
Logic and Proof

Computer Science Tripos Part IB
Michaelmas Term

Lawrence C Paulson

Computer Laboratory

University of Cambridge

lp15@cam.ac.uk

Copyright c© 2006 by Lawrence C. Paulson

Contents

1 Introduction 1

2 Propositional Logic 6

3 Gentzen’s Logical Calculi 11

4 First-Order Logic 16

5 Formal Reasoning in First-Order Logic 22

6 Davis-Putnam & Propositional Resolution 28

7 Skolem Functions and Herbrand’s Theorem 34

8 Unification 40

9 Resolution and Prolog 46

10 Binary Decision Diagrams 51

11 Modal Logics 56

12 Tableaux-Based Methods 61

I Logic and Proof 1

Slide 101

Introduction to Logic

Logic concerns statements in some language.

The language can be informal (say English) or formal.

Some statements are true, others false or meaningless.

Logic concerns relationships between statements: consistency,

entailment, . . .

Logical proofs model human reasoning (supposedly).

Slide 102

Statements

Statements are declarative assertions:

Black is the colour of my true love’s hair.

They are not greetings, questions or commands:

What is the colour of my true love’s hair?

I wish my true love had hair.

Get a haircut!

Lawrence C. Paulson University of Cambridge

I Logic and Proof 2

Slide 103

Schematic Statements

The meta-variables X, Y, Z, . . . range over ‘real’ objects

Black is the colour of X’s hair.

Black is the colour of Y.

Z is the colour of Y.

Schematic statements can express general statements, or questions:

What things are black?

Slide 104

Interpretations and Validity

An interpretation maps meta-variables to real objects:

The interpretation Y 7→ coal satisfies the statement

Black is the colour of Y.

but the interpretation Y 7→ strawberries does not!

A statement A is valid if all interpretations satisfy A.

Lawrence C. Paulson University of Cambridge

I Logic and Proof 3

Slide 105

Consistency, or Satisfiability

A set S of statements is consistent if some interpretation satisfies all

elements of S at the same time. Otherwise S is inconsistent.

Examples of inconsistent sets:

{X part of Y, Y part of Z, X NOT part of Z}

{n is a positive integer, n 6= 1, n 6= 2, . . .}

Satisfiable means the same as consistent.

Unsatisfiable means the same as inconsistent.

Slide 106

Entailment, or Logical Consequence

A set S of statements entails A if every interpretation that satisfies all

elements of S, also satisfies A. We write S |= A.

{X part of Y, Y part of Z} |= X part of Z

{n 6= 1, n 6= 2, . . .} |= n is NOT a positive integer

S |= A if and only if {¬A} ∪ S is inconsistent

|= A if and only if A is valid, if and only if {¬A} is inconsistent.

Lawrence C. Paulson University of Cambridge

I Logic and Proof 4

Slide 107

Inference

We want to check A is valid.

Checking all interpretations can be effective — but what if there are

infinitely many?

Let {A1, . . . , An} |= B. If A1, . . ., An are true then B must be

true. Write this as the inference rule

A1 . . . An

B

We can use inference rules to construct finite proofs!

Slide 108

Schematic Inference Rules

X part of Y Y part of Z

X part of Z

A valid inference:

spoke part of wheel wheel part of bike

spoke part of bike

An inference may be valid even if the premises are false!

cow part of chair chair part of ant

cow part of ant

Lawrence C. Paulson University of Cambridge

I Logic and Proof 5

Slide 109

Survey of Formal Logics

propositional logic is traditional boolean algebra.

first-order logic can say for all and there exists.

higher-order logic reasons about sets and functions.

modal/temporal logics reason about what must, or may, happen.

type theories support constructive mathematics.

All have been used to prove correctness of computer systems.

Slide 110

Why Should the Language be Formal?

Consider this ‘definition’:

The least integer not definable using eight words

Greater than The number of atoms in the entire Universe

Also greater than The least integer not definable using eight words

• A formal language prevents AMBIGUITY.

Lawrence C. Paulson University of Cambridge

II Logic and Proof 6

Slide 201

Syntax of Propositional Logic

P, Q, R, . . . propositional letter

t true

f false

¬A not A

A ∧ B A and B

A ∨ B A or B

A → B if A then B

A ↔ B A if and only if B

Slide 202

Semantics of Propositional Logic

¬, ∧, ∨, → and ↔ are truth-functional: functions of their operands.

A B ¬A A ∧ B A ∨ B A → B A ↔ B

t t f t t t t

t f f f t f f

f t t f t t f

f f t f f t t

Lawrence C. Paulson University of Cambridge

II Logic and Proof 7

Slide 203

Interpretations of Propositional Logic

An interpretation is a function from the propositional letters to {t, f }.

Interpretation I satisfies a formula A if the formula evaluates to t.

Write |=I A

A is valid (a tautology) if every interpretation satisfies A.

Write |= A

S is satisfiable if some interpretation satisfies every formula in S.

Slide 204

Implication, Entailment, Equivalence

A → B means simply ¬A ∨ B.

A |= B means if |=I A then |=I B for every interpretation I.

A |= B if and only if |= A → B.

Equivalence

A ≃ B means A |= B and B |= A.

A ≃ B if and only if |= A ↔ B.

Lawrence C. Paulson University of Cambridge

II Logic and Proof 8

Slide 205

Equivalences

A ∧ A ≃ A

A ∧ B ≃ B ∧ A

(A ∧ B) ∧ C ≃ A ∧ (B ∧ C)

A ∨ (B ∧ C) ≃ (A ∨ B) ∧ (A ∨ C)

A ∧ f ≃ f

A ∧ t ≃ A

A ∧ ¬A ≃ f

Dual versions: exchange ∧ with ∨ and t with f in any equivalence

Slide 206

Negation Normal Form

1. Get rid of ↔ and →, leaving just ∧, ∨, ¬:

A ↔ B ≃ (A → B) ∧ (B → A)

A → B ≃ ¬A ∨ B

2. Push negations in, using de Morgan’s laws:

¬¬A ≃ A

¬(A ∧ B) ≃ ¬A ∨ ¬B

¬(A ∨ B) ≃ ¬A ∧ ¬B

Lawrence C. Paulson University of Cambridge

II Logic and Proof 9

Slide 207

From NNF to Conjunctive Normal Form

3. Push disjunctions in, using distributive laws:

A ∨ (B ∧ C) ≃ (A ∨ B) ∧ (A ∨ C)

(B ∧ C) ∨ A ≃ (B ∨ A) ∧ (C ∨ A)

4. Simplify:

• Delete any disjunction containing P and ¬P

• Delete any disjunction that includes another: for example, in

(P ∨ Q) ∧ P, delete P ∨ Q.

• Replace (P ∨ A) ∧ (¬P ∨ A) by A

Slide 208

Converting a Non-Tautology to CNF

P ∨ Q → Q ∨ R

1. Elim →: ¬(P ∨ Q) ∨ (Q ∨ R)

2. Push ¬ in: (¬P ∧ ¬Q) ∨ (Q ∨ R)

3. Push ∨ in: (¬P ∨ Q ∨ R) ∧ (¬Q ∨ Q ∨ R)

4. Simplify: ¬P ∨ Q ∨ R

Not a tautology: try P 7→ t, Q 7→ f , R 7→ f

Lawrence C. Paulson University of Cambridge

II Logic and Proof 10

Slide 209

Tautology checking using CNF

((P → Q) → P) → P

1. Elim →: ¬[¬(¬P ∨ Q) ∨ P] ∨ P

2. Push ¬ in: [¬¬(¬P ∨ Q) ∧ ¬P] ∨ P

[(¬P ∨ Q) ∧ ¬P] ∨ P

3. Push ∨ in: (¬P ∨ Q ∨ P) ∧ (¬P ∨ P)

4. Simplify: t ∧ t

t It’s a tautology!

Lawrence C. Paulson University of Cambridge

III Logic and Proof 11

Slide 301

A Simple Proof System

Axiom Schemes

K A → (B → A)

S (A → (B → C)) → ((A → B) → (A → C))

DN ¬¬A → A

Inference Rule: Modus Ponens

A → B A
B

Slide 302

A Simple (?) Proof of A → A

(A → ((D → A) → A)) → (1)

((A → (D → A)) → (A → A)) by S

A → ((D → A) → A) by K (2)

(A → (D → A)) → (A → A) by MP, (1), (2) (3)

A → (D → A) by K (4)

A → A by MP, (3), (4) (5)

Lawrence C. Paulson University of Cambridge

III Logic and Proof 12

Slide 303

Some Facts about Deducibility

A is deducible from the set S if there is a finite proof of A starting

from elements of S. Write S ⊢ A.

Soundness Theorem . If S ⊢ A then S |= A.

Completeness Theorem . If S |= A then S ⊢ A.

Deduction Theorem . If S ∪ {A} ⊢ B then S ⊢ A → B.

Slide 304

Gentzen’s Natural Deduction Systems

The context of assumptions may vary.

Each logical connective is defined independently.

The introduction rule for ∧ shows how to deduce A ∧ B:

A B
A ∧ B

The elimination rules for ∧ shows what to deduce from A ∧ B:

A ∧ B
A

A ∧ B
B

Lawrence C. Paulson University of Cambridge

III Logic and Proof 13

Slide 305

The Sequent Calculus

Sequent A1, . . . , Am⇒B1, . . . , Bn means,

if A1 ∧ . . . ∧ Am then B1 ∨ . . . ∨ Bn

A1, . . ., Am are assumptions; B1, . . ., Bn are goals

Γ and ∆ are sets in Γ⇒∆

The sequent A, Γ⇒A,∆ is trivially true (basic sequent).

Slide 306

Sequent Calculus Rules

Γ⇒∆,A A, Γ⇒∆

Γ⇒∆
(cut)

Γ⇒∆,A

¬A, Γ⇒∆
(¬l)

A, Γ⇒∆

Γ⇒∆,¬A
(¬r)

A,B, Γ⇒∆

A ∧ B, Γ⇒∆
(∧l)

Γ⇒∆,A Γ⇒∆,B

Γ⇒∆,A ∧ B
(∧r)

Lawrence C. Paulson University of Cambridge

III Logic and Proof 14

Slide 307

More Sequent Calculus Rules

A, Γ⇒∆ B, Γ⇒∆

A ∨ B, Γ⇒∆
(∨l)

Γ⇒∆,A,B

Γ⇒∆,A ∨ B
(∨r)

Γ⇒∆,A B, Γ⇒∆

A → B, Γ⇒∆
(→l)

A, Γ⇒∆,B

Γ⇒∆,A → B
(→r)

Slide 308

Easy Sequent Calculus Proofs

A,B⇒A

A ∧ B⇒A
(∧l)

⇒ (A ∧ B) → A
(→r)

A,B⇒B,A

A⇒B,B → A
(→r)

⇒A → B, B → A
(→r)

⇒ (A → B) ∨ (B → A)
(∨r)

Lawrence C. Paulson University of Cambridge

III Logic and Proof 15

Slide 309

Part of a Distributive Law

A⇒A,B

B,C⇒A,B

B ∧ C⇒A,B
(∧l)

A ∨ (B ∧ C)⇒A,B
(∨l)

A ∨ (B ∧ C)⇒A ∨ B
(∨r)

similar

A ∨ (B ∧ C)⇒ (A ∨ B) ∧ (A ∨ C)
(∧r)

Second subtree proves A ∨ (B ∧ C)⇒A ∨ C similarly

Slide 310

A Failed Proof

A⇒B,C B⇒B,C

A ∨ B⇒B,C
(∨l)

A ∨ B⇒B ∨ C
(∨r)

⇒ (A ∨ B) → (B ∨ C)
(→r)

A 7→ t, B 7→ f , C 7→ f falsifies unproved sequent!

Lawrence C. Paulson University of Cambridge

IV Logic and Proof 16

Slide 401

Outline of First-Order Logic

Reasons about functions and relations over a set of individuals:

father(father(x)) = father(father(y))

cousin(x, y)

Reasons about all and some individuals:

All men are mortal Socrates is a man
Socrates is mortal

Cannot reason about all functions or all relations, etc.

Slide 402

Function Symbols; Terms

Each function symbol stands for an n-place function.

A constant symbol is a 0-place function symbol.

A variable ranges over all individuals.

A term is a variable, constant or a function application

f(t1, . . . , tn)

where f is an n-place function symbol and t1, . . ., tn are terms.

We choose the language, adopting any desired function symbols.

Lawrence C. Paulson University of Cambridge

IV Logic and Proof 17

Slide 403

Relation Symbols; Formulae

Each relation symbol stands for an n-place relation.

Equality is the 2-place relation symbol =

An atomic formula has the form R(t1, . . . , tn) where R is an

n-place relation symbol and t1, . . ., tn are terms.

A formula is built up from atomic formulæ using ¬, ∧, ∨, and so forth.

Later, we can add quantifiers.

Slide 404

The Power of Quantifier-Free FOL

It is surprisingly expressive, if we include strong induction rules.

It is easy to equivalence of mathematical functions:

p(z, 0) = 1

p(z, n + 1) = p(z, n) × z

q(z, 1) = z

q(z, 2 × n) = q(z × z, n)

q(z, 2 × n + 1) = q(z × z, n) × z

The prover ACL2 uses this logic and has been used in major

hardware proofs.

Lawrence C. Paulson University of Cambridge

IV Logic and Proof 18

Slide 405

Universal and Existential Quantifiers

∀x A for all x, the formula A holds

∃x A there exists x such that A holds

Syntactic variations:

∀xyzA abbreviates ∀x ∀y ∀zA

∀z .A ∧ B is an alternative to ∀z (A ∧ B)

The variable x is bound in ∀x A; compare with
∫

f(x)dx

Slide 406

The Expressiveness of Quantifiers

All men are mortal:

∀x (man(x) → mortal(x))

All mothers are female:

∀x female(mother(x))

There exists a unique x such that A, sometimes written ∃!x A

∃x [A(x) ∧ ∀y (A(y) → y = x)]

Lawrence C. Paulson University of Cambridge

IV Logic and Proof 19

Slide 407

The Point of Semantics

We have to attach meanings to symbols like 1, +, <, etc.

Why is this necessary? Why can’t 1 just mean 1??

The point is that mathematics derives its flexibility from allowing

different interpretations of symbols.

• A group has a unit 1, a product x · y and inverse x−1.

• In the most important uses of groups, 1 isn’t a number but a ‘unit

permutation’, ‘unit rotation’, etc.

Slide 408

Constants: Interpreting mortal(Socrates)

An interpretation I = (D, I) defines the semantics of a first-order

language.

D is a non-empty set, called the domain or universe.

I maps symbols to ‘real’ elements, functions and relations:

c a constant symbol I[c] ∈ D

f an n-place function symbol I[f] ∈ Dn → D

P an n-place relation symbol I[P] ∈ Dn → {t, f }

Lawrence C. Paulson University of Cambridge

IV Logic and Proof 20

Slide 409

Variables: Interpreting cousin(Charles, y)

A valuation V : variables→ D supplies the values of free variables.

An interpretation I and valuation function V jointly specify the value

of any term t by the obvious recursion.

This value is written IV [t], and here are the recursion rules:

IV [x]
def
= V(x) if x is a variable

IV [c]
def
= I[c]

IV [f(t1, . . . , tn)]
def
= I[f](IV [t1], . . . , IV [tn])

Slide 410

Tarski’s Truth-Definition

An interpretation I and valuation function V similarly specify the truth

value (t or f) of any formula A.

Quantifiers are the only problem, as they bind variables.

V{a/x} is the valuation that maps x to a and is otherwise like V .

With the help of V{a/x}, we now formally define |=I,V A, the truth

value of A.

Lawrence C. Paulson University of Cambridge

IV Logic and Proof 21

Slide 411

The Meaning of Truth—In FOL!

For interpretation I and valuation V , define |=I,V by recursion.

|=I,V P(t) if IV [t] ∈ I[P] holds

|=I,V t = u if IV [t] equals IV [u]

|=I,V A ∧ B if |=I,V A and |=I,V B

|=I,V ∃x A if |=I,V{m/x} A holds for some m ∈ D

Finally, we define

|=I A if |=I,V A holds for all V .

Formula A is satisfiable if |=I A for some I .

Lawrence C. Paulson University of Cambridge

V Logic and Proof 22

Slide 501

Free vs Bound Variables

All occurrences of x in ∀x A and ∃x A are bound

An occurrence of x is free if it is not bound:

∀y ∃z R(y, z, f(y, x))

In this formula, y and z are bound while x is free.

May rename bound variables:

∀w∃z ′ R(w, z ′, f(w, x))

Slide 502

Substitution for Free Variables

A[t/x] means substitute t for x in A:

(B ∧ C)[t/x] is B[t/x] ∧ C[t/x]

(∀x B)[t/x] is ∀x B

(∀y B)[t/x] is ∀y B[t/x] (x 6= y)

(P(u))[t/x] is P(u[t/x])

With A[t/x], no variable of t may be bound in A!

(∀y (x = y)) [y/x] IS NOT EQUIVALENT TO ∀y (y = y)

Lawrence C. Paulson University of Cambridge

V Logic and Proof 23

Slide 503

Some Equivalences for Quantifiers

¬(∀x A) ≃ ∃x ¬A

∀x A ≃ ∀x A ∧ A[t/x]

(∀x A) ∧ (∀x B) ≃ ∀x (A ∧ B)

BUT WE DO NOT HAVE (∀x A) ∨ (∀x B) ≃ ∀x (A ∨ B).

Dual versions: exchange ∀ with ∃ and ∧ with ∨

Slide 504

Further Quantifier Equivalences

These hold only if x is not free in B.

(∀x A) ∧ B ≃ ∀x (A ∧ B)

(∀x A) ∨ B ≃ ∀x (A ∨ B)

(∀x A) → B ≃ ∃x (A → B)

These let us expand or contract a quantifier’s scope.

Lawrence C. Paulson University of Cambridge

V Logic and Proof 24

Slide 505

Reasoning by Equivalences

∃x (x = a ∧ P(x)) ≃ ∃x (x = a ∧ P(a))

≃ ∃x (x = a) ∧ P(a)

≃ P(a)

∃z (P(z) → P(a) ∧ P(b))

≃ ∀z P(z) → P(a) ∧ P(b)

≃ ∀z P(z) ∧ P(a) ∧ P(b) → P(a) ∧ P(b)

≃ t

Slide 506

Sequent Calculus Rules for ∀

A[t/x], Γ⇒∆

∀x A, Γ⇒∆
(∀l)

Γ⇒∆,A

Γ⇒∆,∀x A
(∀r)

Rule (∀l) can create many instances of ∀x A

Rule (∀r) holds provided x is not free in the conclusion!

NOT allowed to prove

P(y)⇒ P(y)

P(y)⇒ ∀y P(y)
(∀r)

THIS IS NONSENSE!

Lawrence C. Paulson University of Cambridge

V Logic and Proof 25

Slide 507

A Simple Example of the ∀ Rules

P(f(y))⇒ P(f(y))

∀x P(x)⇒P(f(y))
(∀l)

∀x P(x)⇒ ∀y P(f(y))
(∀r)

Slide 508

A Not-So-Simple Example of the ∀ Rules

P⇒Q(y), P P,Q(y)⇒Q(y)

P, P → Q(y)⇒Q(y)
(→l)

P, ∀x (P → Q(x))⇒Q(y)
(∀l)

P, ∀x (P → Q(x))⇒ ∀y Q(y)
(∀r)

∀x (P → Q(x))⇒ P → ∀y Q(y)
(→r)

In (∀l), we must replace x by y.

Lawrence C. Paulson University of Cambridge

V Logic and Proof 26

Slide 509

Sequent Calculus Rules for ∃

A, Γ⇒∆

∃x A, Γ⇒∆
(∃l)

Γ⇒∆,A[t/x]

Γ⇒∆,∃x A
(∃r)

Rule (∃l) holds provided x is not free in the conclusion!

Rule (∃r) can create many instances of ∃x A

For example, to prove this counter-intuitive formula:

∃z (P(z) → P(a) ∧ P(b))

Slide 510

Part of the ∃ Distributive Law

P(x)⇒ P(x),Q(x)

P(x)⇒ P(x) ∨ Q(x)
(∨r)

P(x)⇒ ∃y (P(y) ∨ Q(y))
(∃r)

∃x P(x)⇒ ∃y (P(y) ∨ Q(y))
(∃l)

similar

∃x Q(x)⇒ ∃y . . .
(∃l)

∃x P(x) ∨ ∃x Q(x)⇒ ∃y (P(y) ∨ Q(y))
(∨l)

Second subtree proves ∃x Q(x)⇒ ∃y (P(y) ∨ Q(y)) similarly

In (∃r), we must replace y by x.

Lawrence C. Paulson University of Cambridge

V Logic and Proof 27

Slide 511

A Failed Proof

P(x),Q(y)⇒ P(x) ∧ Q(x)

P(x),Q(y)⇒ ∃z (P(z) ∧ Q(z))
(∃r)

P(x),∃x Q(x)⇒ ∃z (P(z) ∧ Q(z))
(∃l)

∃x P(x),∃x Q(x)⇒ ∃z (P(z) ∧ Q(z))
(∃l)

∃x P(x) ∧ ∃x Q(x)⇒ ∃z (P(z) ∧ Q(z))
(∧l)

We cannot use (∃l) twice with the same variable

This attempt renames the x in ∃x Q(x), to get ∃y Q(y)

Lawrence C. Paulson University of Cambridge

VI Logic and Proof 28

Slide 601

Clause Form

Clause: a disjunction of literals

¬K1 ∨ · · · ∨ ¬Km ∨ L1 ∨ · · · ∨ Ln

Set notation: {¬K1, . . . ,¬Km, L1, . . . , Ln}

Kowalski notation: K1, · · · , Km → L1, · · · , Ln

L1, · · · , Ln ← K1, · · · , Km

Empty clause: �

Empty clause is equivalent to f , meaning CONTRADICTION!

Slide 602

Outline of Clause Form Methods

To prove A, obtain a contradiction from ¬A:

1. Translate ¬A into CNF as A1 ∧ · · · ∧ Am

2. This is the set of clauses A1, . . ., Am

3. Transform the clause set, preserving consistency

Deducing the empty clause refutes ¬A.

An empty clause set (all clauses deleted) means ¬A is satisfiable.

The basis for SAT SOLVERS and RESOLUTION PROVERS.

Lawrence C. Paulson University of Cambridge

VI Logic and Proof 29

Slide 603

The Davis-Putnam-Logeman-Loveland Method

1. Delete tautological clauses: {P,¬P, . . .}

2. For each unit clause {L},

• delete all clauses containing L

• delete ¬L from all clauses

3. Delete all clauses containing pure literals

4. Perform a case split on some literal

DPLL is a decision procedure : it finds a contradiction or a model.

Slide 604

Davis-Putnam on a Non-Tautology

Consider P ∨ Q → Q ∨ R

Clauses are {P,Q} {¬Q} {¬R}

{P,Q} {¬Q} {¬R} initial clauses

{P} {¬R} unit ¬Q

{¬R} unit P (also pure)

unit ¬R (also pure)

Clauses satisfiable by P 7→ t, Q 7→ f , R 7→ f

Lawrence C. Paulson University of Cambridge

VI Logic and Proof 30

Slide 605

Example of a Case Split on P

{¬Q,R} {¬R, P} {¬R,Q} {¬P,Q, R} {P,Q} {¬P,¬Q}

{¬Q,R} {¬R,Q} {Q,R} {¬Q} if P is true

{¬R} {R} unit ¬Q

� unit R

{¬Q,R} {¬R} {¬R,Q} {Q} if P is false

{¬Q} {Q} unit ¬R

� unit ¬Q

Slide 606

SAT solvers in the Real World

• Progressed from joke to killer technology in 10 years.

• Princeton’s zChaff has solved problems with more than one

million variables and 10 million clauses.

• Applications include finding bugs in device drivers (Microsoft’s

SLAM project).

• Typical approach: approximate the problem with a finite model;

encode it using Boolean logic; supply to a SAT solver.

Lawrence C. Paulson University of Cambridge

VI Logic and Proof 31

Slide 607

The Resolution Rule

From B ∨ A and ¬B ∨ C infer A ∨ C

In set notation,

{B,A1, . . . , Am} {¬B,C1, . . . , Cn}

{A1, . . . , Am, C1, . . . , Cn}

Some special cases:

{B} {¬B,C1, . . . , Cn}

{C1, . . . , Cn}

{B} {¬B}

�

Slide 608

Simple Example: Proving P ∧ Q → Q ∧ P

Hint : use ¬(A → B) ≃ A ∧ ¬B

1. Negate! ¬[P ∧ Q → Q ∧ P]

2. Push ¬ in: (P ∧ Q) ∧ ¬(Q ∧ P)

(P ∧ Q) ∧ (¬Q ∨ ¬P)

Clauses: {P} {Q} {¬Q,¬P}

Resolve {P} and {¬Q,¬P} getting {¬Q}.

Resolve {Q} and {¬Q} getting �: we have refuted the negation.

Lawrence C. Paulson University of Cambridge

VI Logic and Proof 32

Slide 609

Another Example

Refute ¬[(P ∨ Q) ∧ (P ∨ R) → P ∨ (Q ∧ R)]

From (P ∨ Q) ∧ (P ∨ R), get clauses {P,Q} and {P, R}.

From ¬ [P ∨ (Q ∧ R)] get clauses {¬P} and {¬Q,¬R}.

Resolve {¬P} and {P,Q} getting {Q}.

Resolve {¬P} and {P, R} getting {R}.

Resolve {Q} and {¬Q,¬R} getting {¬R}.

Resolve {R} and {¬R} getting �, contradiction.

Slide 610

The Saturation Algorithm

At start, all clauses are passive. None are active.

1. Transfer a clause (current) from passive to active.

2. Form all resolvents between current and an active clause.

3. Use new clauses to simplify both passive and active.

4. Put the new clauses into passive.

Repeat until CONTRADICTION found or passive becomes empty.

Lawrence C. Paulson University of Cambridge

VI Logic and Proof 33

Slide 611

Heuristics and Hacks for Resolution

Orderings to focus the search on specific literals

Subsumption, or deleting redundant clauses

Indexing: elaborate data structures for speed

Preprocessing: removing tautologies, symmetries . . .

Weighting: giving priority to “good” clauses over those containing

unwanted constants

Lawrence C. Paulson University of Cambridge

VII Logic and Proof 34

Slide 701

Reducing FOL to Propositional Logic

Prenex : Move quantifiers to the front

Skolemize: Remove quantifiers, preserving consistency

Herbrand models: Reduce the class of interpretations

Herbrand’s Thm: Contradictions have finite, ground proofs

Unification: Automatically find the right instantiations

Finally, combine unification with resolution

Slide 702

Prenex Normal Form

Convert to Negation Normal Form using additionally

¬(∀x A) ≃ ∃x ¬A

¬(∃x A) ≃ ∀x ¬A

Move quantifiers to the front using (provided x is not free in B)

(∀x A) ∧ B ≃ ∀x (A ∧ B)

(∀x A) ∨ B ≃ ∀x (A ∨ B)

and the similar rules for ∃

Lawrence C. Paulson University of Cambridge

VII Logic and Proof 35

Slide 703

Skolemization, or Getting Rid of ∃

Start with a formula of the form (Can have k = 0).

∀x1 ∀x2 · · · ∀xk ∃y A

Choose a fresh k-place function symbol, say f

Delete ∃y and replace y by f(x1, x2, . . . , xk). We get

∀x1 ∀x2 · · · ∀xk A[f(x1, x2, . . . , xk)/y]

Repeat until no ∃ quantifiers remain

Slide 704

Example of Conversion to Clauses

For proving ∃x [P(x) → ∀y P(y)]

¬ [∃x [P(x) → ∀y P(y)]] negated goal

∀x [P(x) ∧ ∃y ¬P(y)] conversion to NNF

∀x ∃y [P(x) ∧ ¬P(y)] pulling ∃ out

∀x [P(x) ∧ ¬P(f(x))] Skolem term f(x)

{P(x)} {¬P(f(x))} Final clauses

Lawrence C. Paulson University of Cambridge

VII Logic and Proof 36

Slide 705

Correctness of Skolemization

The formula ∀x ∃y A is consistent

⇐⇒ it holds in some interpretation I = (D, I)

⇐⇒ for all x ∈ D there is some y ∈ D such that A holds

⇐⇒ some function f̂ in D→ D yields suitable values of y

⇐⇒ A[f(x)/y] holds in some I ′ extending I so that f denotes f̂

⇐⇒ the formula ∀x A[f(x)/y] is consistent.

Don’t panic if you can’t follow this reasoning!

Slide 706

Simplifying the Search for Models

S is satisfiable if even one model makes all of its clauses true.

There are infinitely many models to consider!

Also many duplicates: “states of the USA” and “the integers 1 to 50”

Fortunately, nice models exist.

• They have a uniform structure based on the language’s syntax.

• They satisfy the clauses if any model does.

Lawrence C. Paulson University of Cambridge

VII Logic and Proof 37

Slide 707

The Herbrand Universe for a Set of Clauses S

H0
def
= the set of constants in S (must be non-empty)

Hi+1
def
= Hi ∪ {f(t1, . . . , tn) | t1, . . . , tn ∈ Hi

and f is an n-place function symbol in S}

H
def
=

⋃

i≥0

Hi Herbrand Universe

Hi contains just the terms with at most i nested function applications.

H consists of the terms in S that contain no variables (ground terms).

Slide 708

The Herbrand Semantics of Terms

In a Herbrand model, every constant stands for itself.

Every function symbol stands for a term-forming operation:

f denotes the function that puts ‘f’ in front of the given arguments.

In a Herbrand model, X + 0 can never equal X.

Every ground term denotes itself.

This is the promised uniform structure!

Lawrence C. Paulson University of Cambridge

VII Logic and Proof 38

Slide 709

The Herbrand Semantics of Predicates

HB
def
= {P(t1, . . . , tn) | t1, . . . , tn ∈ H

and P is an n-place predicate symbol in S}

HB contains all ground atoms: predicates applied to ground terms.

We view a ground atom as stating that the formula is true.

In a Herbrand model, each predicate P stands for

the set of ground atoms P(x) that we want to be true.

We can make whatever we want true!

Slide 710

Example of an Herbrand Model

¬even(1)

even(2)

even(X · Y)← even(X), even(Y)

clauses

H = {1, 2, 1 · 1, 1 · 2, 2 · 1, 2 · 2, 1 · (1 · 1), . . .}

HB = {even(1), even(2), even(1 · 1), even(1 · 2), . . .}

I[even] = {even(2), even(1 · 2), even(2 · 1), even(2 · 2), . . .}

(for model where · means product; could instead use sum!)

Lawrence C. Paulson University of Cambridge

VII Logic and Proof 39

Slide 711

A Key Fact about Herbrand Interpretations

Let S be a set of clauses.

S is unsatisfiable ⇐⇒ no Herbrand interpretation satisfies S

• Holds because some Herbrand model mimicks every ‘real’ model

• We must consider only a small class of models

• Herbrand models are syntactic, easily processed by computer

Slide 712

Herbrand’s Theorem

Let S be a set of clauses.

S is unsatisfiable ⇐⇒ there is a finite unsatisfiable set S ′ of ground

instances of clauses of S.

• Finite : we can compute it

• Instance : result of substituting for variables

• Ground : no variables remain—it’s propositional!

Example: S could be {P(x)} {¬P(f(y))},

and S ′ could be {P(f(a))} {¬P(f(a))}.

Lawrence C. Paulson University of Cambridge

VIII Logic and Proof 40

Slide 801

Unification

Finding a common instance of two terms. Lots of applications:

• Prolog and other logic programming languages

• Theorem proving : resolution and other procedures

• Tools for reasoning with equations

• Tools for satisfying multiple constraints

• Polymorphic type-checking (ML and other functional languages)

It’s an intuitive generalization of pattern-matching.

Slide 802

Substitutions: A Mathematical Treatment

A substitution is a finite set of replacements

θ = [t1/x1, . . . , tk/xk]

where x1, . . ., xk are distinct variables and ti 6= xi.

f(t, u)θ = f(tθ, uθ) (substitution in terms)

P(t, u)θ = P(tθ, uθ) (in literals)

{L1, . . . , Lm}θ = {L1θ, . . . , Lmθ} (in clauses)

Lawrence C. Paulson University of Cambridge

VIII Logic and Proof 41

Slide 803

Composing Substitutions

Composition of φ and θ, written φ ◦ θ, satisfies for all terms t

t(φ ◦ θ) = (tφ)θ

It is defined by (for all relevant x)

φ ◦ θ
def
= [(xφ)θ / x, . . .]

Consequences include θ ◦ [] = θ, and associativity :

(φ ◦ θ) ◦ σ = φ ◦ (θ ◦ σ)

Slide 804

Most General Unifiers

θ is a unifier of terms t and u if tθ = uθ.

θ is more general than φ if φ = θ ◦ σ for some substitution σ.

θ is most general if it is more general than every other unifier.

If θ unifies t and u then so does θ ◦ σ:

t(θ ◦ σ) = tθσ = uθσ = u(θ ◦ σ)

A most general unifier of f(a, x) and f(y, g(z)) is [a/y, g(z)/x].

The common instance is f(a, g(z)).

Lawrence C. Paulson University of Cambridge

VIII Logic and Proof 42

Slide 805

The Unification Algorithm

Represent terms by binary trees.

Each term is a Variable x, y . . ., Constant a, b . . ., or Pair (t, t ′)

SKETCH OF THE ALGORITHM.

Constants do not unify with different Constants.

Constants do not unify with Pairs.

Variable x and term t: unifier is [t/x], unless x occurs in t

Cannot unify f(x) with x!

Slide 806

The Unification Algorithm: The Case of Two Pairs

θ ◦ θ ′ unifies (t, t ′) with (u, u ′)

if θ unifies t with u and θ ′ unifies t ′θ with u ′θ.

We unify the left sides, then the right sides.

In an implementation, substitutions are formed by updating pointers.

Composition happens automatically as more pointers are updated.

Lawrence C. Paulson University of Cambridge

VIII Logic and Proof 43

Slide 807

Mathematical justification

It’s easy to check that θ ◦ θ ′ unifies (t, t ′) with (u, u ′):

(t, t ′)(θ ◦ θ ′) = (t, t ′)θθ ′

= (tθθ ′, t ′θθ ′)

= (uθθ ′, u ′θθ ′)

= (u, u ′)θθ ′

= (u, u ′)(θ ◦ θ ′)

θ ◦ θ ′ is even a most general unifier, if θ and θ ′ are!

Slide 808

Four Unification Examples

f(x, b) f(x, x) f(x, x) j(x, x, z)

f(a, y) f(a, b) f(y, g(y)) j(w,a, h(w))

f(a, b) None None j(a, a, h(a))

[a/x, b/y] Fail Fail [a/w, a/x, h(a)/z]

Remember, the output is a substitution.

The algorithm yields a most general unifier.

Lawrence C. Paulson University of Cambridge

VIII Logic and Proof 44

Slide 809

Theorem-Proving Example 1

(∃y ∀x R(x, y)) → (∀x ∃y R(x, y))

After negation, the clauses are {R(x, a)} and {¬R(b, y)}.

The literals R(x, a) and R(b, y) have unifier [b/x, a/y].

We have the contradiction R(b, a) and ¬R(b, a).

THE THEOREM IS PROVED BY CONTRADICTION!

Slide 810

Theorem-Proving Example 2

(∀x ∃y R(x, y)) → (∃y ∀x R(x, y))

After negation, the clauses are {R(x, f(x))} and {¬R(g(y), y)}.

The literals R(x, f(x)) and R(g(y), y) are not unifiable.

(They fail the occurs check.)

We can’t get a contradiction. FORMULA IS NOT A THEOREM!

Lawrence C. Paulson University of Cambridge

VIII Logic and Proof 45

Slide 811

Variations on Unification

Efficient unification algorithms: near-linear time

Indexing & Discrimination networks: fast retrieval of a unifiable term

Associative/commutative unification

• Example: unify a + (y + c) with (c + x) + b, get [a/x, b/y]

• Algorithm is very complicated

• The number of unifiers can be exponential

Unification in many other theories (often undecidable!)

Lawrence C. Paulson University of Cambridge

IX Logic and Proof 46

Slide 901

The Binary Resolution Rule

{B,A1, . . . , Am} {¬D,C1, . . . , Cn}

{A1, . . . , Am, C1, . . . , Cn}σ
provided Bσ = Dσ

First, rename variables apart in the clauses! For example, given

{P(x)} and {¬P(g(x))}

rename x in one of the clauses before attempting unification.

Always use a most general unifier (MGU).

Slide 902

The Factoring Rule

This inference collapses unifiable literals in one clause:

{B1, . . . , Bk, A1, . . . , Am}

{B1, A1, . . . , Am}σ
provided B1σ = · · · = Bkσ

Example: Prove ∀x ∃y ¬(P(y, x) ↔ ¬P(y, y))

The clauses are {¬P(y, a),¬P(y, y)} {P(y, y), P(y, a)}

Factoring yields {¬P(a, a)} {P(a, a)}

Resolution yields the empty clause!

Lawrence C. Paulson University of Cambridge

IX Logic and Proof 47

Slide 903

A Non-Trivial Proof

∃x [P → Q(x)] ∧ ∃x [Q(x) → P] → ∃x [P ↔ Q(x)]

Clauses are {P,¬Q(b)} {P,Q(x)} {¬P,¬Q(x)} {¬P,Q(a)}

Resolve {P,¬Q(b)} with {P,Q(x)} getting {P, P}

Factor {P, P} getting {P}

Resolve {¬P,¬Q(x)} with {¬P,Q(a)} getting {¬P,¬P}

Factor {¬P,¬P} getting {¬P}

Resolve {P} with {¬P} getting �

Slide 904

What About Equality?

In theory, it’s enough to add the equality axioms:

• The reflexive, symmetric and transitive laws.

• Substitution laws like {x 6= y, f(x) = f(y)} for each f.

• Substitution laws like {x 6= y,¬P(x), P(y)} for each P.

In practice, we need something special: the paramodulation rule

{B[t ′], A1, . . . , Am} {t = u,C1, . . . , Cn}

{B[u], A1, . . . , Am, C1, . . . , Cn}σ (if tσ = t ′σ)

Lawrence C. Paulson University of Cambridge

IX Logic and Proof 48

Slide 905

Prolog Clauses

Prolog clauses have a restricted form, with at most one positive literal.

The definite clauses form the program. Procedure B with body

“commands” A1, . . . , Am is

B← A1, . . . , Am

The single goal clause is like the “execution stack”, with say m tasks

left to be done.

← A1, . . . , Am

Slide 906

Prolog Execution

Linear resolution:

• Always resolve some program clause with the goal clause.

• The result becomes the new goal clause.

Try the program clauses in left-to-right order.

Solve the goal clause’s literals in left-to-right order.

Use depth-first search. (Performs backtracking, using little space.)

Do unification without occurs check. (UNSOUND, but needed for

speed)

Lawrence C. Paulson University of Cambridge

IX Logic and Proof 49

Slide 907

A (Pure) Prolog Program

parent(elizabeth,charles).

parent(elizabeth,andrew).

parent(charles,william).

parent(charles,henry).

parent(andrew,beatrice).

parent(andrew,eugenia).

grand(X,Z) :- parent(X,Y), parent(Y,Z).

cousin(X,Y) :- grand(Z,X), grand(Z,Y).

Slide 908

Prolog Execution

:- cousin(X,Y).

:- grand(Z1,X), grand(Z1,Y).

:- parent(Z1,Y2), parent(Y2,X), grand(Z1,Y).

* :- parent(charles,X), grand(elizabeth,Y).

X=william :- grand(elizabeth,Y).

:- parent(elizabeth,Y5), parent(Y5,Y).

* :- parent(andrew,Y).

Y=beatrice :- �.

* = backtracking choice point

16 solutions including cousin(william,william)

and cousin(william,henry)

Lawrence C. Paulson University of Cambridge

IX Logic and Proof 50

Slide 909

Another FOL Proof Procedure: Model Elimination

A Prolog-like method to run on fast Prolog architectures.

Contrapositives: treat clause {A1, . . . , Am} like the m clauses

A1 ← ¬A2, . . . ,¬Am

A2 ← ¬A3, . . . ,¬Am,¬A1

...

Am ← ¬A1, . . . ,¬Am−1

Extension rule: when proving goal P, assume ¬P.

Slide 910

A Survey of Automatic Theorem Provers

Saturation (that is, resolution): E, Gandalf, SPASS, Vampire, . . .

Higher-Order Logic : TPS, LEO

Model Elimination : Prolog Technology Theorem Prover, SETHEO

Parallel ME : PARTHENON, PARTHEO

Tableau (sequent) based : LeanTAP, 3TAP, . . .

Lawrence C. Paulson University of Cambridge

X Logic and Proof 51

Slide 1001

BDDs: Binary Decision Diagrams

A canonical form for boolean expressions: decision trees with sharing.

• ordered propositional symbols (‘variables’)

• sharing of identical subtrees

• hashing and other optimisations

Detects if a formula is tautologous (t) or inconsistent (f).

Exhibits models if the formula is satisfiable.

Excellent for verifying digital circuits, with many other applications.

Slide 1002

Decision Diagram for (P ∨ Q) ∧ R

P

Q

R R

1000 0 01 1

Q

R R

Lawrence C. Paulson University of Cambridge

X Logic and Proof 52

Slide 1003

Converting a Decision Diagram to a BDD

P

Q

R

Q

R

0 1

P

Q

R

0 1

No duplicates No redundant tests

Slide 1004

Building BDDs Efficiently

Do not construct full tree!

Do not expand →, ↔, ⊕ (exclusive OR) to other connectives.

Treat ¬Z as Z → f or Z ⊕ t.

Recursively convert operands to BDDs.

Combine operand BDDs, respecting the ordering and sharing.

Delete redundant variable tests.

Lawrence C. Paulson University of Cambridge

X Logic and Proof 53

Slide 1005

Canonical Form Algorithm

To convert Z ∧ Z ′, where Z and Z ′ are already BDDs:

Trivial if either operand is t or f .

Let Z = if(P, X, Y) and Z ′ = if(P ′, X ′, Y ′)

• If P = P ′ then recursively convert if(P, X ∧ X ′, Y ∧ Y ′).

• If P < P ′ then recursively convert if(P, X ∧ Z ′, Y ∧ Z ′).

• If P > P ′ then recursively convert if(P ′, Z ∧ X ′, Z ∧ Y ′).

Slide 1006

Canonical Forms of Other Connectives

Z ∨ Z ′, Z → Z ′ and Z ↔ Z ′ are converted to BDDs similarly.

Some cases, like Z → t, reduce to negation.

Here is how to convert ¬Z, where Z is a BDD:

• If Z = if(P, X, Y) then recursively convert if(P, ¬X, ¬Y).

• if Z = t then return f , and if Z = f then return t.

In effect we copy the BDD but swap t and f at the leaves.

Lawrence C. Paulson University of Cambridge

X Logic and Proof 54

Slide 1007

Canonical Form (that is, BDD) of P ∨ Q

P

0 1

Q

0 1

P

∨

Slide 1008

Canonical Form of P ∨ Q → Q ∨ R

Q

0 1

P →

R

0 1

Q

Q

P

R

0 1

Q

P

Lawrence C. Paulson University of Cambridge

X Logic and Proof 55

Slide 1009

Optimisations Based On Hash Tables

Never build the same BDD twice, but share pointers. Advantages:

• If X ≃ Y, then the addresses of X and Y are equal.

• Can see if if(P, X, Y) is redundant by checking if X = Y.

• Can quickly simplify special cases like X ∧ X.

Never convert X∧Y twice, but keep a table of known canonical forms.

Slide 1010

Final Observations

The variable ordering is crucial. Consider this formula:

(P1 ∧ Q1) ∨ · · · ∨ (Pn ∧ Qn)

A good ordering is P1 < Q1 < · · · < Pn < Qn: the BDD is

linear.

With P1 < · · · < Pn < Q1 < · · · < Qn, the BDD is

EXPONENTIAL.

Many digital circuits have small BDDs: adders, but not multipliers.

BDDs can solve problems in hundreds of variables.

The general case remains hard (it is NP-complete).

Lawrence C. Paulson University of Cambridge

XI Logic and Proof 56

Slide 1101

Modal Operators

W: set of possible worlds (machine states, future times, . . .)

R: accessibility relation between worlds

(W,R) is called a modal frame

2A means A is necessarily true

3A means A is possibly true

}
— in all accessible worlds

¬3A ≃ 2¬A A cannot be true ⇐⇒ A must be false

Slide 1102

Semantics of Propositional Modal Logic

For a particular frame (W,R)

An interpretation I maps the propositional letters to subsets of W

w A means A is true in world w

w P ⇐⇒ w ∈ I(P)

w A ∧ B⇐⇒ w A and w B

w 2A ⇐⇒ v A for all v such that R(w, v)

w 3A ⇐⇒ v A for some v such that R(w, v)

Lawrence C. Paulson University of Cambridge

XI Logic and Proof 57

Slide 1103

Truth and Validity in Modal Logic

For a particular frame (W,R), and interpretation I

w A means A is true in world w

|=W,R,I A means w A for all w in W

|=W,R A means w A for all w and all I

|= A means |=W,R A for all frames; A is universally valid

. . . but typically we constrain R to be, say, transitive

All tautologies are universally valid

Slide 1104

A Hilbert-Style Proof System for K

Extend your favourite propositional proof system with

Dist 2(A → B) → (2A → 2B)

Inference Rule: Necessitation

A
2A

Treat 3 as a definition

3A
def
= ¬2¬A

Lawrence C. Paulson University of Cambridge

XI Logic and Proof 58

Slide 1105

Variant Modal Logics

Start with pure modal logic, which is called K

Add axioms to constrain the accessibility relation:

T 2A → A (reflexive) logic T

4 2A → 22A (transitive) logic S4

B A → 23A (symmetric) logic S5

And countless others!

We shall mainly look at S4

Slide 1106

Extra Sequent Calculus Rules for S4

A, Γ⇒∆

2A, Γ⇒∆
(2l)

Γ∗⇒∆∗, A

Γ⇒∆,2A
(2r)

A, Γ∗⇒∆∗

3A, Γ⇒∆
(3l)

Γ⇒∆,A

Γ⇒∆,3A
(3r)

Γ∗ def
= {2B | 2B ∈ Γ } Erase non-2 assumptions

∆∗ def
= {3B | 3B ∈ ∆} Erase non-3 goals!

Lawrence C. Paulson University of Cambridge

XI Logic and Proof 59

Slide 1107

A Proof of the Distribution Axiom

A⇒B,A B,A⇒B

A → B,A⇒B
(→l)

A → B,2A⇒B
(2l)

2(A → B),2A⇒B
(2l)

2(A → B),2A⇒2B
(2r)

And thus 2(A → B) → (2A → 2B)

Must apply (2r) first!

Slide 1108

Part of an Operator String Equivalence

3A⇒3A

23A⇒3A
(2l)

323A⇒3A
(3l)

2323A⇒3A
(2l)

2323A⇒23A
(2r)

In fact, 2323A ≃ 23A also 22A ≃ 2A

The S4 operator strings are 2 3 23 32 232 323

Lawrence C. Paulson University of Cambridge

XI Logic and Proof 60

Slide 1109

Two Failed Proofs

⇒A

⇒3A
(3r)

A⇒23A
(2r)

B⇒A ∧ B

B⇒3(A ∧ B)
(3r)

3A,3B⇒3(A ∧ B)
(3l)

Can extract a countermodel from the proof attempt

Lawrence C. Paulson University of Cambridge

XII Logic and Proof 61

Slide 1201

Simplifying the Sequent Calculus

7 connectives (or 9 for modal logic):

¬ ∧ ∨ → ↔ ∀ ∃ (2 3)

Left and right: so 14 rules (or 18) plus basic sequent, cut

Idea! Work in Negation Normal Form

Fewer connectives: ∧ ∨ ∀ ∃ (2 3)

Sequents need one side only!

Slide 1202

Simplified Calculus: Left-Only

¬A,A, Γ⇒
(basic) ¬A, Γ⇒ A, Γ⇒

Γ⇒
(cut)

A,B, Γ⇒
A ∧ B, Γ⇒

(∧l)
A, Γ⇒ B, Γ⇒

A ∨ B, Γ⇒
(∨l)

A[t/x], Γ⇒
∀x A, Γ⇒

(∀l)
A, Γ⇒

∃x A, Γ⇒
(∃l)

Rule (∃l) holds provided x is not free in the conclusion!

Lawrence C. Paulson University of Cambridge

XII Logic and Proof 62

Slide 1203

Left-Only Sequent Rules for S4

A, Γ⇒
2A, Γ⇒

(2l)
A, Γ∗⇒

3A, Γ⇒
(3l)

Γ∗ def
= {2B | 2B ∈ Γ } Erase non-2 assumptions

From 14 (or 18) rules to 4 (or 6)

Left-side only system uses proof by contradiction

Right-side only system is an exact dual

Slide 1204

Proving ∀x (P → Q(x))⇒P → ∀yQ(y)

Move the right-side formula to the left and convert to NNF:

P ∧ ∃y ¬Q(y), ∀x (¬P ∨ Q(x))⇒

P, ¬Q(y), ¬P⇒ P, ¬Q(y), Q(y)⇒
P, ¬Q(y), ¬P ∨ Q(y)⇒

(∨l)

P, ¬Q(y), ∀x (¬P ∨ Q(x))⇒
(∀l)

P, ∃y ¬Q(y), ∀x (¬P ∨ Q(x))⇒
(∃l)

P ∧ ∃y ¬Q(y), ∀x (¬P ∨ Q(x))⇒
(∧l)

Lawrence C. Paulson University of Cambridge

XII Logic and Proof 63

Slide 1205

Adding Unification

Rule (∀l) now inserts a new free variable:

A[z/x], Γ⇒
∀x A, Γ⇒

(∀l)

Let unification instantiate any free variable

In ¬A,B, Γ⇒ try unifying A with B to make a basic sequent

Updating a variable affects entire proof tree

What about rule (∃l)? Skolemize!

Slide 1206

Skolemization from NNF

Don’t pull quantifiers out! Skolemize

[∀y ∃zQ(y, z)] ∧ ∃x P(x) to [∀y Q(y, f(y))] ∧ P(a)

It’s better to push quantifiers in (called miniscoping)

Example: proving ∃x ∀y [P(x) → P(y)]:

Negate; convert to NNF : ∀x ∃y [P(x) ∧ ¬P(y)]

Push in the ∃y : ∀x [P(x) ∧ ∃y ¬P(y)]

Push in the ∀x : (∀x P(x)) ∧ (∃y ¬P(y))

Skolemize: ∀x P(x) ∧ ¬P(a)

Lawrence C. Paulson University of Cambridge

XII Logic and Proof 64

Slide 1207

A Proof of ∃x∀y [P(x) → P(y)]

y 7→ f(z)

P(y), ¬P(f(y)), P(z), ¬P(f(z))⇒
(basic)

P(y), ¬P(f(y)), P(z) ∧ ¬P(f(z))⇒
(∧l)

P(y), ¬P(f(y)), ∀x [P(x) ∧ ¬P(f(x))]⇒
(∀l)

P(y) ∧ ¬P(f(y)), ∀x [P(x) ∧ ¬P(f(x))]⇒
(∧l)

∀x [P(x) ∧ ¬P(f(x))]⇒
(∀l)

Unification chooses the term for (∀l)

Slide 1208

A Failed Proof

Try to prove ∀x [P(x) ∨ Q(x)]⇒ ∀x P(x) ∨ ∀x Q(x)

NNF : ∃x ¬P(x) ∧ ∃x ¬Q(x), ∀x [P(x) ∨ Q(x)]⇒

Skolemize: ¬P(a) ∧ ¬Q(b), ∀x [P(x) ∨ Q(x)]⇒

y 7→ a

¬P(a), ¬Q(b), P(y)⇒
y 7→ b???

¬P(a), ¬Q(b), Q(y)⇒
¬P(a), ¬Q(b), P(y) ∨ Q(y)⇒

(∨l)

¬P(a), ¬Q(b), ∀x [P(x) ∨ Q(x)]⇒
(∀l)

¬P(a) ∧ ¬Q(b), ∀x [P(x) ∨ Q(x)]⇒
(∧l)

Lawrence C. Paulson University of Cambridge

XII Logic and Proof 65

Slide 1209

The World’s Smallest Theorem Prover?

prove((A,B),UnExp,Lits,FreeV,VarLim) :- !, and

prove(A,[B|UnExp],Lits,FreeV,VarLim).

prove((A;B),UnExp,Lits,FreeV,VarLim) :- !, or

prove(A,UnExp,Lits,FreeV,VarLim),

prove(B,UnExp,Lits,FreeV,VarLim).

prove(all(X,Fml),UnExp,Lits,FreeV,VarLim) :- !, forall

\+ length(FreeV,VarLim),

copy_term((X,Fml,FreeV),(X1,Fml1,FreeV)),

append(UnExp,[all(X,Fml)],UnExp1),

prove(Fml1,UnExp1,Lits,[X1|FreeV],VarLim).

prove(Lit,_,[L|Lits],_,_) :- literals; negation

(Lit = -Neg; -Lit = Neg) ->

(unify(Neg,L); prove(Lit,[],Lits,_,_)).

prove(Lit,[Next|UnExp],Lits,FreeV,VarLim) :- next formula

prove(Next,UnExp,[Lit|Lits],FreeV,VarLim).

Lawrence C. Paulson University of Cambridge

