
Introduction to Functional Programming
Exercises on structural induction

1. Prove the statements of Lecture X by structural induction.

2. Let

fun foldl f e [] = e
| foldl f e (h::t) = foldl f (f(x,e)) t

(a) For all f : α *β → β, b : β, and `0, `1 : α list, show that

foldl f b (`0 @ `1) = foldl f (foldl f b `0) `1 : β

(b) For ⊕ : β *β → β an associative function show that, for all b0, b1 : β and ` : α list,

foldl ⊕ (b1 ⊕ b0) ` = (foldl ⊕ b1 `)⊕ b0 : β

3. Let

fun foldr f e [] = e
| foldr f e (h::t) = f(h , foldr f e t)

(a) For all `0, `1 : α list, show that

foldr (op::) `0 `1 = `1 @ `0 : α list

(b) For ⊗ : β *β → β an associative function and e : β such that ⊗(e, x) = x for all
x : β, show that

(foldr ⊗ e `)⊗ b = foldr ⊗ b `

and

foldr (fn(l, b) => foldr ⊗ b l) e ` = foldr ⊗ e (map (foldr ⊗ e) `) : β

for all b : β and ` : β list.

1

