Quantum Computing

 Lecture 2
Anuj Dawar

Review of Linear Algebra

Vector Spaces

A vector space over \mathbb{C} is a set \mathbf{V} with

- a commutative, associative addition operation + that has
- an identity $\mathbf{0}:|v\rangle+\mathbf{0}=|v\rangle$
- inverses: $|v\rangle+(-|v\rangle)=\mathbf{0}$
- an operation of multiplication by a scalar $\alpha \in \mathbb{C}$ such that:
$-\alpha(\beta|v\rangle)=(\alpha \beta)|v\rangle$
$-(\alpha+\beta)|v\rangle=\alpha|v\rangle+\beta|v\rangle$ and $\alpha(|u\rangle+|v\rangle)=\alpha|u\rangle+\alpha|v\rangle$
$-1|v\rangle=|v\rangle$.

Linear Algebra

The state space of a quantum system is described as a vector space.

Vector spaces are the object of study in Linear Algebra.

In this lecture we review definitions from linear algebra that we need in the rest of the course.

We are mainly interested in vector spaces over the complex number field - \mathbb{C}.

We use the Dirac notation- $|v\rangle,|\phi\rangle$ (read as ket) for vectors.

\mathbb{C}^{n}

\mathbb{C}^{n} is the vector space of n-tuples of complex numbers: $\left[\begin{array}{c}\alpha_{1} \\ \vdots \\ \alpha_{n}\end{array}\right]$.
with addition $\left[\begin{array}{c}\alpha_{1} \\ \vdots \\ \alpha_{n}\end{array}\right]+\left[\begin{array}{c}\beta_{1} \\ \vdots \\ \beta_{n}\end{array}\right]=\left[\begin{array}{c}\alpha_{1}+\beta_{1} \\ \vdots \\ \alpha_{n}+\beta_{n}\end{array}\right]$
and scalar multiplication $z\left[\begin{array}{c}\alpha_{1} \\ \vdots \\ \alpha_{n}\end{array}\right]=\left[\begin{array}{c}z \alpha_{1} \\ \vdots \\ z \alpha_{n}\end{array}\right]$

Basis

A basis of a vector space \mathbf{V} is a minimal collection of vectors $\left|v_{1}\right\rangle, \ldots,\left|v_{n}\right\rangle$ such that every vector $|v\rangle \in \mathbf{V}$ can be expressed as a linear combination of these:

$$
|v\rangle=\alpha_{1}\left|v_{1}\right\rangle+\cdots+\alpha_{n}\left|v_{n}\right\rangle .
$$

n - the size of the basis-is uniquely determined by \mathbf{V} and is called the dimension of \mathbf{V}.

Given a basis, every vector $|v\rangle$ can be represented as an n-tuple of numbers.

Bases for \mathbb{C}^{n}

The standard basis for \mathbb{C}^{n} is $\left[\begin{array}{c}1 \\ 0 \\ \vdots \\ 0\end{array}\right],\left[\begin{array}{c}0 \\ 1 \\ \vdots \\ 0\end{array}\right], \ldots\left[\begin{array}{c}0 \\ 0 \\ \vdots \\ 1\end{array}\right]$
(written $|0\rangle, \ldots,|n-1\rangle$).
But other bases are possible: $\left[\begin{array}{l}3 \\ 2\end{array}\right],\left[\begin{array}{c}4 \\ -i\end{array}\right]$ is a basis for \mathbb{C}^{2}.

We'll be interested in orthonormal bases. That is bases of vectors of unit length that are mutually orthogonal. Examples are $|0\rangle,|1\rangle$ and $\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle), \frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)$.

Linear Operators

A linear operator A from one vector space \mathbf{V} to another \mathbf{W} is a function such that:

$$
A(\alpha|u\rangle+\beta|v\rangle)=\alpha(A|u\rangle)+\beta(A|v\rangle)
$$

If \mathbf{V} is of dimension n and \mathbf{W} is of dimension m, then the operator A can be represented as an $m \times n$-matrix.

The matrix representation depends on the choice of bases for \mathbf{V} and \mathbf{W}.

Matrices

Given a choice of bases $\left|v_{1}\right\rangle, \ldots,\left|v_{n}\right\rangle$ and $\left|w_{1}\right\rangle, \ldots,\left|w_{m}\right\rangle$, let

$$
A\left|v_{j}\right\rangle=\sum_{i=1}^{m} \alpha_{i j}\left|w_{i}\right\rangle
$$

Then, the matrix representation of A is given by the entries $\alpha_{i j}$.

Multiplying this matrix by the representation of a vector $|v\rangle$ in the basis $\left|v_{1}\right\rangle, \ldots,\left|v_{n}\right\rangle$ gives the representation of $A|v\rangle$ in the basis $\left|w_{1}\right\rangle, \ldots,\left|w_{m}\right\rangle$.

Examples

A 45° rotation of the real plane that takes $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ to $\left[\begin{array}{c}\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}}\end{array}\right]$ and $\left[\begin{array}{l}0 \\ 1\end{array}\right]$ to $\left[\begin{array}{c}-\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}}\end{array}\right]$ is represented, in the standard basis by the matrix

$$
\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right]
$$

The operator $\left[\begin{array}{cc}0 & -i \\ i & 0\end{array}\right]$ does not correspond to a transformation of the real plane.

Inner Products

An inner product on \mathbf{V} is an operation that associates to each pair $|u\rangle,|v\rangle$ of vectors a complex number

$$
\langle u \mid v\rangle .
$$

The operation satisfies

- $\langle u \mid \alpha v+\beta w\rangle=\alpha\langle u \mid v\rangle+\beta\langle u \mid w\rangle$
- $\langle u \mid v\rangle=\langle v \mid u\rangle^{*}$ where the * denotes the complex conjugate.
- $\langle v \mid v\rangle \geq 0$ (note: $\langle v \mid v\rangle$ is a real number) and $\langle v \mid v\rangle=0$ iff $|v\rangle=\mathbf{0}$.

Inner Product on \mathbb{C}^{n}

The standard inner product on \mathbb{C}^{n} is obtained by taking, for

$$
\begin{gathered}
|u\rangle=\sum_{i} u_{i}|i\rangle \text { and }|v\rangle=\sum_{i} v_{i}|i\rangle \\
\langle u \mid v\rangle=\sum_{i} u_{i}^{*} v_{i}
\end{gathered}
$$

Note: $\langle u|$ is a bra, which together with $|v\rangle$ forms the bra-ket $\langle u \mid v\rangle$.

Norms

The norm of a vector $|v\rangle$ (written $\||v\rangle \|$) is the non-negative, real number:

$$
\||v\rangle \|=\sqrt{\langle v \mid v\rangle}
$$

A unit vector is a vector with norm 1.

Two vectors $|u\rangle$ and $|v\rangle$ are orthogonal if $\langle u \mid v\rangle=0$.

An orthonormal basis for an inner product space \mathbf{V} is a basis made up of pairwise orthogonal, unit vectors.

Outer Product

With a pair of vectors $|u\rangle \in \mathbf{U},|v\rangle \in \mathbf{V}$ we associate a linear operator $|u\rangle\langle v|: \mathbf{V} \rightarrow \mathbf{U}$, known as the outer product of $|u\rangle$ and $|v\rangle$.

$$
(|u\rangle\langle v|)\left|v^{\prime}\right\rangle=\left\langle v \mid v^{\prime}\right\rangle|u\rangle
$$

$|v\rangle\langle v|$ is the projection on the one-dimensional space generated by $|v\rangle$.

Any linear operator can be expressed as a linear combination of outer products:

$$
A=\sum_{i j} A_{i j}|i\rangle\langle j| .
$$

Eigenvalues

An eigenvector of a linear operator $A: \mathbf{V} \rightarrow \mathbf{V}$ is a non-zero vector $|v\rangle$ such that

$$
A|v\rangle=\lambda|v\rangle
$$

for some complex number λ
λ is the eigenvalue corresponding to the eigenvector v.

The eigenvalues of A are obtained as solutions of the characteristic equation:

$$
\operatorname{det}(A-\lambda I)=0
$$

Each operator has at least one eigenvalue.

Adjoints

Associated with any linear operator A is its adjoint A^{\dagger} which satisfies

$$
\langle v \mid A w\rangle=\left\langle A^{\dagger} v \mid w\right\rangle
$$

In terms of matrices, $A^{\dagger}=\left(A^{*}\right)^{T}$
where $*$ denotes complex conjugation and T denotes transposition.

$$
\left[\begin{array}{cc}
1+i & 1-i \\
-1 & 1
\end{array}\right]^{\dagger}=\left[\begin{array}{cc}
1-i & -1 \\
1+i & 1
\end{array}\right]
$$

Normal and Hermitian Operators

An operator A is said to be normal if

$$
A A^{\dagger}=A^{\dagger} A
$$

Fact: An operator is diagonalisable if, and only if, it is normal.
A is said to be Hermitian if $A=A^{\dagger}$

A normal operator is Hermitian if, and only if, it has real eigenvalues.

Unitary Operators

A linear operator A is unitary if

$$
A A^{\dagger}=A^{\dagger} A=I
$$

Unitary operators are normal and therefore diagonalisable.

Unitary operators are norm-preserving and invertible.

$$
\langle A u \mid A v\rangle=\langle u \mid v\rangle
$$

All eigenvalues of a unitary operator have modulus 1 .

Tensor Products

In matrix terms,

$$
A \otimes B=\left[\begin{array}{cccc}
A_{11} B & A_{12} B & \cdots & A_{1 m} B \\
A_{21} B & A_{22} B & \cdots & A_{2 m} B \\
\vdots & \vdots & \vdots & \\
A_{m 1} B & A_{m 2} B & \cdots & A_{m m} B
\end{array}\right]
$$

