be (0, 0,−1) or (0, 0, 1) depending on which end cap is hit
and whether the origin of the ray is inside or outside the finite cylinder. The details of
how to ascertain whether the ray’s origin, E, is inside or outside of the cylinder in both
the finite and infinite cases are left as an exercise.

3.3.3 Cone
Cones are very like cylinders, mathematically. Like the infinite cylinder, there is a sim-
ple mathematical definition of an infinite cone which makes it easy to write a ray-cone
intersection algorithm. Note that a cone does not need to have a point – it can be trun-
cated short of its ‘top’, as illustrated in Figure 15. The particular ray tracer used does
not add end caps to cones.

The infinite double cone39 aligned along the z-axis and having unit slope is defined
as:

x2 + y2 = z2 (46)
To intersect a ray with this, substitute Equation 23 in Equation 46.

(xE + txD)2 + (yE + tyD)2 = (zE + tzD)2 (47)
⇒ t2(x2

D + y2
D − z2

D) + t(2xExD + 2yEyD − 2zEzD)

+(x2
E + y2

E − z2
E) = 0 (48)

⇒ at2 + bt + c = 0 (49)

⇒ t =
−b ±

√
b2 − 4ac

2a
(50)

where a = x2
D + y2

D − z2
D, b = 2xExD + 2yEyD − 2zEzD, and c = x2

E + y2
E − z2

E .
The finite open-ended cone aligned along the z-axis is defined as:

x2 + y2 = z2, zmin < z < zmax (51)

The only difference between this and Equation 46 being the restriction on z. Note that
if zmin and zmax are both positive or both negative then you get a single cone with its top
truncated. If either zmin or zmax is zero you get a single cone with its apex at the origin.

To handle this finite length cone you proceed as for the finite length cylinder, with
several subtle modifications. In particular, it transpires that it is simpler to calculate the
intersection of the ray with the two end-cap discs rather than use the trick we used for
cylinders. This is because of the increased number of special cases which would need to
be considered for cones. It is left as an exercise to work out how to handle this. It would
be instructive to try to do this both ways: first by using explicit ray-disc intersection
calculation and second by modifying the trick we used for cylinders, taking all special
cases into account.

39double cone means that it is two “standard” cones joined at their apices.
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3.3.4 Torus
Toroids are reasonably rare in real life (doughnuts and tyre inner tubes notwithstand-
ing). They are somehow alluring to the kinds of people who implement ray tracers and,
having a reasonably straightforward mathematical definition, are reasonably simple to
implement. They thus appear as primitives in many ray tracers. They become more
useful when combined with Constructive Solid Geometry (see section 8.2).

A torus is defined by two parameters: the radius of the torus (that is the radius of
the torus’s defining circle, measured from the origin) and the radius of the tube (the
perpendicular distance from the defining circle to the surface of the torus). These are R
and r respectively. Normally R > r.

An implicit definition of the torus is:
(

√

x2 + y2 − R

)2

+ z2 = r2 (52)

The torus can also be defined parametrically in terms of two angles, θ and φ, where θ can
be thought of as the angle around the defining circle and φ the angle around the inside
of the tube:

x = (R + r cos φ) cos θ (53)
y = (R + r cos φ) sin θ (54)
z = r sinφ (55)

Substituting these three equations into Equation 52 will show that they are correct and
is a useful exercise in algebraic manipulation.

To find the intersection points of a ray with a torus you need to substitute Equa-
tion 23 in Equation 52. Equation 56 is that substitution with the (

√

x2 + y2 − R)2 term
expanded, the resulting square root term placed on one side of the equals sign, and all
other terms placed on the other side:

2R
√

x2
E + 2txExD + t2x2

D + y2
E + 2tyEyD + t2y2

D

= R2 + x2
E + 2txExD + t2x2

D + y2
E + 2tyEyD + t2y2

D + z2
E + 2tzEzD + t2z2

D − r2 (56)

If we now square both sides we will get a quartic equation in t. This can be solved using
a standard quartic root finder to find the four roots of the equation40 (there are up to
four intersection points between a torus and an arbitrary ray). A quartic root finder is
described in Graphics Gems V (p. 3).

Finding the normal to this torus requires finding the intersection point on the sur-
face, (x, y, z) = ((R + r cos φ) cos θ), (R + r cos φ) sin θ, r sinφ), and the nearest point on the
ring through the middle of the torus, (R cos θ,R sin θ, 0). Subtracting one from the other
gives the normal as N = (r cos φ cos θ, r cos φ sin θ, r sinφ).

40The equation itself is rather fierce and you would not be expected to do the full expansion in an exam.
For those who are interested, it looks like this:
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EyDyE + 4xDxEy2

E +
4yDy3

E + 4x2

EzDzE + 4y2

EzDzE + 4xDxEz2

E + 4yDyEz2

E + 4zDz3

E) + (R4 − 2R2x2

E − 2R2y2

E + 2R2z2

E + r4 −

2r2R2 − 2r2x2

E − 2r2y2

E − 2r2z2

E + x4

E + y4

E + z4

E + 2x2

Ey2

E + 2x2

Ez2

E + 2y2

Ez2

E) = 0
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3.3.5 Plane

The infinite plane is a simple object with which to intersect a ray. On its own it can
represent boundary objects such as the ground or the sky or perhaps an infinite wall.
Intersection with the infinite plane is a useful building block in a ray tracing system as it
forms the initial step in polygon and disc calculations. It is also useful in Computational
Solid Geometry (section 8.2).

A plane can be defined by a normal vector, N and a point on the plane, Q. A point,
P, is on the plane if:

N · (P −Q) = 0 (57)

To find the ray/plane intersection substitute Equation 22 in Equation 57:

N · (E + tD−Q) = 0 (58)

⇒ t =
N · (Q−E)

N ·D (59)

If N · D = 0 then the ray is parallel to the plane, and there is no intersection point. If
t < 0 then the plane is behind the eye point and there is no intersection. If t ≥ 0 then the
intersection point is E + tD. The normal vector is obviously either N or −N depending
on whether E is on the side of the plane pointed at by N or not.

3.3.6 Polygon

Having the polygon as a ray tracing primitive allows a ray tracer to render anything
that a polygon scan conversion algorithm could. To find the intersection of a ray with a
polygon, first find the intersection of the ray with the infinite plane in which the polygon
lies. Then ascertain whether the intersection lies inside or outside the polygon: this is a
reasonably straightforward two dimensional graphics operation.

A polygon can be defined by an ordered set of vertices: (P1,P2,P3, . . .). To find
the intersection point between a polygon and a ray, we first find the intersection point
between the polygon’s plane and the ray, and then ascertain whether this intersection
point lies inside the polygon or not.

The normal of the polygon’s plane can be found by the simple cross product: N =
(P3 −P2)× (P1 −P2). A point on the plane’s surface is even easier to find: Q = P1. The
intersection calculation then proceeds as above, for the polygon.

If an intersection point between the ray and the plane is found then we can check
whether or not the point lies inside the polygon in the following manner. First we project
the intersection point and the polygon to two dimensions by simply throwing away one
coordinate. The most obvious thing to do is throw away the coordinate in which the
polygon has the smallest extent. We then test to see if the intersection point lies inside
the two dimensional polygon using the odd/even test.

The odd/even test checks to see whether or not an arbitrary point lies inside an ar-
bitrary polygon in two dimensions. This is done by drawing an arbitrary ray from the
point to infinity. If the ray crosses an even number of polygon edges then the point lies
outside the polygon. Contrariwise, if the ray crosses an odd number of polygon edges
then the point lies inside the polygon. The easiest implementation of this simply runs
the arbitrary ray parallel to one of the axes. A full discussion of the implementation
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details of this, and other point-in-polygon algorithms, can be found in Graphics Gems IV
pp. 24–46.

3.3.7 Disc

The disc is essential in ray tracers which implement cones and cylinders without end
caps (such as Rayshade which was used to render the images in Figure 15). In Fig-
ure 15, the disc has been positioned so that it just catches the light – this illustrates how
specular reflection varies across a completely flat surface. For comparison, the sphere,
cone and torus images illustrate how specular reflection varies across three curved sur-
faces.

The disc is similar to the polygon. Both are planar objects. A disc can be defined by
its centre, Q, its radius, r, and a normal vector, N. Finding the intersection point, P,
of the ray with the disc’s plane proceeds as for a plane/ray or polygon/ray intersection.
The routine to check if the intersection with the plane lies inside or outside of the disc is
simpler than the equivalent routine for the polygon. Discovering whether P lies inside
the disc requires you to check only that:

(P −Q) · (P −Q) ≤ r2 (60)

3.3.8 Box

A box is essentially six polygons and could be ray traced as such. However, intersection
with an axis-aligned box can be optimised. Any box can be axis-aligned by appropriate
transformations. We can thus write a routine to intersect an arbitrary ray with an
axis-aligned box and then transform the ray under consideration in exactly the same
way as we transform the box which we are trying to intersect with it. This sort of
idea generalises neatly to the concept of specifying any object in a convenient object
coordinate system and then applying transforms to the whole object to place it at the
appropriate point in the world coordinate system.

3.4 Intersections with arbitrarily positioned primitives

Of the above primitives, only the plane and polygon are arbitrarily defined41. The
sphere, cylinder, cone, and torus are all defined as being centred at the origin, and all
have other restrictions on their definition42. In order to ray trace one of these primitives
in an arbitrary location we have two alternatives: (1) find general intersection algo-
rithms between a ray and the arbitrarily located versions of the primitives; or (2) use
geometric transforms to scale, rotate, and translate these primitives into the desired
locations. This second option will be followed here.

41The disc is also arbitrarily defined if you want a circular disc, but it could be transformed to provide an
ellipse.

42The sphere has unit radius; the cylinder has unit radius and is aligned with the z-axis; the cone is
similarly aligned and has unit slope; the torus is aligned with the z-axis.
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3.4.1 Transforming the primitives

The basic idea is simple. We specify a scaling, a rotation, and a translation which, be-
tween them, transform the primitive from its standard position to the desired location.
You will remember that this was covered in the IB Computer Graphics & Image Pro-
cessing course. To perform the intersection we take the inverse transform of the ray,
intersect this with the primitive in its standard position, and then transform the result-
ing intersection point to its correct location.

Remember that there is a difference between points and displacements. When trans-
forming objects, displacements are scaled and rotated but not translated. Think of it
this way: if you translate two points, the displacement between them stays exactly the
same. But if you scale or rotate the two points, the displacement between them scales or
rotates accordingly.

All this is by way of explaining how we transform a ray in order to intersect the
appropriate ray with the primitive in its standard position. Let us assume that the
primitive object in its standard position, B̂, undergoes transformation43 TRS to get into
the desired position B = TRSB̂. To intersect ray, E+tD, with B we transform the point,
E, and the displacement D as follows:

Ê = S−1R−1T−1E (61)
D̂ = S−1R−1D (62)

The point is translated, rotated and scaled but the displacement is only rotated and
scaled.

Now intersect ray, Ê+ tD̂, with the object in its standard position, B̂, as described in
the previous sections. This gives the value of t and consequently allows you to directly
calculate P = E + tD. You do not even have to transform back because t has the same
value in both standard and transformed coordinate systems.

In addition to scaling, rotating and translating the standard primitives, this mech-
anism allows us to stretch and squash them by scaling them by different factors in the
different dimensions. For example, an ellipsoid is simply a stretched sphere. However,
such anisotropic scaling causes interesting problems with the normal vectors, as dis-
cussed in the following section.

3.4.2 Transforming normal vectors

In ray tracing we need to know not just the intersection point but also the normal vector
to the surface at the intersection point. This normal vector is used in the illumination
calculations. However, if we scale an object anisotropically (different amounts in each
coordinate), the normal vector scales as the inverse of the object scaling, although it
rotates in the same way as the object. Figure 16 graphically illustrates this phenomenon.

One way to understand this behaviour is through the following mathematics. Re-
member that the normal vector is related to the derivative of the surface. The nor-
mal vector is perpendicular to the surface, which means that it is perpendicular to

43Where T is a translation, R a rotation, and S a scaling.
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Figure 16: At left is a circle and a normal vector to the circle at a particular point. If we
scale the circle by a factor of two horizontally, the normal vector scales by a factor of a
half in the same dimension.

any derivative vector. As an example, consider the ellipsoid created by scaling the unit
sphere by the matrix:

S =











l 0 0 0
0 m 0 0
0 0 n 0
0 0 0 1











(63)

The intersection point between the unit sphere and the inverse transformed ray will
be at some point P̂ = (x̂, ŷ, ẑ). This equates to the spherical polar coordinate (1, θ, φ)
where44 (x̂, ŷ, ẑ) = (cos φ cos θ, cosφ sin θ, sinφ). By virtue of the fact that the normal to
every point on the sphere passes through the centre of the sphere, it is easy to see that
the normal vector, N̂, is also N̂ = (cos φ cos θ, cos φ sin θ, sinφ).

Transforming P̂ to the true intersection point P is simply a matter of applying P =
SP̂. Thus the intersection point of the ray with the ellipsoid is at rectangular coordinate
(x, y, z) = (l cos φ cos θ,m cos φ sin θ, n sinφ).

To find the normal vector to the ellipsoid at this intersection point, we can find two
non-parallel derivative vectors to the surface at the intersection point, and take their
cross product to give the normal vector, N. Two derivative vectors are:

∂(P)

∂φ
=

∂(x, y, z)

∂φ
= (−l sinφ cos θ,−m sinφ sin θ, n cos φ) (64)

∂(P)

∂θ
=

∂(x, y, z)

∂θ
= (−l cos φ sin θ,m cos φ cos θ, 0) (65)

This leads to the normal vector being45:

N =
∂(P)

∂φ
× ∂(P)

∂θ
(66)

= (
1

l
cos φ cos θ,

1

m
cos φ sin θ,

1

n
sinφ) (67)

Thus, we conclude that while:

P = SP̂ (68)
44If you are wondering where r has disappeared to, remember that, in a unit sphere, r = 1.
45If you try this at home you will find that you will need to divide through by the factor −1/(lmn cos φ).



32 Advanced Graphics Lecture Notes

Figure 17: Three ways to split a polygon into triangles: (a) define a central vertex and
connect every edge to this vertex to make n isosceles triangles; (b) select one vertex on
the n-gon, and make a triangle fan emanating from this vertex; or (c) start at one edge
of the n-gon and make a triangle strip set which proceeds from this edge of the polygon
to the opposite edge.

N = S−1N̂ (69)

This leaves open the question of what to do about the rotation and translation compo-
nents of the transformation. It is intuitively obvious that rotating an object causes the
normal vector to rotate by the same amount and, because normal vectors are displace-
ments rather than points, they should not be translated. So the final analysis is that:

P = TRSP̂ (70)
N = RS−1N̂ (71)

This piece of mathematics is specific to the unit sphere, but the same result holds for
any object.

3.5 Converting the primitives to polygons
We may be in a situation where we define objects in terms of the various primitives, but
where we wish to draw the objects using polygon scan conversion. In this case we need
to convert primitives into polygons. Some polygon scan conversion algorithms (notably
their implementation in hardware in graphics cards) can only deal with triangles; in
these cases we may need to do a little bit of extra work to ensure that all of the generated
polygons are triangles.

Converting the curved primitives (sphere, cylinder, cone, torus, disc) involves approx-
imating a curved profile by a series of straight line segments. The simplest example is
the disc. This can be approximated by a regular n-gon, where n is chosen to give an
adequate approximation to the disc. “Adequate” in this case will depend on the desired
rendering resolution, the desired speed of rendering, and the desired quality of the final
image. If necessary, this n-gon can be converted to triangles in one of a number of ways,
as shown in Figure 17.

A cylinder or cone can be converted to polygons by polygonising the discs at either
end into n-gons, and then connecting corresponding vertices on the two n-gons. In the
special case of a cone with a point, one of the n-gons obviously degenerates to that point.
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Spheres and tori can be most easily converted to polygons by considering their pa-
rameterisation in terms of θ and φ. For a sphere these are Equations 72–74 (below); for
a torus they are Equations 53–55.

x = r cos φ cos θ (72)
y = r cos φ sin θ (73)
z = r sinφ (74)

By selecting appropriate steps in the two parameters we can generate a set of quadrilat-
erals which approximates the curved primitive.

It should be noted that spheres can be polygonised with more uniform polygons by
starting with one of the five Platonic solids, and subdividing its faces accordingly. The
details of this are left as an exercise to the reader.

3.6 Conics, quadrics, and superquadrics
The ray tracing primitives, described above, have relatively simple mathematical defini-
tions. This is what makes them attractive: the simple mathematical definition allows for
simple ray-object intersection code. Following from this, it would seem logical to inves-
tigate other shapes with simple mathematical definitions. Spheres, cones and cylinders
are part of a more general family of parametric surfaces called quadrics (N.B. tori are
not quadrics). Quadrics are the 3D analogue of 2D conics. We describe these general
families below, but it turns out that they are of little practical use. It would seem that
the general quadrics are a “dead end” in graphics research.

3.6.1 Conics
A conic is a two dimensional curve described by the general equation:

Ax2 + Bxy + Cy2 + Dx + Ey + F = 0

This general form can be rotated, scaled, and translated so that it is aligned along
the axes of the coordinate system. It will then have the simpler equation:

ax2 + by2 = k or ax2 + by = k

The useful conics are the ellipse (of which the circle is a special case), the hyperbola,
and the parabola. For more details see R&A section 4-10, especially Table 4-8 on page
242. Table 4-8 is included in the handout.

3.6.2 Quadrics
The quadrics are the three dimensional analogue of the conics. The general equation is:

Ax2 + By2 + Cz2 + Dxy + Eyz + Fzy + Gx + Hy + Jz + K = 0

This general form can be rotated, scaled, and translated so that it is aligned along
the axes of the coordinate system. It will then have the simpler equation:

ax2 + by2 + cz2 = k or ax2 + by2 + cz = k
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Figure 18: Superquadric functions for n = 0.5, 1, 1.5, 2, 4, 8, 100.

The useful conics are the ellipsoid (of which the sphere is a special case), the infinite
cylinder, and the infinite cone. Various hyperboloids, and paraboloids are also defined
by these equations, but these have little real use unless one is designing satellite dishes
(paraboloid), headlamp reflectors (also paraboloid), or power station cooling towers (hy-
perboloid). For more details see R&A section 6-4, especially Figure 6-18 on page 403.
Figure 6-18 is included in the handout.

3.6.3 Superquadrics
These are an extension of quadrics, where the power on the coordinate does not have
to be 2. The general form of a superquadric centred at the origin and aligned along the
coordinate axes is:

(ax)n + (by)n + (cz)n = k

Super-ellipsoids tend to be the only members of this family that are actually used,
and even they are only used in very limited areas. The effect of n on a super-ellipsoid
is roughly as follows: n = 2 is a standard ellipsoid; n > 2 becomes closer to a box as n
increases; in the limit, as n → ∞, the shape does become a box; n < 2 is a more pointy
version, the “points” being along the main axes; n = 1 is an octahedral shape; and n < 1
has sharp points on the main axes. Figure 18 shows examples of the shapes of these
curves.

The interested student may like to have a quick look at Alan Barr’s two papers on
superquadrics. The papers can be found in the Computer Laboratory library in IEEE
Transactions on Computer Graphics and Applications volume 1, number 1 (January
1981), pages 11-23, and volume 1, number 3 (July 1981), pages 41-47.

3.7 Exercises
1. Give mathematical equations which define a plane, a sphere, an infinitely long

cylinder, an infinitely long cone, and a torus. You will find it helpful to centre
each primitive at the origin and to align it in a sensible way with respect to the
coordinate axes.
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2. Show how to intersect a ray with each of the five primitives from Question 1.
You may assume that you are provided with functions to find the roots of linear,
quadratic, cubic and quartic equations. Also show how to compute the normal vec-
tor at the intersection point.

3. Show how to intersect a ray with a finite length closed cylinder. Ensure that you
handle all special cases, including that of a ray which is parallel to the axis of a
finite length cylinder. Give both intersection point and normal vector for all cases
in which an intersection occurs.

4. Give a complete algorithm for intersecting a ray with a finite length closed cone,
including calculation of both intersection point and normal vector.

5. Work out if there exists a faster intersection algorithm for an axis aligned 2× 2× 2
unit box than just six separate polygon intersection calculations.

6. Show how to convert a cylinder into a polygon mesh. What changes do you have to
make if the mesh may contain only triangles?

7. Show how to convert a torus into a polygon mesh.

8. Show how to convert a sphere into a triangle mesh. How can you get the most even
distribution of triangle vertices across the sphere?

9. [1999/7/11] (a) Give a parametric definition of a torus centred at the origin and
aligned with the coordinate axes. (b) Outline how you would find the first intersec-
tion point, if any, of a ray with the torus from the previous part.

10. [2000/9/4] (a) Show how you would calculate the first intersection point between
an arbitrary ray and a finite length open cylinder of unit radius aligned along the
x-axis. [Note: an open cylinder is one which has no end caps.] Having found the
intersection point, how would you find the normal vector?

11. [2001/7/9] (b) (i) Show how to find the first intersection between a ray and a finite-
length, open-ended cone, centred at the origin, aligned along the x-axis, for which
both ends of the finite-length are on the positive x-axis (i.e. 0 < xmin < xmax). [6
marks]
(ii) Extend this to cope with a closed cone (i.e. the same cone, but with end caps).
Take care to consider any special cases. [5 marks]
(iii) Extend this further to give the normal vector at the intersection point. [3
marks]

12. [2002/7/9] (a) A disc is a finite, planar, circular object. Describe an algorithm to
find the point of intersection of an arbitrary ray with an arbitrary disc in three
dimensions. Ensure that you describe the parameters used to define both the ray
and the disc. [6 marks]
(b) Given the above algorithm and an algorithm to find the intersection of an arbi-
trary ray with a finite-length open cylinder, a programmer has two choices for im-
plementing an algorithm to find the intersection with a finite-length closed cylin-
der. She could simply use the finite-length open cylinder primitive and two disc
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primitives. Alternatively she could implement the finite-length closed cylinder as
a primitive in its own right by adding extra code to the open cylinder algorithm.
Compare the two alternatives in terms of efficiency and accuracy. [4 marks]

4 Introduction to splines
While the above primitives allow us to specify particular types of curved surface, we find
ourselves in need of some more general way of specifying arbitrary curved surfaces. We
want some mechanism which allows us to specify any smooth curved surface which we
desire. This problem was first faced in the 1960s for the design of aeroplanes and cars.
We will look at three solutions: Bézier surfaces, B-spline surfaces (including NURBS)
and subdivision surfaces. It transpires that one of the most important problems is get-
ting different patches of surface to connect together smoothly, that is: with continuity
of position (C0), slope (C1) and curvature (C2). These are continuity of the function, its
first and its second derivatives, respectively. Much of the ensuing discussions consider
how to achieve such continuity.

The course handout contains a slide presentation introducing the concepts in this
part of the course.

5 Bézier curves
Bézier curves were covered in the Part IB Computer Graphics and Image Processing
course. This section gives some of the mathematical details, as does R&A Section 5-8.
Parts of this Section of R&A are included in the handout.

If you want to experiment with Bézier curves then there are a number of on-line
tutorials. One such is available from the Technion in Israel46.

A Bézier curve is a weighted sum of n + 1 control points, P0,P1, . . . ,Pn, where the
weights are the Bernstein polynomials:

P(t) =
n
∑

i=0

(

n
i

)

(1 − t)n−itiPi, 0 ≤ t ≤ 1 (75)

The Bézier curve of order n + 1 (degree n) has n + 1 control points. Below are the first
three orders of Bézier curve definitions.

linear P(t) = (1 − t)P0 + tP1 (76)
quadratic P(t) = (1 − t)2P0 + 2(1 − t)tP1 + t2P2 (77)

cubic P(t) = (1 − t)3P0 + 3(1 − t)2tP1 + 3(1 − t)t2P2 + t3P3 (78)

5.1 Ways of thinking about Bézier curves
There are several useful ways in which you can think about Bézier curves. Here are the
ones that I use.

46http://www.cs.technion.ac.il/˜cs234325/Homepage/Applets/applets/bezier/html/
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Linear interpolation. Equation 76 is obviously a linear interpolation between two
points. Equation 77 can be rewritten as a linear interpolation between linear in-
terpolations between points:

P(t) = (1 − t)[(1 − t)P0 + tP1] + t[(1 − t)P1 + tP2] (79)

Equation 78 can be rewritten as a linear interpolation between linear interpola-
tions between linear interpolations between points. This is left as an exercise for
the reader.

Weighted average. A Bézier curve can be seen as a weighted average of all of its con-
trol points. Because all of the weights are positive, and because the weights sum
to one, the Bézier curve is guaranteed to lie within the convex hull of its control
points.

Refinement of the control polygon. A Bézier curve can be seen as some sort of re-
finement of the polygon made by connecting its control points in order. The Bézier
curve starts and ends at the two end points and its shape is determined by the rel-
ative positions of the n − 1 other control points, although it will generally not pass
through any of these other control points. The tangent vectors at the start and end
of the curve pass through the end point and the immediately adjacent point.

Rogers and Adams list the properties of the Bézier curve on page 291.

5.2 Continuity
You should note that each Bézier curve is independent of any other Bézier curve. If we
wish two Bézier curves to join with any type of continuity, then we must explicitly posi-
tion the control points of the second curve so that they bear the appropriate relationship
with the control points in the first curve.

Any Bézier curve is infinitely differentiable within itself, and is therefore continu-
ous to any degree (Cn-continuous, ∀n). We therefore only need concern ourselves with
continuity across the joins between curves. Assume that we have two Bézier curves of
the same order: P(t), defined by (P0,P1, . . . ,Pn), and Q(t), defined by (Q0,Q1, . . . ,Qn).
C0-continuity (continuity of position) can be achieved by setting P(1) = Q(0). This gives
a formula for Q0 in terms of the Pis:

Q0 = Pn. (80)

Similarly for C1-continuity, we need C0-continuity and P′(1) = Q′(0), giving:

Q1 −Q0 = Pn −Pn−1 (81)

Combining Equations 81 and 80 gives a formula for Q1 in terms of the Pis:

Q1 = 2Pn −Pn−1 (82)
= Pn + (Pn −Pn−1) (83)

Continuing in this vein, we find that the requirements for C 2-continuity (i.e. C1-continuity
and P′′(1) = Q′′(0)) give:

Q2 − 2Q1 + Q0 = Pn − 2Pn−1 + Pn−2 (84)
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Combining Equations 84, 81, and 80 gives a formula for Q2 in terms of the Pis:

Q2 = 4Pn − 4Pn−1 + Pn−2 (85)
= Pn−2 + 4(Pn −Pn−1) (86)

5.3 Bézier surfaces
We learnt in the IB course that the simplest way to construct a Bézier surface is as the
tensor product of Bézier curves. A tensor product Bézier surface of order n+ 1 is defined
by (n + 1)2 control points. It is called a Bézier patch.

P(s, t) =
n
∑

i=0

(

n
i

)

(1 − s)n−isi
n
∑

j=0

(

n
j

)

(1 − t)n−jtjPi,j (87)

You can think about this as moving the control points of one Bézier curve along a set of
Bézier curves to sweep out a surface. Continuity across a boundary between two Bézier
patches is only guaranteed if each of the Bézier curves across the join obey the curve
continuity conditions. Again, this was covered in the IB course.

5.4 Exercises
1. Explain what C0-, C1-, C2-, Cn-continuity mean.

2. Derive the constraints on control point positions which ensure that two quartic
Bézier curves join with (a) C0-continuity, (b) C1-continuity, and (c) C2-continuity.

6 B-splines
B-splines are covered in some detail below and also in R&A Section 5-9. Parts of this
Section of R&A are included in the handout. Beware that none of the worked examples
are in the handout. These may come in useful, and you will need to get hold of a real
copy of R&A if you wish to work your way through them.

B-splines are a more general type of curve than Bézier curves. In a B-spline each
control point is associated with a basis function,Ni,k.

P(t) =
n+1
∑

i=1

Ni,k(t)Pi, tmin ≤ t < tmax (88)

There are n + 1 control points, P1,P2, . . . ,Pn+1. The Ni,k basis functions are of order k
(degree k − 1). k must be at least 2 (linear), and can be no more than n + 1 (the number
of control points). The important point here is that the order of the curve (2 [linear],
3 [quadratic], 4 [cubic],. . . ) is therefore not dependent on the number of control points
(which it is for Bézier curves, where k must always equal n + 1).

Equation 88 defines a piecewise continuous function. The Ni,k are defined by a knot
vector, (t1, t2, . . . , tk+(n+1)), must be specified. This determines the values of t at which
the pieces of curve join, like knots joining bits of string. It is necessary that:

ti ≤ ti+1,∀i (89)
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The Ni,k depend only on the value of k and the values, ti, in the knot vector. Ni,k is
defined recursively as:

Ni,1(t) =

{

1, ti ≤ t < ti+1

0, otherwise

Ni,k(t) =
t − ti

ti+k−1 − ti
Ni,k−1(t) +

ti+k − t

ti+k − ti+1
Ni+1,k−1(t) (90)

This is essentially a modified version of the idea of taking linear interpolations of linear
interpolations of linear interpolations. . .

At this point it would be instructive for you to work out N1,1, N2,1, N3,1, N1,2, N2,2,
N1,3 for the knot vector [0, 2, 3, 6]. It helps if you draw the graphs for these functions.

There are several things that you should note about these equations. Each Ni,k(t)
depends only on the k + 1 knot values from ti to ti+k. Ni,k(t) = 0 for t < ti or t ≥ ti+k so
Pi only influences the curve for ti ≤ t < ti+k. Formally, P(t) is a polynomial of order k
(degree k − 1) on each interval ti ≤ t < ti+1. Across the knots P(t) is Ck−2-continuous.
P(t) is, of course, continuous in all its derivatives between the knots. Remember from
Equation 16 that a weighted sum of points only makes sense if the weights sum to one.
P(t) is therefore validly defined only where

n+1
∑

i=1

Ni,k(t) = 1. (91)

This is the range tmin ≤ t < tmax where tmin = tk and tmax = tn+2. Even more properties
of B-splines are described in Rogers and Adams pp. 306–7.

6.1 The knot vector
The above explanation shows that the knot vector is very important. The knot vector
can, by its definition, be any sequence of numbers provided that each one is greater than
or equal to the preceding one. Some types of knot vector are more useful than others.
Knot vectors are generally placed into one of three categories: uniform, open uniform,
and non-uniform.
Uniform. These are knot vectors for which

ti+1 − ti = constant,∀i (92)

For example:
[1, 2, 3, 4, 5, 6, 7, 8]
[0, 1, 2, 3, 4, 5]
[0, 0.25, 0.5, 0.75, 1.0]
[−2.5,−1.4,−0.3, 0.8, 1.9, 3.0]

All of the basis functions are just shifted versions of one another and so the imple-
mentation is very easy.

Open Uniform. These are uniform knot vectors which have k equal knot values at each
end:

ti = t1, i ≤ k
ti+1 − ti = constant, k ≤ i < n + 2

ti = tk+(n+1), i ≥ n + 2
(93)
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For example:

[0, 0, 0, 0, 1, 2, 3, 4, 4, 4, 4] (k = 4)
[1, 1, 1, 2, 3, 4, 5, 6, 6, 6] (k = 3)
[0.1, 0.1, 0.1, 0.1, 0.1, 0.3, 0.5, 0.7, 0.7, 0.7, 0.7, 0.7] (k = 5)

This is essentially just a simple modification to the uniform case which allows the
curve to go through its two end points.

Non-uniform. This is the general case, the only constraint being the standard ti ≤
ti+1,∀i (Equations 89). For example:

[1, 3, 7, 22, 23, 23, 49, 50, 50]
[1, 1, 1, 2, 2, 3, 4, 5, 6, 6, 6, 7, 7, 7]
[0.2, 0.7, 0.7, 0.7, 1.2, 1.2, 2.9, 3.6]

The shapes of the Ni,k basis functions are determined entirely by the relative spacing
between the knots. Scaling (t′i = αti,∀i) or translating (t′i = ti + ∆t,∀i) the knot vector
has no effect on the shapes of the Ni,k nor on the shape of the actual curve P(t).

The above gives a description of the various types of knot vector but it doesn’t really
give you any insight into how the knot vector determines the shape of the curve. The
following subsections look at the different types of knot vector in more detail. However,
the best way to get to feel for these is to derive and draw the basis functions yourself.

6.1.1 Uniform knot vector

For simplicity, let ti = i (this is allowable given that the scaling or translating the
knot vector has no effect on the shapes of the Ni,k). The knot vector thus becomes
[1, 2, 3, . . . , k + (n + 1)] and Equation 90 simplifies to:

Ni,1(t) =

{

1, i ≤ t < i + 1
0, otherwise

Ni,k(t) =
t − i

k − 1
Ni,k−1(t) +

i + k − t

k − 1
Ni+1,k−1(t) (94)

You should be easily able to graph the first few of these for yourself. The principle thing
to note about the uniform basis functions is that, for a given order k, the basis functions
are all simply shifted versions of one another. See Rogers and Adams Figure 5-36.

6.1.2 Things you can change about a uniform B-spline

With a uniform B-spline, you obviously cannot change the basis functions (they are fixed
because all the knots are equispaced). However you can alter the shape of the curve by
modifying a number of things:

Moving control points. Moving the control points obviously changes the shape of the
curve.



Neil Dodgson 41

Multiple control points. Sticking two adjacent control points on top of one another
causes the curve to pass closer to that point. Stick enough adjacent control points
on top of one another and you can make the curve pass through that point (Rogers
and Adams, Figure 5-45).

Order. Increasing the order k increases the continuity of the curve at the knots, in-
creases the smoothness of the curve, and tends to move the curve farther from its
defining polygon. (Rogers and Adams, Figure 5-44).

Joining the ends. You can join the ends of the curve to make a closed loop. Say you
have M points, P1, . . . ,PM . You want a closed B-spline defined by these points.
For a given order, k, you will need M + (k − 1) control points (repeating the first
k − 1 points): P1, . . . ,PM ,P1, . . . ,Pk−1. Your knot vector will thus have M + 2k − 1
uniformly spaced knots.

6.1.3 Open uniform knot vector

The previous section intimated that uniform B-splines can be used to describe closed
curves: all you have to do is join the ends as described above. If you do not want a closed
curve, and you use a uniform knot vector, you find that you need to specify control points
at each end of the curve which the curve doesn’t go near (e.g. Rogers and Adams, Figure
5-44, the order 4 curve).

If you wish your B-spline to start and end at your first and last control points then
you need an open uniform knot vector (e.g. Rogers and Adams, Figure 5-41). The only
difference between this and the uniform knot vector being that the open uniform version
has k equal knots at each end.

An order k open uniform B-spline with n+1 = k points is the Bézier curve of order k.
It would be a useful exercise for you to prove this for k = 3. For ease of calculation take
the knot vector to be [0, 0, 0, 1, 1, 1].

6.1.4 The difference between uniform and open uniform

It may help, at this stage, to compare a particular uniform and an equivalent open
uniform knot vector. This is a uniform knot vector for n + 1 = 7, k = 3:

1 2 3 4 5 6 7 8 9 10P1
P2

P3

P4

P5

P6

P7

overall

The lines show the range of t over which each Pi is non-zero. The B-spline itself (the
overall line in the diagram) is defined over the range t3 ≤ t < t8, i.e. over the range
3 ≤ t < 8.

By comparison an open uniform knot vector for n + 1 = 7, k = 3 is:
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1 1 1 2 3 4 5 6 6 6P1

P2

P3

P4

P5

P6

P7

overall

The B-spline itself is defined over the range t3 ≤ t < t8, i.e. over the range 1 ≤ t < 6. By
the definition of a open uniform knot vector t3 = t1 and t8 = t10 and so an open uniform
B-spline is defined over the full range of t from t1 to tk + n + 1.

6.1.5 Non-uniform knot vector

Any B-spline whose knot vector is neither uniform nor open uniform is non-uniform.
Non-uniform knot vectors allow any spacing of the knots, including multiple knots (ad-
jacent knots with the same value). We need to know how this non-uniform spacing
affects the basis functions in order to understand where non-uniform knot vectors could
be useful. It transpires that there are only three cases of any interest: (1) multiple
knots (adjacent knots equal); (2) adjacent knots more closely spaced than the next knot
in the vector; and (3) adjacent knots less closely spaced than the next knot in the vector.
Obviously, case (3) is simply case (2) turned the other way round.

Multiple knots. A multiple knot reduces the degree of continuity at that knot value.
Across a normal knot the continuity is Ck−2. Each extra knot with the same value
reduces continuity at that value by one. This is the only way to reduce the conti-
nuity of the curve at the knot values. If there are k − 1 (or more) equal knots then
you get a discontinuity in the curve.

Close knots. As two knots’ values get closer together, relative to the spacing of the
other knots, the curve moves closer to the related control point.

Distant knots. As two knots’ values get further apart, relative to the spacing of the
other knots, the curve moves further away from the related control point.

6.1.6 Use of non-uniform knot vectors

Standard procedure is to use uniform or open uniform B-splines unless there is a very
good reason not to do so. Moving two knots closer together tends to move the curve only
slightly and so there is usually little point in doing it. This leads to the conclusion that
the main use of non-uniform B-splines is to allow for multiple knots, which adjust the
continuity of the curve at the knot values.

However, non-uniform B-splines are the general form of the B-spline because they in-
corporate open uniform and uniform B-splines as special cases. Thus we will talk about
non-uniform B-splines when we mean the general case, incorporating both uniform and
open uniform.
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6.1.7 What can you do to control the shape of a B-spline?
• Move the control points.

• Add or remove control points.

• Use multiple control points.

• Change the order, k.

• Change the type of knot vector.

• Change the relative spacing of the knots.

• Use multiple knot values in the knot vector.

6.1.8 What should the defaults be?
If there are no pressing reasons for doing otherwise, your B-spline should be defined as
follows:

• k = 4 (cubic);

• no multiple control points;

• uniform (for a closed curve) or open uniform (for an open curve) knot vector.

6.2 B-spline patches
We generalise from B-spline curves to B-spline surfaces in the same way as we did for
Bézier patches. Take a tensor product of two versions of Equation 88.

P(s, t) =
m+1
∑

i=1

n+1
∑

j=1

Pi,jNi,k(s)Nj,l(t), smin ≤ s < smax, tmin ≤ t < tmax (95)

where it is usual for the patch to have the same order (i.e. k = l) in both directions.
Patches are thus defined by a quadrilateral grid of control points of size (m+1)× (n+1).

6.3 Why B-splines?
B-splines have many nice properties when compared to other families of curves which
could be used. They:

• minimise the order of the polynomial pieces (order k)

• maximise the continuity between pieces (continuity C(k − 2))

• minimise the number of control points controlling a piece (k points)

• have positive basis functions

• have basis functions which partition unity, implying that each piece lies inside its
control points’ convex hull

• are invarient with respect to affine transforms
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6.4 Exercises
1. How many control points are required for a quartic Bézier and how many for a

quartic B-spline?

2. Why are cubics the default for B-spline use?

3. Explain the difference between Uniform, Open Uniform, and Non-Uniform knot
vectors. What are the advantages of each type?

4. [2000/9/4] (b) A non-rational B-spline has knot vector [1, 2, 4, 7, 8, 10, 12]. Derive the
first of the third order (second degree) basis functions, N1,3(t), and graph it.
If this knot vector were used to draw a third order B-spline, how many control
points would be required? [7 marks]

5. [2001/8/4] (a) For a given order, k, there is only one basis function for uniform B-
splines. Every control point uses a shifted version of that one basis function. How
many different basis functions are there for open-uniform B-splines of order k with
n + 1 control points, where n >= 2k − 3? [6 marks]
(b) Explain what is different in the cases where n < 2k−3 compared with the cases
where n >= 2k − 3. [3 marks]
(c) Sketch the different basis functions for k = 2 and k = 3 (when n >= 2k − 3). [4
marks]
(d) Show that the open-uniform B-spline with k = 3 and knot vector [0, 0, 0, 1, 1, 1]
is equivalent to the quadratic Bézier curve. [7 marks]

6. [2002/7/9] (d) Derive the formula of and sketch a graph of N3,3(t), the third of the
quadratic B-spline basis functions, for the knot vector [0, 0, 0, 1, 3, 3, 4, 5, 5, 5]. [6
marks]

6.5 NURBS
NURBS are covered below and in some detail in R&A Section 5-13. Parts of this Section
of R&A are included in the handout.

Non-uniform rational B-splines are the curves that are currently used in any graph-
ics application that requires curves and surfaces with more functionality than Bézier
curves can offer. In most cases, you would actually use the special case of non-rational
B-splines (those described in the previous section) but it is useful to have the more gen-
eral rational versions available for certain types of curve and surface. In addition to
the features listed above for B-splines, NURBS are invariant with respect to perspective
transforms.

NURBS are generally rendered by converting them to lots of small polygons and then
using polygon scan conversion. They can also by ray traced, but a general analytic ray-
NURBS intersection algorithm is a nightmare, so numerical techniques are used to find
the intersection point.

NURBS curves incorporate – as special cases – uniform B-splines, non-rational B-
splines, Bézier curves, lines, and conics. NURBS surfaces incorporate planes, quadrics,
and tori. Note that this does not quite mean what it says. It is tricky to get NURBS
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to represent infinite surfaces, but they can certainly represent finite sections of infinite
surfaces such as planes, paraboloids, and hyperboloids.

If you want to experiment with NURBS curves then there are a number of on-line
tutorials. One such is available from the Technion in Israel47.

Rational B-splines have all of the properties of non-rational B-splines plus the fol-
lowing two useful features:

• They produce the correct results under projective transformations (while non-rational
B-splines only produce the correct results under affine transformations).

• They can be used to represent lines, conics, non-rational B-splines; and, when gen-
eralised to patches, can represent planes, quadrics, and tori.

In this case rational means “one polynomial divided by another” (see Equation 96).
The antonym of rational is non-rational (i.e. a non-rational B-spline is just a polynomial
(see Equation 88). Non-rational B-splines are a special case of rational B-splines, just
as uniform B-splines are a special case of non-uniform B-splines. Thus, non-uniform
rational B-splines encompass almost every other possible 3D shape definition. Non-
uniform rational B-spline is a bit of a mouthful and so it is generally abbreviated to
NURBS.

We have already learnt all about the the B-spline bit of NURBS and about the non-
uniform bit. So now all we need to know is the meaning of the rational bit and we will
fully(?) understand NURBS.

Rational B-splines are defined simply by applying the B-spline equation (Equation 88)
to homogeneous coordinates, rather than normal 3D coordinates. We discussed homo-
geneous coordinates in the IB course. You will remember that these are 4D coordinates
where the transformation from 4D to 3D is:

(x′, y′, z′, w) →
(

x′

w
,
y′

w
,
z′

w

)

(96)

Last year we said that the inverse transform was:

(x, y, z) → (x, y, z, 1) (97)

This year we are going to be more cunning and say that:

(x, y, z) → (xh, yh, zh, h) (98)

Thus our 3D control point, Pi = (xi, yi, zi), becomes the homogeneous control point,
Ci = (xihi, yihi, zihi, hi).

A NURBS curve is thus defined as:

PH(t) =
n+1
∑

i=1

Ni,k(t)Ci, tmin ≤ t < tmax (99)

Compare Equation 99 with Equation 88 to see just how easy this is!
We now want to see what a NURBS curve looks like in normal 3D coordinates, so we

need to apply Equation 96 to Equation 99. In order to better explain what is going on, we
47http://www.cs.technion.ac.il/˜cs234325/Homepage/Applets/applets/bspline/html/
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first write Equation 99 in terms of its individual components. Equation 99 is equivalent
to:

x′(t) =
n+1
∑

i=1

xihiNi,k(t) (100)

y′(t) =
n+1
∑

i=1

yihiNi,k(t) (101)

z′(t) =
n+1
∑

i=1

zihiNi,k(t) (102)

h(t) =
n+1
∑

i=1

hiNi,k(t) (103)

Equation 96 tells us that, in 3D:

x(t) = x′(t)/h(t) (104)
y(t) = y′(t)/h(t) (105)
z(t) = z′(t)/h(t) (106)

Thus the 4D to 3D conversion gives us the curve in 3D:

P(t) =

∑n+1
i=1 Ni,k(t)Pihi
∑n+1

i=1 Ni,k(t)hi

, tmin ≤ t < tmax (107)

This looks a lot more fierce than Equation 99, but is simply the same thing written a
different way.

So now, we need to define an additional parameter, hi, for each control point, Pi. The
default is to set hi = 1,∀i. This results in the denominator of Equation 107 becoming
one, and the NURBS equation (Equation 107) therefore reducing to the non-rational
B-spline equation (Equation 88).

Increasing hi pulls the curve closer to point Pi. Decreasing hi pushes the curve far-
ther from point Pi. Setting hi = 0 means that Pi has no effect on the curve at all.
See Rogers and Adams Figure 5-58 for an example, and play with an on-line NURBS
tutorials such as the one mentioned above.

6.6 An example: a circle defined by NURBS
This subsection provides an example of a shape which cannot be represented by non-
rational B-splines: a circle. A non-rational B-spline or a Bézier curve cannot exactly
represent a circle. An interesting exercise is to place a cubic Bézier curve’s end points at
(0, 1) and (1, 0), with the other control points at (α, 1) and (1, α). Now see how close this
“quarter circle” comes to the real quarter circle defined by x2 + y2 = 1, i.e. what is the
value of α for which the Bézier curve most closely matches the quarter circle. You will
find that you can get a match which is almost, but not quite, circular.

NURBS can be used to represent circles, and all of the other conics. NURBS surfaces
can be used to represent quadric surfaces. As an example, let us consider one way in
which NURBS can be used to describe a true circle. Rogers and Adams cover this on
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pages 371–375. The ways in which this is done require the designer to specify several
things correctly at the same time, as we shall see. The details are so complicated that
I would not expect you to remember it in an exam but I would expect you to remember
that it can be done and have some idea of where to look it up if you needed it.

The method is as follows. Construct eight control points in a square. Let P1, P3, P5,
and P7 be the vertices of the square. Let P0, P2, P4, and P6 be the midpoints of the
respective sides, so that the vertices are numbered sequentially as you proceed around
the square. Finally, you need a ninth point to join up the curve, so let P8 = P0.

Use a quadratic B-spline basis function with the knot vector
[0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 4]. This means that the curve will pass through P0, P2, P4, P6

and P8, and allows us to essentially treat each quarter of the circle independently. That
is, we can just examine P0, P1, and P2, along with the knot vector [0, 0, 0, 1, 1, 1]. If this
makes a quarter circle then the other three quarters will also be correct.

We finally need to specify the homogeneous co-ordinates. As a circle is symmetrical
it should be obvious that that h1 = h3 = h5 = h7 = α and h0 = h2 = h4 = h6 = h8 = β. As
we would like the curve to pass through the even numbered points we know that β = 1.
All we therefore need to determine is α, the value of the odd numbered homogeneous
co-ordinates.

If α = 1 then the NURBS curve will bulge out more than a circle. If α = 0, it will bow
in. This gives us limits on the value of α. To find the exact value we take the NURBS
curve definition for the quarter circle:

P(t) =
(1 − t)2P0 + 2αt(1 − t)P1 + t2P2

(1 − t)2 + 2αt(1 − t) + t2
, 0 ≤ t < 1 (108)

Assume now that P0 = (0, 1), P1 = (1, 1), and P2 = (1, 0). Insert Equation 108 into the
equation for the unit circle (x(t)2 + y(t)2 = 1). The resulting equation is:

((1 − t)2 + 2αt(1 − t))2 + (2αt(1 − t) + t2)2

((1 − t)2 + 2αt(1 − t) + t2)2
= 1, 0 ≤ t < 1 (109)

Now solve this for α. Equation 109 is essentially:

aN t4 + bN t3 + cN t2 + dN t + eN

aDt4 + bDt3 + cDt2 + dDt + eD
= 1, 0 ≤ t < 1 (110)

From this we can conclude that we require aN = aD, bN = bD, cN = cD, dN = dD, and
eN = eD. The first three all solve to give the result that α = 1/

√
2, while the last two

cancel out totally to give the tautology 0 = 0. Thus α = 1/
√

2.
This derivation is not at all intuitive and similar cleverness is required to handle

representations of other conics. The beauty of NURBS is that they allow us to do this
sort of thing and unify all shapes into a single representation. The difficulty is that, in
order to achieve this unification, we need to have this rather complicated but general
mathematical mechanism.

6.7 Exercises
1. Review from IB: What are homogeneous coordinates and what are they used for in

computer graphics?
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2. Explain how to use homogeneous coordinates to get rational B-splines given that
you know how to produce non-rational B-splines.

3. What are the advantages of NURBS over Bézier curves? (i.e. why have NURBS, in
general, replaced Bézier curves in CAD?)

4. Show that you understand why NURBS includes Uniform B-splines, Non-Rational
B-splines, Béziers, lines, conics, quadrics, and tori.

5. [1998/7/12] Consider the design of a user interface for a NURBS drawing system.
Users should have access to the full expressive power of the NURBS representa-
tion. What things should users be able to modify to give them such access and what
effect does each have on the resulting shape? [6 marks]

6. For each of the items (in the previous question) that the user can edit: (i) Give sen-
sible default values; (ii) Explain how they would be constrained if a ‘demo’ version
of the software was to be limited to cubic Uniform Non-rational B-Splines.

7. [1999/7/11] (c) Show how to construct a circle using non-uniform rational B-splines
(NURBS). [8 marks]
Note: this question is ludicrously hard unless you remember the worked example
in these notes or R&A pages 371-375.
(d) Show how the circle definition from the previous part can be used to define a
NURBS torus. [4marks]
Note: you need explain only the general principle and the location of the torus’
control points.

7 Subdivision surfaces
Subdivision schemes work by taking a coarse polygon mesh and introducing new ver-
tices to create a finer mesh. Iterating this process several times creates a very fine mesh
of polygons. Given that we are interested in drawing things only to a certain level of
accuracy (there is no point in having polygons that are much smaller than pixels), the
easily understood subdivision idea has definite benefits over the mathematically com-
plicated B-spline methods. In fact, two of the standard subdivision schemes (Doo-Sabin
and Catmull-Clark) produce, in the limit, B-spline surfaces (uniform quadratic and uni-
form cubic respectively) except at their extraordinary points. Some of the mathematical
detail of subdivision surfaces is given below. W&W survey the field and the related
mathematical tools.

Subdivision schemes have been around for a long time. Subdivision methods for
curves were first mathematically analysed in 1947. Their use in computer graphics
dates from 1974 when Chaikin used them to derive a simple algorithm for generating
curves quickly. In 1978 Doo & Sabin and Catmull & Clark generalised Chaikin’s work
from curves to surfaces. Much work has been done since then, but it seems that it
is only since about 2000 that subdivision schemes have had widespread use owing to
Pixar’s adoption of them.

Subdivision schemes are increasingly being used as an alternative to NURBS. They
combine mathematical elegance with an exceptionally simple implementation. For curves,
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given an arbitrary control polygon, we use the positions of the current vertices to deter-
mine the location of the new vertices in a new, refined, more detailed, control polygon.
Generally, each old vertex gives rise to two new vertices. For example, you could place
new vertices one-quarter and three-quarters of the way between each adjacent pair of
old vertices. Connecting all the new vertices together, in the appropriate order, produces
a more refined control polygon. Repeat this process several times and you produce a
very good approximation to the uniform quadratic B-spline curve defined by the original
set of vertices. In the limit, the refined control polygon becomes this uniform quadratic
B-spline curve. The Doo-Sabin subdivision method is the extension of this idea to sur-
faces, where the refined control polygon has four times as many vertices as the source
control polygon. Given the simplicity of the implementation and the fact that you can
stop whenever you like, you can see how attractive this method is for computer graphics.

The course handout contains a slide presentation that presents the concepts from
this part of the course in an alternative way.

7.1 Mathematical details: curves
Take an arbitrary polygon defined by the sequence of control points:

Pi = (. . . ,pi
−1,p

i
0,p

i
1,p

i
2, . . .)

Subdivision maps this sequence of control points to a new sequence, Pi+1 by applying
subdivision rules. This process doubles48 the number of points, and there is one rule for
the odd numbered points and one for the even. For example, the subdivision rules on
which the Doo-Sabin method is based are:

pi+1
2j =

3

4
pi

j +
1

4
pi

j+1 (111)

pi+1
2j+1 =

1

4
pi

j +
3

4
pi

j+1 (112)

while the subdivision rules on which the Catmull-Clark method is based are:

pi+1
2j =

1

8
pi

j−1 +
6

8
pi

j +
1

8
pi

j+1 (113)

pi+1
2j+1 =

4

8
pi

j +
4

8
pi

j+1 (114)

As is the way with much mathematics, we can write it in a more compact, more
general, but less obvious, form as:

pi+1
j =

∞
∑

k=−∞

α2k−jp
i
k (115)

where the αj are coefficients depending on the subdivision rules. Note that the index
2k − j alternately selects the even indexed αj and the odd indexed αj . So, the two
schemes given above, can be compactly described as:

α =
1

4
(. . . , 0, 0, 1, 3, 3, 1, 0, 0, . . .) (116)

48It doesn’t quite double the number of points when the sequence is open and of finite length, but we will
gloss over that at the moment.
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Figure 19: Doo-Sabin subdivision. On left a mesh (solid dots and solid lines) that has
been refined (open dots and dashed lines). At right the weights used to generated one of
the refined vertices.

and
α =

1

8
(. . . , 0, 0, 1, 4, 6, 4, 1, 0, 0, . . .) (117)

respectively. You will recognise the sequences in parentheses as being two rows from
Pascal’s triangle.

It would now be constructive for you to draw an arbitrary control polygon and per-
form a couple of subdivision steps using the first of the two subdivision schemes. Once
you feel happy that you understand what is going on, you may like to try the second
scheme. For those for whom these two tasks seem simple, you may like to consider what
happens if you try to use the previous row from Pascal’s triangle (1,2,1) and, for even
more excitement, what happens if you try to use the next row (1,5,10,10,5,1). Both pro-
duce valid subdivision methods, but you will find that (1,2,1) has a minimal effect on the
shape of the control polygon.

7.2 Mathematical details: surfaces
The above subdivision methods can be easily extended from a control polygon to a
quadrilateral mesh. This is a mesh where every polygon is a quadrilateral and every
vertex is connected to four other vertices.

The Doo-Sabin subdivision method introduces four new vertices in each quadrilat-
eral, and connects up vertices accordingly. The new vertices are blended mixtures of
the old vertices in the proportions 9 : 3 : 3 : 1 (derived from the tensor product of the
univariate case: 3 × 3 : 3 × 1 : 1 × 3 : 1 × 1). This is illustrated in Figure 19.

Catmull-Clark subdivision is not much more difficult to understand. The only differ-
ence here is that is not all of the new vertices are created using the same weights. A
vertex is introduced in the centre of each quadrilateral, in the centre of each edge, and
near to each old vertex. Each of these three types of vertex has a different set of weights
as illustrated in Figure 20.
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Figure 20: Catmull-Clark subdivision. Above: a mesh (solid dots and solid lines) that
has been refined (open dots and dashed lines). Below: the weights used to generated
each type of refined vertex: centre, edge, and modified old vertex.

This all works beautifully for quadrilateral meshes. Now, suppose we have a quadri-
lateral mesh that contains extraordinary vertices, in other words a mesh that consists of
quadrilaterals but has occasional vertices with other than four immediate neighbours.
The Doo-Sabin scheme will still worked quite happily, because every polygon in the mesh
is still quadrilateral. However, the Catmull-Clark subdivision scheme depends on every
vertex having exactly four neighbours for the generation of the new vertex that is near to
the old vertex position (the rightmost case in Figure 20). Catmull and Clark got around
this problem by creating a new set of weights, one set of weights for each vertex valence
(the valence of vertex is a number of other vertices to which it is connected). Instead of
weights of 1/64, 6/64, and 36/64 you can use weights of 1/4n2, 3/2n2, and 1−7/4n, where
n is the valence of the vertex. This particular set of weights was derived by Denis Zorin,
other values can also be used.

However, this is not the only type of mesh with which we can deal. The Doo-Sabin
scheme can be easily modified to cope with meshes in which some of the polygons are not
quadrilateral, while still maintaining C1-continuity everywhere. For a k-sided polygon,
the weights, αk on the k vertices can be shown to be:

α0 =
1

4
+

5

4k
(118)
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Figure 21: Left: an example surface of revolution. Middle and right: two views of its
generating polygon (the red quadrilateral), with the generated 3D object shown in semi-
transparent cyan.

αi =
1

4k

(

3 + 2 cos
2iπ

k

)

(119)

There are other schemes, notably the Loop scheme (named after Dr Loop) which
works on triangular meshes. My research group at the Computer Laboratory has been
working on the theory of subdivision since 2000 and has produced some interesting re-
sults including some rather whacky alternative subdivision schemes.

7.2.1 Exercises

1. Do the “constructive” exercises at the end of section 7.1.

2. Explain how Doo-Sabin subdivision works for an arbitrary polygon mesh.

8 Other 3D modelling mechanisms
8.1 Sweeps
These are three dimensional objects generated by sweeping a two dimensional shape
along a path in 3D. Two special cases of the sweep are surfaces of revolution, where the
path is a circle (see Figure 21); and extrusions, where the path is a straight line (see
Figure 22). Some surfaces can be generated in more than one way, as illustrated in
Figure 23. Surfaces of revolution are covered in R&A section 6-2. More general sweeps
are covered in R&A section 6-3 and FvDFH section 12.4. Parts of Sections 6-2 and 6-3
of R&A are included in the handout.

If we push the idea of a sweep to its limit we can think of many things which could
be modified to produce a three dimensional swept shape:

• Cross section This is the two dimensional shape that is to be swept along the
sweep path. It does not have to be circular. Figure 24 shows two swept objects, one
with a circular cross-section, one with a polygonal cross-section.
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Figure 22: Left: an example extrusion. Right: its generating polygon (the red star), with
the generated 3D object shown in semi-transparent cyan.

Figure 23: Left: an example object which could be an extrusion or a surface of revolution.
Middle: generated as a surface of revolution from a rectangle. Right: generated as an
extrusion from an annulus.

Figure 24: Two simple swept objects, one with a polygonal cross-section, one with a
circular cross-section.



54 Advanced Graphics Lecture Notes

Figure 25: Two views of a polygonal cross-section swept along a path.

Figure 26: A polygonal cross-section swept along a path with (left) and without (right)
twist.

• Sweep path This is the path along which the two dimensional cross section is
swept to produce the three dimensional shape. It may be any curve. Figure 25
shows two views of the same swept object: a polygonal cross-section is swept along
a convoluted path.

• Twist This is how the cross section twists (rotates) as it moves along the sweep
path. The default would be to have no twist at all. Figure 26 shows a swept object
with and without some twist.

• Scale This is how the cross section scales (changes size) as it moves along the
sweep path. The default would be to have it stay the same size along the whole
path. Figure 27 shows a cylinder, and the same cylinder with different scales along
its length.

• Normal vector direction The normal vector of the 2D cross section will usually
point along the sweep path at each point. Changing this will change the nature of
the swept object. See R&A Figure 6-17 (in the handout) for an example.

You may be able to think of parameters, other than those in the list above, which
could be modify. The examples given here were all generated using a generalised cylin-
der tool from Silicon Graphics would could vary cross-section, path, twist and scale. This
is sufficient for most purposes. The input to such a system will either be NURBS curves
or polylines. The output will be a NURBS surface or a polygon mesh.
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Figure 27: A cylinder (top) swept along a path with scale changes (bottom).

Figure 28: A swept object with a circular cross-section, semi-circular path, and varying
scale.
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Figure 29: The object from the 1998 exam question.

8.1.1 Sweeping with NURBS

A NURBS surface is defined as the same two-dimensional extension to NURBS curves
described in Equation 95, though obviously carried out in homogeneous co-ordinates.
You can define sweeps using NURBS curves by using one NURBS curve as the sweep
path, and another NURBS curve as the cross-section. You take the tensor product of the
two curves. This is covered in R&A, pages 445–456, 465–477.

8.1.2 Converting swept objects to polygons

Swept objects are hard to ray trace. Imagine trying to write a ray/object intersection
algorithm for a general swept object. This means that we generally need to polygonise
swept objects in order to render them. For polygon scan conversion we obviously
must convert them to polygons.

A swept surface may be easily converted to polygons by converting the outline of the
2D cross section to a polygon, and converting the sweep path to connected set of line
segments. Moving the polygon to each vertex of the set of line segments, and connect-
ing vertices accordingly, will produced a polygon mesh which approximates the swept
surface.

8.1.3 Exercises

1. [1998/7/12] Show how the object in Figure 29 can be represented as a swept object.
Show also how to convert the swept object into polygons. Explain what extra work
would you need to do if you had to convert it into triangles.

2. Use the following different methods of specifying a geometrical model for the object
in Figure 30 (assuming it is a three dimensional model and not a line drawing).
Come as close as you can to the original for each of the methods, and describe the
difficulties in using a particular method for this model.

(a) Extrusions
(b) Surfaces of revolution
(c) Sweeps along straight lines with scale changes.
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Figure 30: A lamp.

3. For each of the following categories list five real-world objects which could be rep-
resented by the primitives in the category.

(a) The ray-tracing primitives in section 3.3
(b) Extrusions
(c) Surfaces of revolution
(d) General sweeps

4. A flume (water tunnel) at a swimming complex is modelled as a circle swept along
a particular path. The designers also want to model the volume swept out by a
person travelling down the flume. We can approximate the cross-section of a per-
son with something roughly elliptical and we’ll assume the ‘virtual’ person doesn’t
move legs or arms while hurtling along. Explain which parameters in the list would
be need to be modified to specify the shape of the flume and which would need to
be modified to model the volume swept out by a person travelling down the flume
(alternatively, specify which parameters would be held constant, in each case, for
the entire length of the sweep).

8.2 Constructive Solid Geometry
Constructive solid geometry (CSG) essentially consists of Boolean set operations on
closed primitives in 3D space. CSG is covered in FvDFH sections 12.7 and 15.10.3.

The three CSG operations are union, intersection and difference. Figure 31 illustrates
the three CSG operations in use on simple three dimensional primitives. Figure 32,
based on FvDFH Plate III.2, shows an object for which CSG is (probably) the only sen-
sible modelling technique. The object rendered in the right-hand image is constructed
from the primitives shown in the left-hand image. It is mostly made out of cylinders,
but you will recognise the extruded star from Figure 22. The cover of Hofstadters
“Gödel, Escher, Bach49” has a carved wood shape which casts shadows of the letters G,
E, and B onto three orthogonal planes. In Figure 33, I try this treatment on my initials.
Unfortunately the letters N, A, and D are not as amenable to this as the letters G, E, and
B: notice that the shadow of the N has a slight curve at its top right, owing to the N’s

49http://www.amazon.com/exec/obidos/ASIN/0465026567/rpcman
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sphere box

union intersection difference

Figure 31: CSG example: two primitives (a sphere and a box) under the three CSG
operations: union, intersection, and difference.

Figure 32: CSG example. Left: the primitives. Right: the finished object. It is difficult
to see how this object could be produced easily in any other way.
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Figure 33: A CSG shape casting three shadows of three different letters.

intersection with the curve on the D and the slope on the A. Various other arrangements
of the three letters were tried, all of which gave more noticeable artefacts than this.
Each of the letters is a CSG object (the D, for example, is constructed from cylinders and
boxes). The final effect is produced simply by intersecting the three letters.

More information is required to fully understand how CSG can be raytraced. Some
of this is given in SSC Chapter 18, some below, and more will be said in lectures.

8.2.1 Some algorithmic details

This section deals with how to raytrace a CSG object. A CSG object can be represented as
a binary tree where each node is one of the three CSG operators: union (∪), intersection
(∩), and difference (\). The leaves of the tree are primitive objects for which a ray-object
intersection test exists. The basic information which is passed up the tree is a list of
all intersection point, t, between the ray and the object represented by the sub-tree.
Combining two sub-trees requires you to sort through these lists of intersection points,
keeping those from both sub-trees which are intersection points with the combined object
and discarding the others.

CSG of two objects, A and B, can be driven by a simple state machine, where there
are four states:

• In both A and B.

• In just A.
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Figure 34: The simple state machine used in the CSG algorithm.

• In just B.

• In neither A nor B.

See Figure 34. As one progresses along the ray, each intersection point changes the
state. Each of the four possible operations (∪, ∩, A\B, B\A) requires you to keep the
intersection points which transfer you into or out of just one of the four states. Thus
A\B is defined by the transitions into and out of the “In just A? state, while intersection
is defined by the transitions into and out of the “In both A and B? state.

A ray’s interaction with an object, A, can be stored as an ordered pair: ( inA :
Boolean, tAs : float list ) where inA is True if the eye is inside object A and
False otherwise. tAs is a list of t-values for which the ray intersects the surface of the
object, sorted in increasing order. Of course, all t values are non-negative.

Figure 35 gives an ML function for finding the Constructive Solid Geometry inter-
section of two objects: A ∩ B. You could try writing an equivalent function to find the
difference of two objects, A\B.

8.2.2 Exercises
1. Work out how to represent a Lego technic brick as a CSG Object (see Figure 36).

You may assume that you have box and cylinder primitives.

2. [1998/7/12] Work out how to represent the object in Figure 29 using CSG. You may
assume the following primitives: sphere, cylinder, cone, torus, box.

3. [1999/9/4] (c) List the three ways of combining objects using constructive solid ge-
ometry (CSG). Describe how an object built using CSG can be represented using a
binary tree. Given the intersection points of a ray with each primitive in the tree,
explain how these points are passed up the tree by each type of combination node
to produce a list of intersection points for the whole CSG object. [8 marks]

4. [2002/8/4] (c) Describe how an object built using constructive solid geometry (CSG)
can be represented using a binary tree. Given the intersection points of a ray with
each primitive in the tree, show how to calculate the first intersection point of the
ray with the entire CSG object. [6 marks]
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fun inter( (inA, tA::tAs), (inB, tB::tBs) )
= if( tA < tB ) then

if( inB ) then
tA :: inter( (not inA, tAs), (inB, tB::tBs) )

else
inter( (not inA, tAs), (inB, tB::tBs) )

else
if( inA ) then

tB :: inter( (inA, tA::tAs), (not inB, tBs) )
else

inter( (inA, tA::tAs), (not inB, tBs) )
| inter( (inA, []), (inB, tB::tBs) )

= if( inA ) then
tB :: tBs

else
[]

| inter( (inA, tA::tAs), (inB, []) )
= if( inB ) then

tA :: tAs
else

[]
| inter( (inA, []), (inB, []) )

= [] ;

fun intersection( (inA, tAs), (inB, tBs) )
= ( inA andalso inB, inter( (inA, tAs), (inB, tBs) ) ;

Figure 35: An ML function for calculating the CSG intersection of two objects

Figure 36: Some CSG Lego technic bricks.
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5. Write a function, similar to that in section 8.2.1 for A ∩ B, to find the difference of
two objects, A\B.

8.3 Implicit surfaces, voxels and the marching cubes algorithm
8.3.1 Implicit surfaces
These will be described in lectures. Brian Wyvill has a good introduction to implicit
surfaces50 on his website at the University of Calgary51. Click on “Implicit Tutorial” for
the introduction to implicit surfaces.

8.3.2 Voxels and the marching cubes algorithm
Voxels are the three dimensional analogue of pixels. Rather than storing a colour in a
voxel, you will generally store a density value. Voxels and the marching cubes algorithm
are both covered in Lorenson and Cline’s 1987 SIGGRAPH paper “Marching cubes: a
high resolution 3D surface construction algorithm”, Proc SIGGRAPH 87, pages 163-169.
This paper is included in the handout. One of the reasons for including the paper is to
give you a taster of what a good graphics research paper looks like.

8.3.3 Exercises
1. Give a definition of an implicit surface and give three examples of where such

things might be useful.

2. Explain how voxel data can be thought of a defining an implicit surface (or sur-
faces). Explain, conversely, an implicit surface can be converted into voxel data.

3. [2001/7/9] (a) The marching squares algorithm is a two-dimensional version of
marching cubes, where you generate line segments in 2D rather than triangles
in 3D. It could be used, for example, where you have a regular grid of height values
and want to draw contours of constant height. Sketch an implementation of this
two-dimensional marching squares algorithm. [6 marks]

4. Medical data is captured in slices. Each slice is a 2D image of density data. The
distance between slices may be different to the distance between the pixels within
a slice (for example, see Lorenson and Cline, Section 7.1, p. 167). What effect, if
any, does this difference have on the voxel data? What effect, if any, does it have
on the marching cubes algorithm?

5. [2002/8/4] (b) Implicit surfaces are normally combined by adding the field functions
together to create a “blobby” blended surface. Describe an alternative mechanism
(or mechanisms) for combining implicit surfaces which would produce results more
akin to CSG union and intersection. Explain why it produces these results. Given
this mechanism, suggest a way of combining implicit surfaces to produce a result
similar to CSG difference. [4 marks]

50http://pages.cpsc.ucalgary.ca/˜blob/implicitall files/frame.htm
51http://pages.cpsc.ucalgary.ca/˜blob/currentwork.html
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Smooth surfaces
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the surface goes based on those points
Move a control point to change the surface
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The second problem
What do we do at special points where other 
than four patches meet?

Either we cannot get C2
Which means that curvature is not continuous

Or we get C2 be forcing curvature to be zero
Which produces a flat spot

Or we get C2 using very high degree patches
Which are very hard for a designer to control
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Subdivision
Advantages

Reproduces everything which can be done by B-splines
Handles extraordinary points much more easily

Disadvantages
Cannot get C2 unless you produce a flat spot
Generates other visual artefacts, not seen in B-spline 
surfaces

Commercial position
Subdivision is replacing B-splines in computer 
animation
Subdivision is not replacing B-splines in CAD
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Advanced Graphics 2006
� Subdivision curves & surfaces

Beware: some slides contain multi-layer 
animations, which do not print well.
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Modelling smooth 3D surfaces
� Where are smooth 3D surfaces used?

� Computer Aided Design (CAD)
� First developed for cars & aeroplanes
� Adopted for other manufactured objects

� Computer animation

� What mechanisms exist?
� Bézier patches
� NURBS surfaces
� Subdivision surfaces

3

Desirable features
� Need to handle any surface
� Need guaranteed continuity

� C1-continuity
� Smooth surfaces

� C2-continuity
� Smoothly reflecting surfaces
� Required for some aerodynamics

� Need to allow discontinuities
� Edges, creases and holes

� Needs to be easy to use
4

History of 3D modelling 1/3
� Some mechanism was needed for 

modelling 3D surfaces
� Hermite interpolation was generalised 

to bivariate patches
� …but proved too difficult to use in practice

� Bézier patches
� Developed for car design around 1960

� Bézier (Renault), de Casteljau (Citreön), de 
Boor (GM)
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History of 3D modelling 2/3
� B-spline theory

� Developed in the 1960s and ’70s, led to:

� NURBS (Non-Uniform Rational B-Splines)
� More general than Bézier patches

� Béziers are special cases of NURBS

� NURBS quickly became the industry 
standard in CAD
� …and remain the industry standard today

� Adopted by the computer animation industry 
when it began

6

History of 3D modelling 3/3
� Subdivision surfaces

� Theory developed in 1970s and early ’80s
� Picked up by computer animation industry 

in late 1990s
� Now replaced NURBS in computer 

animation
� Solves one of the big problems of NURBS

� Still under active research for use in CAD
� Introduces new problems, not present in 

NURBS, which make it unsuitable for CAD in its 
present form

7

NURBS curve
� A curve is defined parametrically
� Its shape is determined by:

� control points, Pi

� and the NURBS basis functions, Ni,k

∑
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Basic properties of NURBS 1/3

� The basis functions must sum to 1 to 
produce a valid new point
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Basic properties of NURBS 2/3

� The basis functions are calculated from 
a knot vector
� Just a non-decreasing sequence of real 

numbers
� e.g. [0,0,0,1,1,1] or [1,2,3,4,5,6]

or [1.2, 3.4, 5.6, 5.6, 7.2, 15.6]

� See lecture notes or Rogers & Adams for 
details
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Basic properties of NURBS 3/3

� If the basis functions are Cm-continuous 
at t, then P(t) is guaranteed to be Cm-
continuous at t
� So continuity depends only on the basis 

functions, Ni,k

� Continuity does not depend on the 
locations of the control points
� you can sometimes get extra continuity by 

careful positioning of control points
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NURBS surface
� A bivariate

generalisation of the 
univariate NURBS 
curve
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The big constraint…
� NURBS surfaces require a quadrilateral 

mesh of (m+1)×(n+1) points
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The first problem
� Very few objects are made up of a single 

rectangular patch, so we need to join 
patches together

14

The second problem
� What do we do at special points where 

other than four patches meet?

� Either we cannot get C2
� Which means that curvature is not continuous

� Or we get C2 be forcing curvature to be zero
� Which produces a flat spot

� Or we get C2 using very high degree patches
� Which are very hard for a designer to control

15

Drawing a NURBS curve
� NURBS curves and surfaces are always 

drawn on a pixelated surface
� NURBS curves can be approximated by 

straight lines
� So long as each straight line deviates from 

the curve by less than half a pixel

16

Drawing a NURBS surface
� NURBS surfaces are sub-

divided and drawn as a 
series of planar polygons

� Each polygon is only one 
or two pixels in area on 
the screen

� Shading algorithms are 
used to ensure that the 
surfaces appear to be 
smoothly curved
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Subdivision surfaces

� Do away with the explicit parametric 
representation

� Base a curve or surface solely on its 
control points and their connectivity

� Provide a simple mechanism which 
produces a larger, more refined set of 
control points from the current set

� Iterate refinement until the 
appropriate level of detail is achieved

18

History of subdivision schemes

� A univariate (curve) scheme was 
described by de Rahm in 1947

� Rediscovered by Chaikin in 1974
� Extended to bivariate (surfaces)

� Doo-Sabin bi-quadratic patches (1978)
� Catmull-Clark bi-cubic patches (1978)

� Flurry of mathematical work in the
early 1980s
� Dyn & Levin at Tel Aviv University

19

Use of subdivision schemes
� Pixar picked up the ideas and tested 

them in Geri’s Game (1997)
� …then discarded its NURBS based 

software in favour of subdivision schemes

� NURBS
� Toy Story 1995
� A Bug’s Life 1998

� Subdivision surfaces
� Toy Story II 1999
� Monsters Inc. 2001
� Finding Nemo 2003

20

Subdivision basics

� An example: Catmull-
Clark subdivision
� Introduce new points

� At face-centres
� At mid-edges

� Adjust positions of 
original points

� Repeat until sufficiently 
detailed
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Chaikin curve subdivision
� Underlies Doo-Sabin surface subdivision
� C1-continuous in the limit
� Essentially just a ¼-¾ rule

22
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The limit curve
� It can be shown that the limit curve of 

the Chaikin scheme is the uniform 
quadratic B-spline, which is guaranteed 
to be C1

� When drawing curves in computer 
graphics, we draw a set of straight 
lines, so only need to subdivide until 
each segment is about a pixel long and 
we have a good enough approximation 
to the curve

24

C2 approximating scheme
� Underlies Catmull-Clark surface subdivision
� Can be described as: “Insert a midpoint 

and adjust the old control points”
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Why this notation?
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� Easy to analyse
� Allows use of the z-transform

27

The analysis tools
� Generating function formalism

� Use the z-transform on the kernel, h
� Provides sufficient conditions for continuity

� Essentially checks that the differences between 
adjacent points decrease fast enough at each 
refinement step to produce a smooth curve

� There is also a matrix formalism
� Analyse stationary points
� Provides necessary conditions for 

continuity

� For details see our research papers ☺
28

1

0

0

016
1−

16
1−

16
9

16
9

Useful subdivision kernels
� C1, approximating, limit curve is 

quadratic B-spline
� C2, approximating, limit curve is 

cubic B-spline

� C1, interpolating, “four-point 
scheme”

� There is also a C2 interpolating 
six-point scheme
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From Chaikin to Doo-Sabin
� Doo-Sabin scheme is bivariate

generalisation of Chaikin ¼-¾ scheme
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Extraordinary polygons

� Need special 
co-efficients for 
these

(Doo-Sabin)
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Catmull-Clark subdivision
� Catmull-Clark is based on the 

1/8[1,4,6,4,1] univariate scheme

32

Catmull-Clark rules

� This is easy: the rules are simply the 
tensor product of the univariate 
1/8[1,4,6,4,1] rules.
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Catmull-Clark special cases
� This is more difficult: we need to find 

co-efficients which maintain continuity
� It is only possible to get C1 continuity at 

these extraordinary points.

Extraordinary polygons: 
disappear after one step

Extraordinary vertices: 
remain in the mesh
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Subdivision vs NURBS
� Extraordinary points

� Subdivision handles them easily
� NURBS requires the use of other types of 

surface to fill in the holes

� Memory requirements
� Subdivision needs a lot (many MB)
� NURBS is very compact

� Artifacts
� Some artifacts present in both
� Subdivision has extra artifacts

35

The future
� Computers now have enough memory 

to handle subdivision easily
� Subdivision now standard for computer 

animation
� NURBS still standard for CAD
� Subdivision will eventually replaced 

NURBS for CAD if we can sort out the 
artifact problems

36

Our work at Cambridge
� Univariate schemes that are not 

binary
� Ternary (×3) schemes
� Sesquiary (×1½) schemes

� Towards a bestiary of bivariate
schemes
� Classification & analysis of all schemes
� Identification & analysis of new 

schemes (especially ternary)

� Geometrically-sensitive subdivision
� Modifying existing schemes to take 

account of geometric relationships
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Principal subdivision schemes

� Doo-Sabin
� C1, approximating

� Catmull-Clark
� C2, approximating

� only C1 at extra-
ordinary points

� Kobbelt (four-point)
� C1, interpolating

� Loop
� C2, approximating

� only C1 at extra-
ordinary points

� Butterfly
� C1, interpolating

These are the five 
subdivision schemes 

which were thought to 
be the only useful ones

38

√2 and √3 schemes

� Reif-Peters
� C1, approximating
� The simplest 

possible scheme: 
there are no 
special cases!

� Velho-Zorin
� C4, approximating

� only C1 at 
extraordinary 
points

� √3 (Kobbelt)
� C2, approximating

� only C1 at 
extraordinary 
points

These were discovered 
in the late 1990s






















































