
UNIVERSITY OF
CAMBRIDGE
Computer Laboratory

Computer Science Tripos (Part Ib)

Foundations of Functional
Programming

http://www.cl.cam.ac.uk/Teaching/2006/FFuncProg/

Alan Mycroft am21@cl.cam.ac.uk

2006–2007 (Lent Term)

Copyright c© 2007 Lawrence C. Paulson and Alan Mycroft
(The vast majority of these 2006/07 notes are due to Professor Paulson;

responsibility for any errors however rests with me.)

Contents

1 Introduction 3

2 Equality and Normalization 7

3 Encoding Data in the λ-Calculus 12

4 Writing Recursive Functions in the λ-calculus 17

5 ISWIM: The λ-calculus as a Programming Language 24

6 Lazy Evaluation via Combinators 35

7 Compiling Techniques Using Combinators 40

8 Continuations 47

9 Imperative Features 50

10 Haskell 50

11 Type Systems for Functional Languages 50

Page numbers (unusually) start at ‘1’ for the title page so that page numbers reported by
PDF readers agree with the printed page number.

2

3

1 Introduction

This course is concerned with the λ-calculus and its close relative, combinatory logic. The
λ-calculus is important to functional programming and to computer science generally:

1. Variable binding and scoping in block-structured languages can be modelled.

2. Several function calling mechanisms—call-by-name, call-by-value, and call-by-need—
can be modelled. The latter two are also known as strict evaluation and lazy evalu-
ation.

3. The λ-calculus is Turing universal, and is probably the most natural model of com-
putation. Church’s Thesis asserts that the ‘computable’ functions are precisely those
that can be represented in the λ-calculus.

4. All the usual data structures of functional programming, including infinite lists, can
be represented. Computation on infinite objects can be defined formally in the λ-
calculus.

5. Its notions of confluence (Church-Rosser property), termination, and normal form
apply generally in rewriting theory.

6. Lisp, one of the first major programming languages, was inspired by the λ-calculus.
Many functional languages, such as ML, consist of little more than the λ-calculus
with additional syntax.

7. The two main implementation methods, the SECD machine (for strict evaluation)
and combinator reduction (for lazy evaluation) exploit properties of the λ-calculus.

8. The λ-calculus and its extensions can be used to develop better type systems, such
as polymorphism, and to investigate theoretical issues such as program synthesis.

9. Denotational semantics, which is an important method for formally specifying pro-
gramming languages, employs the λ-calculus for its notation.

Hindley and Seldin [6] is a concise introduction to the λ-calculus and combinators.
Gordon [5] is oriented towards computer science, overlapping closely with this course.
Barendregt [1] is the last word on the λ-calculus.

1.1 The λ-Calculus

Around 1924, Schönfinkel developed a simple theory of functions. In 1934, Church in-
troduced the λ-calculus and used it to develop a formal set theory, which turned out to
be inconsistent. More successfully, he used it to formalize the syntax of Whitehead and
Russell’s massive Principia Mathematica. In the 1940s, Haskell B. Curry introduced com-
binatory logic, a variable-free theory of functions.

4 1 INTRODUCTION

More recently, Roger Hindley developed what is now known as type inference. Robin
Milner extended this to develop the polymorphic type system of ML, and published a
proof that a well-typed program cannot suffer a run-time type error. Dana Scott developed
models of the λ-calculus. With his domain theory, he and Christopher Strachey introduced
denotational semantics.

Peter Landin used the λ-calculus to analyze Algol 60, and introduced ISWIM as a frame-
work for future languages. His SECD machine, with extensions, was used to implement ML
and other strict functional languages. Christopher Wadsworth developed graph reduction
as a method for performing lazy evaluation of λ-expressions. David Turner applied graph
reduction to combinators, which led to efficient implementations of lazy evaluation.

Definition 1 The terms of the λ-calculus, known as λ-terms, are constructed recursively
from a given set of variables x, y, z, They may take one of the following forms:

x variable
(λx.M) abstraction, where M is a term
(MN) application, where M and N are terms

We use capital letters like L, M , N , . . . for terms. We write M ≡ N to state that
M and N are identical λ-terms. The equality between λ-terms, M = N , will be discussed
later.

1.2 Variable Binding and Substitution

In (λx.M), we call x the bound variable and M the body. Every occurrence of x in M is
bound by the abstraction. An occurrence of a variable is free if it is not bound by some
enclosing abstraction. For example, x occurs bound and y occurs free in (λz.(λx.(yx)).

Notations involving free and bound variables exist throughout mathematics. Consider
the integral

∫ b

a
f(x)dx, where x is bound, and the product Πn

k=0 p(k), where k is bound.
The quantifiers ∀ and ∃ also bind variables.

The abstraction (λx.M) is intended to represent the function f such that f(x) = M
for all x. Applying f to N yields the result of substituting N for all free occurrences of x
in M . Two examples are

(λx.x) The identity function, which returns its argument
unchanged. It is usually called I .1

(λy.x) A constant function, which returns x when applied
to any argument.

Let us make these concepts precise.

1Note that I here is just an abbreviation for λx.x—it is just a symbol we use for talking about the
λ-calculus. Later we (slightly confusingly) will use I to refer to a combinator—a symbol representing a
constant within combinatory logic.

1.3 Avoiding Variable Capture in Substitution 5

Definition 2 BV(M), the set of all bound variables in M , is given by

BV(x) = ∅

BV(λx.M) = BV(M) ∪ {x}

BV(MN) = BV(M) ∪ BV(N)

Definition 3 FV(M), the set of all free variables in M , is given by

FV(x) = {x}

FV(λx.M) = FV(M) \ {x}

FV(MN) = FV(M) ∪ FV(N)

Definition 4 M [L/y], the result of substituting L for all free occurrences of y in M , is
given by

x[L/y] ≡

{

L if x ≡ y

x otherwise

(λx.M)[L/y] ≡

{

(λx.M) if x ≡ y

(λx.M [L/y]) otherwise

(MN)[L/y] ≡ (M [L/y] N [L/y])

The notations defined above are not themselves part of (the syntax) of the λ-calculus.
They belong to the metalanguage: they are for talking about the λ-calculus. Later (e.g. in
the SECD machine) we will model these substitutions explicitly as environments because
the idea of performing textual substitutions on a program to evaluate it does not implement
efficiently on typical machine architectures.

1.3 Avoiding Variable Capture in Substitution

Substitution must not disturb variable binding. Consider the term (λx.(λy.x)). It should
represent the function that, when applied to an argument N , returns the constant func-
tion (λy.N). Unfortunately, this does not work if N ≡ y; we have defined substitution such
that (λy.x)[y/x] ≡ (λy.y). Replacing x by y in the constant function transforms it into the
identity function. The free occurrence of x turns into a bound occurrence of y—an example
of variable capture. If this were allowed to happen, the λ-calculus would be inconsistent.
The substitution M [N/x] is safe provided the bound variables of M are disjoint from the
free variables of N :

BV(M) ∩ FV(N) = ∅.

We can always rename the bound variables of M , if necessary, to make this condition
true. In the example above, we could change (λy.x) into (λz.x), then obtain the correct
substitution (λz.x)[y/x] ≡ (λz.y); the result is indeed a constant function.

6 1 INTRODUCTION

1.4 Conversions

The idea that λ-abstractions represent functions is formally expressed through conversion
rules for manipulating them. There are α-conversions, β-conversions and η-conversions.

The α-conversion (λx.M) →α (λy.M [y/x]) renames the abstraction’s bound variable
from x to y. It is valid provided y does not occur (free or bound) in M . For example,
(λx.(xz))→α (λy.(yz)). We shall usually ignore the distinction between terms that could
be made identical by performing α-conversions.

The β-conversion ((λx.M)N) →β M [N/x] substitutes the argument, N , into the
abstraction’s body, M . It is valid provided BV(M) ∩ FV(N) = ∅. For exam-
ple, (λx.(xx))(yz) →β ((yz)(yz)). Here is another example: ((λz.(zy))(λx.x)) →β

((λx.x)y)→β y.
The η-conversion (λx.(Mx))→η M collapses the trivial function (λx.(Mx)) down to M .

It is valid provided x 6∈ FV(M). Thus, M does not depend on x; the abstraction does
nothing but apply M to its argument. For example, (λx.((zy)x))→η (zy).

Observe that the functions (λx.(Mx)) and M always return the same answer, (MN),
when applied to any argument N . The η-conversion rule embodies a principle of extension-
ality : two functions are equal if they always return equal results given equal arguments.
In some situations, this principle (and η-conversions) are dispensed with.

1.5 Reductions

We say that M → N , or M reduces to N , if M →β N or M →η N . (Because α-
conversions are not directional, and are not interesting, we generally ignore them.) The
reduction M → N may consist of applying a conversion to some subterm of M in order to
create N . More formally, we could introduce inference rules for →:

M →M ′

(λx.M)→ (λx.M ′)

M →M ′

(MN)→ (M ′N)

M →M ′

(LM)→ (LM ′)

If a term admits no reductions then it is in normal form. For example, λxy.y and xyz
are in normal form. To normalize a term means to apply reductions until a normal form
is reached. A term has a normal form if it can be reduced to a term in normal form. For
example, (λx.x)y is not in normal form, but it has the normal form y.

Many λ-terms cannot be reduced to normal form. For instance, (λx.xx)(λx.xx) reduces
to itself by β-conversion. Although it is unaffected by the reduction, it is certainly not in
normal form. This term is usually called Ω.

1.6 Curried Functions

The λ-calculus has only functions of one argument. A function with multiple arguments is
expressed using a function whose result is another function.

For example, suppose that L is a term containing only x and y as free variables, and we
wish to formalize the function f(x, y) = L. The abstraction (λy.L) contains x free; for each

1.7 Bracketing Conventions 7

x, it stands for a function over y. The abstraction (λx.(λy.L)) contains no free variables;
when applied to the arguments M and N , the result is obtained by replacing x by M and
y by N in L. Symbolically, we perform two β-reductions (any necessary α-conversions are
omitted):

(((λx.(λy.L))M)N)→β ((λy.L[M/x])N)→β L[M/x][N/y]

This technique is known as currying after Haskell B. Curry, and a function expressed
using nested λs is known as a curried function. In fact, it was introduced by Schönfinkel.
Clearly, it works for any number of arguments.

Curried functions are popular in functional programming because they can be applied
to their first few arguments, returning functions that are useful in themselves.

1.7 Bracketing Conventions

Abbreviating nested abstractions and applications will make curried functions easier to
write. We shall abbreviate

(λx1.(λx2. . . . (λxn.M) . . .)) as (λx1x2 . . . xn.M)

(. . . (M1M2) . . . Mn) as (M1M2 . . . Mn)

Finally, we drop outermost parentheses and those enclosing the body of an abstraction.
For example,

(λx.(x(λy.(yx)))) can be written as λx.x(λy.yx).

It is vital understand how bracketing works. We have the reduction

λz.(λx.M)N →β λz.M [N/x]

but the similar term λz.z(λx.M)N admits no reductions except those occurring within M
and N , because λx.M is not being applied to anything. Here is what the application of a
curried function (see above) looks like with most brackets omitted:

(λxy.L)MN →β (λy.L[M/x])N →β L[M/x][N/y]

Note that λx.MN abbreviates λx.(MN) rather than (λx.M)N . Also, xyz abbreviates
(xy)z rather than x(yz).

Exercise 1 What happens in the reduction of (λxy.L)MN if y is free in M?

Exercise 2 Give two different reduction sequences that start at (λx.(λy.xy)z)y and end
with a normal form. (These normal forms must be identical: see below.)

2 Equality and Normalization

The λ-calculus is an equational theory: it consists of rules for proving that two λ-terms
are equal. A key property is that two terms are equal just if they both can be reduced to
the same term.

8 2 EQUALITY AND NORMALIZATION

2.1 Multi-Step Reduction

Strictly speaking, M → N means that M reduces to N by exactly one reduction step,
possibly applied to a subterm of M . Frequently, we are interested in whether M can be
reduced to N by any number of steps. Write M ։ N if

M →M1 →M2 → · · · →Mk ≡ N (k ≥ 0)

For example, ((λz.(zy))(λx.x)) ։ y. Note that ։ is the relation →∗, the reflex-
ive/transitive closure of →.

2.2 Equality Between λ-Terms

Informally, M = M ′ if M can be transformed into M ′ by performing zero or more reductions
and expansions. (An expansion is the inverse of a reduction, for instance y ← (λx.x)y.) A
typical picture is the following:

M M1 M2· · ·Mk−1 Mk = M ′

ցց ււ ցց ււ ցց ււ
N1 N2 · · · Nk

For example, a((λy.by)c) = (λx.ax)(bc) because both sides reduce to a(bc). Note that =
is the relation (→ ∪ →−1)∗, the least equivalence relation containing →.

Intuitively, M = M ′ means that M and M ′ have the same value. Equality, as defined
here, satisfies all the standard properties. First of all, it is an equivalence relation—it
satisfies the reflexive, symmetric and associative laws:

M = M
M = N

N = M

L = M M = N

L = N

Furthermore, it satisfies congruence laws for each of the ways of constructing λ-terms:

M = M ′

(λx.M) = (λx.M ′)

M = M ′

(MN) = (M ′N)

M = M ′

(LM) = (LM ′)

The six properties shown above are easily checked by constructing the appropriate diagrams
for each equality. They imply that two terms will be equal if we construct them in the
same way starting from equal terms. Put another way, if M = M ′ then replacing M by
M ′ in a term yields an equal term.

Definition 5 Equality of λ-terms is the least relation satisfying the six rules given above.

2.3 The Church-Rosser Theorem

This fundamental theorem states that reduction in the λ-calculus is confluent : no two
sequences of reductions, starting from one λ-term, can reach distinct normal forms. The
normal form of a term is independent of the order in which reductions are performed.

2.4 The Diamond Property 9

Theorem 6 (Church-Rosser) If M = N then there exists L such that M ։ L and
N ։ L.

Proof See Barendregt [1] or Hindley and Seldin [6].

For instance, (λx.ax)((λy.by)c) has two different reduction sequences, both leading to
the same normal form. The affected subterm is underlined at each step:

(λx.ax)((λy.by)c)→ a((λy.by)c)→ a(bc)

(λx.ax)((λy.by)c)→ (λx.ax)(bc)→ a(bc)

The theorem has several important consequences.

• If M = N and N is in normal form, then M ։ N ; if a term can transform into
normal form using reductions and expansions, then the normal form can be reached
by reductions alone.

• If M = N where both terms are in normal form, then M ≡ N (up to renaming of
bound variables). Conversely, if M and N are in normal form and are distinct, then
M 6= N ; there is no way of transforming M into N . For example, λxy.x 6= λxy.y.

An equational theory is inconsistent if all equations are provable. Thanks to the
Church-Rosser Theorem, we know that the λ-calculus is consistent. There is no way we
could reach two different normal forms by following different reduction strategies. Without
this property, the λ-calculus would be of little relevance to computation.

2.4 The Diamond Property

The key step in proving the Church-Rosser Theorem is demonstrating the diamond
property—if M ։ M1 and M ։ M2 then there exists a term L such that M1 ։ L
and M2 ։ L. Here is the diagram:

M

ււ ցց
M1 M2

ցց ււ
L

The diamond property is vital: it says that no matter how far we go reducing a term
by two different strategies it will always be possible to come together again by further
reductions. As for the Church-Rosser Theorem, look again at the diagram for M = M ′

and note that we can tile the region underneath with diamonds, eventually reaching a
common term:

10 2 EQUALITY AND NORMALIZATION

M M1 M2· · ·Mk−1 Mk = M ′

ցց ււ ցց ււ ցց ււ
N1 N2 · · · Nk

ցց ււ ցց ււ
L1 L2 · · · Lk−1

ցց ււ . . .

K1

.

E

2.5 Proving the Diamond Property

Note that → (one-step reduction) does not satisfy the diamond property

M
ւ ց

M1 M2

ց ւ
L

Consider the term (λx.xx)(I a), where I ≡ λx.x. In one step, it reduces to (λx.xx)a
or to (I a)(I a). These both reduce eventually to aa, but there is no way to complete the
diamond with a single-step reduction:

(λx.xx)(I a)
ւ ց

(I a)(I a) (λx.xx)a
. . . ւ

aa

The problem, of course, is that (λx.xx) replicates its argument, which must then be
reduced twice. Note also that the difficult cases involve one possible reduction contained
inside another. Reductions that do not overlap, such as M →M ′ and N → N ′ in the term
xMN , commute trivially to produce xM ′N ′.

The diamond property for ։ can be proved with the help of a ‘strip lemma’, which
considers the case where M →M1 (in one step) and also M ։ M2 (possibly many steps):

M
ւ ցց

M1 M2

ցց ււ
L

2.6 Possibility of Nontermination 11

The ‘strips’ can then be pasted together to complete a diamond. The details involve
an extremely tedious case analysis of the possible reductions from various forms of terms.

2.6 Possibility of Nontermination

Although different reduction sequences cannot yield different normal forms, they can yield
completely different outcomes: one could terminate while the other runs forever! Typically,
if M has a normal form and admits an infinite reduction sequence, it contains a subterm L
having no normal form, and L can be erased by a reduction.

For example, recall that Ω reduces to itself, where Ω ≡ (λx.xx)(λx.xx). The reduction

(λy.a)Ω→ a

reaches normal form, erasing the Ω. This corresponds to a call-by-name treatment of func-
tions: the argument is not reduced but substituted ‘as is’ into the body of the abstraction.

Attempting to normalize the argument generates a nonterminating reduction sequence:

(λy.a)Ω→ (λy.a)Ω→ · · ·

Evaluating the argument before substituting it into the body corresponds to a call-by-
value treatment of function application. In this example, the call-by-value strategy never
reaches the normal form.

2.7 Normal Order Reduction

The normal order reduction strategy is, at each step, to perform the leftmost outermost
β-reduction. (The η-reductions can be left until last.) Leftmost means, for instance, to
reduce L before N in LN . Outermost means, for instance, to reduce (λx.M)N before
reducing M or N .

Normal order reduction corresponds to call-by-name evaluation. By the Standardiza-
tion Theorem, it always reaches a normal form if one exists. The proof is omitted. However,
note that reducing L first in LN may transform L into an abstraction, say λx.M . Reducing
(λx.M)N may erase N .

2.8 Lazy Evaluation

From a theoretical standpoint, normal order reduction is the optimal, since it always yields
a normal form if one exists. For practical computation, it is hopelessly inefficient. Assume
that we have a coding of the natural numbers (for which see the next section!) and define
a squaring function sqr ≡ λn.multnn. Then

sqr (sqrN)→ mult (sqrN)(sqrN)→ mult (multNN)(multNN)

12 3 ENCODING DATA IN THE λ-CALCULUS

and we will have to evaluate four copies of the term N ! Call-by-value would have evaluated
N (only once) beforehand, but, as we have seen, it can result in nontermination.

Note: multi-letter identifiers (like sqr) are set in bold type, or underlined, in order to
prevent confusion with a series of separate variables (like sqr). We will attempt only to use
these for abbreviations, so they are not part of the λ-calculus at all. The difference is best
illustrated in the terms sqrN or (λf.fN) sqr which use sqr as the above abbreviation
and never write λ sqr .N .

Lazy evaluation, or call-by-need, never evaluates an argument more than once. An
argument is not evaluated unless the value is actually required to produce the answer;
even then, the argument is only evaluated to the extent needed (thereby allowing infinite
lists). Lazy evaluation can be implemented by representing the term by a graph rather
than a tree. Each shared graph node represents a subterm whose value is needed more
than once. Whenever that subterm is reduced, the result overwrites the node, and the
other references to it will immediately have access to the replacement.

Graph reduction is inefficient for the λ-calculus because subterms typically contain
free variables. During each β-reduction, the abstraction’s body must be copied. Graph
reduction works much better for combinators, where there are no variables. We shall return
to this point later.

3 Encoding Data in the λ-Calculus

The λ-calculus is expressive enough to encode boolean values, ordered pairs, natural num-
bers and lists—all the data structures we may desire in a functional program. These
encodings allow us to model virtually the whole of functional programming within the
simple confines of the λ-calculus.

The encodings may not seem to be at all natural, and they certainly are not computa-
tionally efficient. In this, they resemble Turing machine encodings and programs. Unlike
Turing machine programs, the encodings are themselves of mathematical interest, and re-
turn again and again in theoretical studies. Many of them involve the idea that the data
can carry its control structure with it.

3.1 The Booleans

An encoding of the booleans must define the terms true , false and if ,2 satisfying (for
all M and N)

if trueMN = M

if falseMN = N.

2Again these are just abbreviations for λ-terms and not constants or anything else within the λ-calculus.

3.2 Ordered Pairs 13

The following encoding is usually adopted:

true ≡ λxy.x

false ≡ λxy.y

if ≡ λpxy.pxy

We have true 6= false by the Church-Rosser Theorem, since true and false are
distinct normal forms. As it happens, if is not even necessary. The truth values are their
own conditional operators:

trueMN ≡ (λxy.x)MN ։ M

falseMN ≡ (λxy.y)MN ։ N

These reductions hold for all terms M and N , whether or not they possess normal
forms. Note that if LMN ։ LMN ; it is essentially an identity function on L. The
equations given above even hold as reductions:

if trueMN ։ M

if falseMN ։ N.

All the usual operations on truth values can be defined as conditional operator. Here
are negation, conjunction and disjunction:

and ≡ λpq. if p q false

or ≡ λpq. if p true q

not ≡ λp. if p false true

3.2 Ordered Pairs

Assume that true and false are defined as above. The function pair , which constructs
pairs, and the projections fst and snd , which select the components of a pair, are encoded
as follows:

pair ≡ λxyf.fxy

fst ≡ λp.p true

snd ≡ λp.p false

Clearly, pairMN ։ λf.fMN , packaging M and N together. A pair may be applied
to any 2-place function of the form λxy.L, returning L[M/x][N/y]; thus, each pair is its
own unpackaging operation. The projections work by this unpackaging operation (which,
perhaps, is more convenient in programming than are the projections themselves!):

fst (pairMN) ։ fst (λf.fMN)

→ (λf.fMN) true

→ trueMN

։ M

14 3 ENCODING DATA IN THE λ-CALCULUS

Similarly, snd (pairMN) ։ N . Observe that the components of pairMN are com-
pletely independent; either may be extracted even if the other has no normal form.

Ordered n-tuples could be defined analogously, but nested pairs are a simpler encoding.

3.3 The Natural Numbers

The following encoding of the natural numbers is the original one developed by Church.
Alternative encodings are sometimes preferred today, but Church’s numerals continue our
theme of putting the control structure in with the data structure. Such encodings are
elegant; moreover, they work in the second-order λ-calculus (presented in the Types course
by Andrew Pitts).

Define

0 ≡ λfx.x

1 ≡ λfx.fx

2 ≡ λfx.f(fx)
...

...
...

n ≡ λfx. f(· · · (f
︸ ︷︷ ︸

n times

x) · · ·)

Thus, for all n ≥ 0, the Church numeral n is the function that maps f to fn. Each
numeral is an iteration operator.

3.4 Arithmetic on Church Numerals

Using this encoding, addition, multiplication and exponentiation can be defined immedi-
ately:

add ≡ λmnfx.mf(nfx)

mult ≡ λmnfx.m(nf)x

expt ≡ λmnfx.nmfx

Addition is not hard to check:

add m n ։ λfx.m f(n fx)

։ λfx.fm(fnx)

≡ λfx.fm+nx

≡ m + n

3.5 The Basic Operations for Church Numerals 15

Multiplication is slightly more difficult:

mult m n ։ λfx.m (n f)x

։ λfx.(n f)mx

։ λfx.(fn)mx

≡ λfx.fm×nx

≡ m× n

These derivations hold for all Church numerals m and n , but not for all terms M
and N .

Exercise 3 Show that expt performs exponentiation on Church numerals.

3.5 The Basic Operations for Church Numerals

The operations defined so far are not sufficient to define all computable functions on the
natural numbers; what about subtraction? Let us begin with some simpler definitions: the
successor function and the zero test.

suc ≡ λnfx.f(nfx)

iszero ≡ λn.n(λx. false) true

The following reductions hold for every Church numeral n :

suc n ։ n + 1

iszero 0 ։ true

iszero (n + 1) ։ false

For example,

iszero (n + 1) ։ n + 1 (λx. false) true

։ (λx. false)n+1 true

≡ (λx. false)((λx. false)n true)

→ false

The predecessor function and subtraction are encoded as follows:

prefn ≡ λfp.pair (f(fst p)) (fst p)

pre ≡ λnfx. snd (n(prefn f)(pairxx))

sub ≡ λmn.nprem

Defining the predecessor function is difficult when each numeral is an iterator. We must
reduce an n + 1 iterator to an n iterator. Given f and x, we must find some g and y such

16 3 ENCODING DATA IN THE λ-CALCULUS

that gn+1y computes fnx. A suitable g is a function on pairs that maps (x, z) to (f(x), x);
then

gn+1(x, x) = (fn+1(x), fn(x)).

The pair behaves like a one-element delay line.
Above, prefn f constructs the function g. Verifying the following reductions should be

routine:

pre (n + 1) ։ n

pre (0) ։ 0

For subtraction, sub m n computes the nth predecessor of m .

Exercise 4 Show that λmn.m sucn performs addition on Church numerals.

3.6 Lists

Church numerals could be generalized to represent lists. The list [x1, x2, . . . , xn] would
essentially be represented by the function that takes f and y to fx1(fx2 . . . (fxny) . . .).
Such lists would carry their own control structure with them.

As an alternative, let us represent lists rather as Lisp and ML do — via pairing. This
encoding is easier to understand because it is closer to real implementations. The list
[x1, x2, . . . , xn] will be represented by x1 :: x2 :: . . . :: nil . To keep the operations as simple
as possible, we shall employ two levels of pairing. Each ‘cons cell’ x :: y will be represented
by (false , (x, y)), where the false is a distinguishing tag field. By rights, nil should be
represented by a pair whose first component is true , such as (true , true), but a simpler
definition happens to work. In fact, we could dispense with the tag field altogether.

Here is our encoding of lists:

nil ≡ λz.z

cons ≡ λxy.pair false (pair xy)

null ≡ fst

hd ≡ λz. fst (snd z)

tl ≡ λz. snd (snd z)

The following properties are easy to verify; they hold for all terms M and N :

null nil ։ true

null (consMN) ։ false

hd (consMN) ։ M

tl (consMN) ։ N

Note that null nil ։ true happens really by chance, while the other laws hold by
our operations on pairs.

17

Recall that laws like hd (consMN) ։ M and snd (pairMN) ։ N hold for all
M and N , even for terms that have no normal forms! Thus, pair and cons are ‘lazy’
constructors—they do not ‘evaluate their arguments’. Once we introduction recursive
definitions, we shall be able to compute with infinite lists.

Exercise 5 Modify the encoding of lists to obtain an encoding of the natural numbers.

4 Writing Recursive Functions in the λ-calculus

Recursion is obviously essential in functional programming. The traditional way to express
recursion is a fixed point combinator, Y which essentially maps

letrec f(x) = M in N

into

let f = Y (λx.M) in N

or

N(Y λx.M)

By using this idea along with suc , pre and iszero we can encode any Register Machine
from Computation Theory as a λ-term and hence the λ-calculus at least the power of
Turing machines and Register Machines (actually equipotent the SECD machine given
below can be coded as a Register Machine fairly simply).

We do define Y formally in Section 4.2, but in the meantime let us observe that
Church numerals, containing as they do an inbuilt source of repetition are far more powerful
that one might expect and can express nearly all mathematical functions without explicit
recursion or Y .

4.1 Aside: Recursive Functions via Church Numerals

With Church numerals, it is possible to define ‘nearly all’ computable functions on the
natural numbers.3 Church numerals have an inbuilt source of repetition. From this, we
can derive primitive recursion, which when applied using higher-order functions defines a
much larger class than the primitive recursive functions studied in Computation Theory.
Ackermann’s function is not primitive recursive in the usual sense, but we can encode it
using Church numerals. If we put

ack ≡ λm.m(λfn.nf(f 1)) suc

3The precise meaning of ‘nearly all’ involves heavy proof theory, but all ‘reasonable’ functions are
included.

18 4 WRITING RECURSIVE FUNCTIONS IN THE λ-CALCULUS

then we can derive the recursion equations of Ackermann’s function, namely

ack 0 n = n + 1

ack (m + 1) 0 = ack m 1

ack (m + 1)(n + 1) = ack m (ack (m + 1) n)

Let us check the first equation:

ack 0 n ։ 0 (λfn.nf(f 1)) suc n

։ suc n

։ n + 1

For the other two equations, note that

ack (m + 1) n ։ (m + 1)(λfn.nf(f 1)) suc n

։ (λfn.nf(f 1))(m (λfn.nf(f 1)) suc) n

= (λfn.nf(f 1))(ack m) n

։ n (ack m)(ack m 1)

We now check

ack (m + 1) 0 ։ 0 (ack m)(ack m 1)

։ ack m 1

and

ack (m + 1)(n + 1) ։ n + 1 (ack m)(ack m 1)

։ ack m (n (ack m)(ack m 1))

= ack m (ack (m + 1) n)

The key to this computation is the iteration of the function ack m .

4.2 Recursive Functions using Fixed Points

Our coding of Ackermann’s function works, but it hardly could be called perspicuous. Even
worse would be the treatment of a function whose recursive calls involved something other
than subtracting one from an argument—performing division by repeated subtraction, for
example.

General recursion can be derived in the λ-calculus. Thus, we can model all recursive
function definitions, even those that fail to terminate for some (or all) arguments. Our
encoding of recursion is completely uniform and is independent of the details of the recur-
sive definition and the representation of the data structures (unlike the above version of
Ackermann’s function, which depends upon Church numerals).

4.3 Examples Using Y 19

The secret is to use a fixed point combinator—a term Y such that Y F = F (Y F) for
all terms F . Let us explain the terminology. A fixed point of the function F is any X such
that FX = X; here, X ≡ Y F . A combinator is any λ-term containing no free variables
(also called a closed term). To code recursion, F represents the body of the recursive
definition; the law Y F = F (Y F) permits F to be unfolded as many times as necessary.

4.3 Examples Using Y

We shall encode the factorial function, the append function on lists, and the infinite list
[0, 0, 0, . . .] in the λ-calculus, realising the recursion equations

factN = if (iszeroN) 1 (multN(fact (preN)))

appendZW = if (nullZ)W (cons (hdZ)(append (tlZ)W))

zeroes = cons 0 zeroes

To realize these, we simply put

fact ≡ Y (λgn. if (iszeron) 1 (multn(g(pren))))

append ≡ Y (λgzw. if (null z)w(cons (hd z)(g(tl z)w)))

zeroes ≡ Y (λg. cons 0 g)

In each definition, the recursive call is replaced by the variable g in Y (λg. . . .). Let us
verify the recursion equation for zeroes ; the others are similar:

zeroes ≡ Y (λg. cons 0 g)

= (λg. cons 0 g)(Y (λg. cons 0 g))

= (λg. cons 0 g) zeroes

→ cons 0 zeroes

4.4 Usage of Y

In general, the recursion equation M = PM , where P is any λ-term, is satisfied by defining
M ≡ Y P . Let us consider the special case where M is to be an n-argument function. The
equation Mx1 . . . xn = PM is satisfied by defining

M ≡ Y (λgx1 . . . xn.Pg)

for then

Mx1 . . . xn ≡ Y (λgx1 . . . xn.Pg)x1 . . . xn

= (λgx1 . . . xn.Pg)Mx1 . . . xn

։ PM

20 4 WRITING RECURSIVE FUNCTIONS IN THE λ-CALCULUS

Let us realize the mutual recursive definition of M and N , with corresponding bodies
P and Q:

M = PMN

N = QMN

The idea is to take the fixed point of a function F on pairs, such that F (X,Y) =
(PXY,QXY). Using our encoding of pairs, define

L ≡ Y (λz.pair (P (fst z)(snd z))
(Q(fst z)(snd z)))

M ≡ fstL

N ≡ sndL

By the fixed point property,

L = pair (P (fstL)(sndL))
(Q(fstL)(sndL))

and by applying projections, we obtain the desired

M = P (fstL)(sndL) = PMN

N = Q(fstL)(sndL) = QMN.

4.5 Defining Fixed Point Combinators

The combinator Y was discovered by Haskell B. Curry. It is defined by

Y ≡ λf.(λx.f(xx))(λx.f(xx))

Let us calculate to show the fixed point property:

Y F → (λx.F (xx))(λx.F (xx))

→ F ((λx.F (xx))(λx.F (xx)))

= F (Y F)

This consists of two β-reductions followed by a β-expansion. No reduction Y F ։

F (Y F) is possible! There are other fixed point combinators, such as Alan Turing’s Θ:

A ≡ λxy.y(xxy)

Θ ≡ AA

We indeed have the reduction ΘF ։ F (ΘF):

ΘF ≡ AAF ։ F (AAF) ≡ F (ΘF)

4.6 Head Normal Form 21

Here is a fixed point combinator discovered by Klop:

£ ≡ λabcdefghijklmnopqstuvwxyzr.r(thisisafixedpointcombinator)

$ ≡ ££££££££££££££££££££££££££

The proof of $F ։ F ($F) is left as an exercise. Hint: look at the occurrences of r!
Any fixed point combinator can be used to make recursive definitions under call-by-

name reduction. Later, we shall modify Y to get a fixed point combinator that works
with a call-by-value interpreter for the λ-calculus. In practical compilers, recursion should
be implemented directly because fixed point combinators are inefficient.

4.6 Head Normal Form

If M = xM then M has no normal form. For if M ։ N where N is in normal form, then
N = xN . Since xN is also in normal form, the Church-Rosser Theorem gives us N ≡ xN .
But clearly N cannot contain itself as a subterm!

By similar reasoning, if M = PM then M usually has no normal form, unless P is
something like a constant function or identity function. So anything defined with the help
of a fixed point combinator, such as fact , is unlikely to have a normal form.

Although fact has no normal form, we can still compute with it; fact 5 does have a
normal form, namely 120 . We can use infinite objects (including functions as above, and
also lazy lists) by computing with them for a finite time and requesting a finite part of the
result. To formalize this practice, let us define the notion of head normal form (HNF).

Definition 7 A term is in head normal form (HNF) if and only if it looks like this:

λx1 . . . xm.yM1 . . . Mk (m, k ≥ 0)

Examples of terms in HNF include

x λx.yΩ λx y.x λz.z((λx.a)c)

But λy.(λx.a)y is not in HNF because it admits the so-called head reduction

λy.(λx.a)y → λy.a.

Let us note some obvious facts. A term in normal form is also in head normal form.
Furthermore, if

λx1 . . . xm.yM1 . . . Mk ։ N

then N must have the form
λx1 . . . xm.yN1 . . . Nk

where M1 ։ N1, . . . , Mk ։ Nk. Thus, a head normal form fixes the outer structure of
any further reductions and the final normal form (if any!). And since the arguments M1,
. . . , Mk cannot interfere with one another, they can be evaluated independently.

22 4 WRITING RECURSIVE FUNCTIONS IN THE λ-CALCULUS

By reducing a term M to HNF we obtain a finite amount of information about the
value of M . By further computing the HNFs of M1, . . . , Mk we obtain the next layer of
this value. We can continue evaluating to any depth and can stop at any time.

For example, define ze ≡ Θ(pair 0). This is analogous to zeroes , but uses pairs:
ze = (0, (0, (0, . . .))). We have

ze ։ pair 0 ze

≡ (λxyf.fxy) 0 ze

։ λf.f 0 ze

։ λf.f 0 (λf.f 0 ze)

։ · · ·

With λf.f 0 ze we reached a head normal form, which we continued to reduce. We have
fst (ze) ։ 0 and fst (snd (ze)) ։ 0 , since the same reductions work if ze is a function’s
argument. These are examples of useful finite computations involving an infinite value.

Some terms do not even have a head normal form. Recall Ω, defined by Ω =
(λx.xx)(λx.xx). A term is reduced to HNF by repeatedly performing leftmost reductions.
With Ω we can only do Ω→ Ω, which makes no progress towards an HNF. Another term
that lacks an HNF is λy.Ω; we can only reduce λy.Ω→ λy.Ω.

It can be shown that if MN has an HNF then so does M . Therefore, if M has no HNF
then neither does any term of the form MN1N2 . . . Nk. A term with no HNF behaves like
a totally undefined function: no matter what you supply as arguments, evaluation never
returns any information. It is not hard to see that if M has no HNF then neither does
λx.M or M [N/x], so M really behaves like a black hole. The only way to get rid of M is
by a reduction such as (λx.a)M → a. This motivates the following definition.

Definition 8 A term is defined if and only if it can be reduced to head normal form;
otherwise it is undefined.

The exercises below, some of which are difficult, explore this concept more deeply.

Exercise 6 Are the following terms defined? (Here K ≡ λxy.x.)

Y Y not K Y I xΩ Y K Y (Kx) n

Exercise 7 A term M is called solvable if and only if there exist variables x1, . . . , xm

and terms N1, . . . , Nn such that

(λx1 . . . xm.M)N1 . . . Nn = I .

Investigate whether the terms given in the previous exercise are solvable.

Exercise 8 Show that if M has an HNF then M is solvable. Wadsworth proved that
M is solvable if and only if M has an HNF, but the other direction of the equivalence is
much harder.

4.7 Aside: An Explanation of Y 23

4.7 Aside: An Explanation of Y

For the purpose of expressing recursion, we may simply exploit Y F = F (Y F) without
asking why it holds. However, the origins of Y have interesting connections with the
development of mathematical logic.

Alonzo Church invented the λ-calculus to formalize a new set theory. Bertrand Russell
had (much earlier) demonstrated the inconsistency of naive set theory. If we are allowed
to construct the set R ≡ {x | x 6∈ x}, then R ∈ R if and only if R 6∈ R. This became
known as Russell’s Paradox.

In his theory, Church encoded sets by their characteristic functions (equivalently, as
predicates). The membership test M ∈ N was coded by the application N(M), which
might be true or false. The set abstraction {x | P} was coded by λx.P , where P was some
λ-term expressing a property of x.

Unfortunately for Church, Russell’s Paradox was derivable in his system! The Russell
set is encoded by R ≡ λx.not (xx). This implied RR = not (RR), which was a contradic-
tion if viewed as a logical formula. In fact, RR has no head normal form: it is an undefined
term like Ω.

Curry discovered this contradiction. The fixed point equation for Y follows from
RR = not (RR) if we replace not by an arbitrary term F . Therefore, Y is often called
the Paradoxical Combinator.

Because of the paradox, the λ-calculus survives only as an equational theory. The
typed λ-calculus does not admit any known paradoxes and is used to formalize the syntax
of higher-order logic.

4.8 Summary: the λ-Calculus Versus Turing Machines

The λ-calculus can encode the common data structures, such as booleans and lists, such
that they satisfy natural laws. The λ-calculus can also express recursive definitions. Be-
cause the encodings are technical, they may appear to be unworthy of study, but this is
not so.

• The encoding of the natural numbers via Church numerals is valuable in more ad-
vanced calculi, such as the second-order λ-calculus.

• The encoding of lists via ordered pairs models their usual implementation on the
computer.

• As just discussed, the definition of Y formalizes Russell’s Paradox.

• Understanding recursive definitions as fixed points is the usual treatment in semantic
theory.

These constructions and concepts are encountered throughout theoretical computer
science. That cannot be said of any Turing machine program!

24 5 ISWIM: THE λ-CALCULUS AS A PROGRAMMING LANGUAGE

5 ISWIM: The λ-calculus as a Programming Lan-

guage

Peter Landin was one of the first computer scientists to take notice of the λ-calculus and
relate it to programming languages. He observed that Algol 60’s scope rules and call-
by-name rule had counterparts in the λ-calculus. In his paper [8], he outlined a skeletal
programming languages based on the λ-calculus. The title referred to the 700 languages
said to be already in existence; in principle, they could all share the same λ-calculus
skeleton, differing only in their data types and operations. Landin’s language, ISWIM (If
you See What I Mean), dominated the early literature on functional programming, and
was the model for ML.

Lisp also takes inspiration from the λ-calculus, and appeared many years before ISWIM.
But Lisp made several fatal mistakes: dynamic variable scoping, an imperative orienta-
tion, and no higher-order functions. Although ISWIM allows imperative features, Lisp is
essentially an imperative language, because all variables may be updated.

ISWIM was designed to be extended with application-specific data and operations. It
consisted of the λ-calculus plus a few additional constructs, and could be translated back
into the pure λ-calculus. Landin called the extra constructs syntactic sugar because they
made the λ-calculus more palatable.

5.1 Overview of ISWIM

ISWIM started with the λ-calculus:

x variable
(λx.M) abstraction
(MN) application

It also allowed local declarations:

let x = M in N simple declaration
let f x1 · · ·xk = M in N function declaration
letrec f x1 · · ·xk = M in N recursive declaration

Local declarations could be post-hoc:

N where x = M
N where f x1 · · ·xk = M
N whererec f x1 · · · xk = M

The meanings of local declarations should be obvious. They can be translated (de-sugared)
into the pure λ-calculus:

let x = M in N ≡ (λx.N)M
let f x1 · · ·xk = M in N ≡ (λf.N)(λx1 · · ·xk.M)
letrec f x1 · · ·xk = M in N ≡ (λf.N)(Y (λfx1 · · ·xk.M))

5.2 Call-by-value in ISWIM 25

Programmers were not expected to encode data using Church numerals and the like.
ISWIM provided primitive data structures: integers, booleans and ordered pairs. There
being no type system, lists could be constructed by repeated pairing, as in Lisp. The
constants included

0 1 −1 2 −2 . . . integers
+ − × / arithmetic operators
= 6= < > ≤ ≥ relational operators
true false booleans
and or not boolean connectives
if E then M else N conditional

So, the core grammar of ISWIM can be seen as given by:

M ::= x | c | λx.M |MM ′

where c ranges over a set of constants like the above. Because constants are no longer seen
as abbreviations for λ-terms each constant has zero or more reduction rules (these are the
so-called δ-conversions), for example + 0 0 →δ 0 and + 5 6 →δ 11. The above syntax
of λ-calculus with constants is often called the applied λ-calculus in contrast to the pure
λ-calculus introduced earlier.

5.2 Call-by-value in ISWIM

The call-by-value rule, rather than call-by-name, was usually adopted. This was (and
still is) easier to implement; we shall shortly see how this was done, using the SECD
machine. Because of the need for a human-understandable evaluation order, call-by-value
is indispensable in the presence of imperative (side-effecting) operations; however Haskell
provided monads which wrap locally side-effecting computations within a pure wrapper.

Call-by-value gives more intuitive and predictable behaviour generally. Classical math-
ematics is based on strict functions; an expression is undefined unless all its parts are
defined. Under call-by-name we can define a function f such that if f(x) = 0 for all x,
with even f(1/0) = 0. Ordinary mathematics cannot cope with such functions; putting
them on a rigorous basis requires complex theories.

Under call-by-value, if -then-else must be taken as a special form of expression (rather
than simply as one of the constants c above). Treating if as a simply as a constant (builtin
function) makes fact run forever:

letrec fact(n) = if (n = 0) 1 (n× fact(n− 1))

The arguments to if are always evaluated, including the recursive call; when n = 0 it
tries to compute fact(−1). Therefore, we take conditional expressions as primitive, with
evaluation rules that return M or N unevaluated :

if E then M else N → M

if E then M else N → N

26 5 ISWIM: THE λ-CALCULUS AS A PROGRAMMING LANGUAGE

While if -then-else must be treated specially in call-by-value, this does not mean it
cannot be represented in the simple core syntax above. Note that our call-by-value rule
never reduces anything enclosed by a λ. So, in a call-by-value regime, we can de-sugar the
conditional expression to the application of an if -function:

if E then M else N ≡ if E (λu.M) (λu.N) 0

Choosing some variable u not free in M or N , enclosing those expressions in λ delays their
evaluation; finally, the selected one is applied to 0.

5.3 Pairs, Pattern-Matching and Mutual Recursion

ISWIM includes ordered pairs:

(M,N) pair constructor
fst snd projection functions

For pattern-matching, let λ(p1, p2).E abbreviate

λz.(λp1 p2.E)(fst z)(snd z)

where p1 and p2 may themselves be patterns. Thus, we may write

let (x, y) = M in E taking apart M ’s value
let f(x, y) = E in N defining f on pairs

The translation iterates to handle things like

let (w, (x, (y, z))) = M in E.

We may introduce n-tuples, writing (x1, . . . , xn−1, xn) for the nested pairs

(x1, . . . , (xn−1, xn) . . .).

The mutually recursive function declaration

letrec f1 ~x1 = M1

and f2 ~x2 = M2

...
and fk ~xk = Mk

in N

can be translated to an expression involving pattern-matching:

(λ(f1, . . . , fk).N)(Y (λ(f1, . . . , fk).(λ~x1.M1, λ~x2.M2, . . . , λ~xk.Mk)))

We can easily handle the general case of k mutually recursive functions, each with any
number of arguments. Observe the power of syntactic sugar!

5.4 From ISWIM to ML 27

5.4 From ISWIM to ML

Practically all programming language features, including go to statements and pointer
variables, can be formally specified in the λ-calculus, using the techniques of denotational
semantics. ISWIM is much simpler than that; it is programming directly in the λ-calculus.
To allow imperative programming, we can even define sequential execution, letting M ; N
abbreviate (λx.N)M ; the call-by-value rule will evaluate M before N . However, imperative
operations must be adopted as primitive; they cannot be defined by simple translation into
the λ-calculus.

ISWIM gives us all the basic features of a programming language—variable scope rules,
function declarations, and local declarations. (The let declaration is particularly conve-
nient; many languages still make us write assignments for this purpose!) To get a real
programming language, much more needs to be added, but the languages so obtained will
have a common structure.

ISWIM was far ahead of its time and never found mainstream acceptance. Its influence
on ML is obvious and the original ML design (part of the Edinburgh LCF theorem prover)
retained the ISWIM syntax. Standard ML has changed the syntax of declarations, added
polymorphic types, exceptions, fancier pattern-matching and modules—but much of the
syntax is still defined by translation. The OCaml implementation of CAML (a dialect of
ML developed at INRIA) retains much of the traditional ISWIM and LCF syntax [3]. See
also http://en.wikipedia.org/wiki/OCaml

5.5 The SECD Machine

Landin invented the SECD machine, an interpreter for the λ-calculus, in order to execute
ISWIM programs [2, 4, 7]. A variant of the machine executes instructions compiled from
λ-terms. With a few optimisations, it can be used to implement real functional languages,
such as ML. SECD machines can be realized as byte-code interpreters, their instructions
can be translated to native code, and they can be implemented directly on silicon. The
SECD machine yields strict evaluation, call-by-value. A lazy version is much slower than
graph reduction of combinators, which we shall consider later.

It is tempting to say that a value is any fully evaluated λ-term, namely a term in normal
form. This is a poor notion of value in functional programming, for two reasons:

1. Functions themselves should be values, but many functions have no normal form.
Recursive functions, coded as Y F , satisfy Y F = F (Y F) = F (F (Y F)) = · · · .
Although they have no normal form, they may well yield normal forms as results
when they are applied to arguments.

2. Evaluating the body of a λ-abstraction, namely the M in λx.M , serve little purpose;
we are seldom interested in the internal structure of a function. Only when it is
applied to some argument N do we demand the result and evaluate M [N/x].

Re (2), we clearly cannot use encodings like λx y.x for true and λf x.x for 0 , since our
evaluation rule will not reduce function bodies. We must take the integers, booleans, pairs,

28 5 ISWIM: THE λ-CALCULUS AS A PROGRAMMING LANGUAGE

etc., as primitive constants. Their usual functions (+, −, ×, . . .) must also be primitive
constants.

Further re (2), a λ-term which has no reductions (or only reductions within a λx.M
subterm) is said to be in weak head normal form (WHNF). Expressions in WHNF corre-
spond to ML notions of values. Note that every λ-term in HNF is also in WHNF, but the
converse is not true—consider λx.Ω.

5.6 Environments and Closures

Consider the reduction sequence

(λxy.x + y) 3 5→ (λy.3 + y) 5→ 3 + 5→ 8.

The β-reduction eliminates the free occurrence of x in λy.x + y by substitution for x.
Substitution is too slow to be effective for parameter passing; instead, the SECD machine
records x = 3 in an environment.

With curried functions, (λxy.x + y) 3 is a legitimate value. The SECD machine repre-
sents it by a closure, packaging the λ-abstraction with its current environment:

Clo(y
↑

bound variable

, x + y
↑

function body

, x = 3
↑

environment

)

When the SECD machine applies this function value to the argument 5, it restores the
environment to x = 3, adds the binding y = 5, and evaluates x + y in this augmented
environment.

A closure is so-called because it “closes up” the function body over its free variables.
This operation is costly; most programming languages forbid using functions as values.
Until recently, most versions of Lisp let a function’s free variables pick up any values they
happened to have in the environment of the call (not that of the function’s definition!);
with this approach, evaluating

let x = 1 in

let g(y) = x + y in

let f(x) = g(1) in

f(17)

would return 18, using 17 as the value of x in g! This is dynamic binding, as opposed to
the usual static binding. Dynamic binding is confusing because the scope of x in f(x) can
extend far beyond the body of f—it includes all code reachable from f (including g in this
case).

Common Lisp, now the dominant version, corrects this long-standing Lisp deficiency
by adopting static binding as standard. It also allows dynamic binding, though.

5.7 The SECD State 29

5.7 The SECD State

The SECD machine has a state consisting of four components S, E, C, D:

1. The Stack is a list of values, typically operands or function arguments; it also returns
the result of a function call.

2. The Environment has the form x1 = a1; · · · ; xn = an, expressing that the variables
x1, . . . , xn have the values a1, . . . , an, respectively.

3. The Control is a list of commands. For the interpretive SECD machine, a command
is a λ-term or the word app; the compiled SECD machine has many commands.

4. The Dump is empty (−) or is another machine state of the form (S,E,C,D). A
typical state looks like

(S1, E1, C1, (S2, E2, C2, . . . (Sn, En, Cn,−) . . .))

It is essentially a list of triples (S1, E1, C1), (S2, E2, C2), . . . , (Sn, En, Cn) and serves
as the function call stack.

5.8 State Transitions

Let us write SECD machine states as boxes:

Stack
Environment

Control
Dump

To evaluate the λ-term M , the machine begins execution an the initial state where M
is the Control:

S −
E −
C M
D −

If the Control is non-empty, then its first command triggers a state transition. There
are cases for constants, variables, abstractions, applications, and the app command.

A constant is pushed on to the Stack:

S
E

k; C
D

7−→

k; S
E
C
D

30 5 ISWIM: THE λ-CALCULUS AS A PROGRAMMING LANGUAGE

The value of a variable is taken from the Environment and pushed on to the Stack. If
the variable is x and E contains x = a then a is pushed:

S
E

x; C
D

7−→

a; S
E
C
D

A λ-abstraction is converted to a closure, then pushed on to the Stack. The closure
contains the current Environment:

S
E

λx.M ; C
D

7−→

Clo(x,M,E); S
E
C
D

A function application is replaced by code to evaluate the argument and the function,
with an explicit app instruction:

S
E

MN ; C
D

7−→

S
E

N ; M ; app; C
D

The app command calls the function on top of the Stack, with the next Stack element
as its argument. A primitive function, like + or ×, delivers its result immediately:

f ; a; S
E

app; C
D

7−→

f(a); S
E
C
D

The closure Clo(x,M,E ′) is called by creating a new state to evaluate M in the En-
vironment E ′, extended with a binding for the argument. The old state is saved in the
Dump:

Clo(x,M,E ′); a; S
E

app; C
D

7−→

−
x = a; E ′

M
(S,E,C,D)

The function call terminates in a state where the Control is empty but the Dump is
not. To return from the function, the machine restores the state (S,E,C,D) from the
Dump, then pushes a on to the Stack. This is the following state transition:

a
E ′

−
(S,E,C,D)

7−→

a; S
E
C
D

5.9 A Sample Evaluation 31

The result of the evaluation, say a, is obtained from a final state where the Control
and Dump are empty, and a is the sole value on the Stack:

S a
E −
C −
D −

5.9 A Sample Evaluation

To demonstrate how the SECD machine works, let us evaluate the expression twice sqr 3,
where twice is λf x.f(f x) and sqr is a built-in squaring function. (Note that twice is
just the Church numeral 2). Figure 1 shows the full gory details of evaluating twice sqr 3
(which gives the initial state) to the final state containing the result (81).

5.10 The Compiled SECD Machine

It takes 17 steps to evaluate ((λx y.x + y) 3) 5! Much faster execution is obtained by first
compiling the λ-term. Write [[M]] for the list of commands produced by compiling M ; there
are cases for each of the four kinds of λ-term.

Constants are compiled to the const command, which will (during later execution of
the code) push a constant onto the Stack:

[[k]] = const(k)

Variables are compiled to the var command, which will push the variable’s value, from
the Environment, onto the Stack:

[[x]] = var(x)

Abstractions are compiled to the closure command, which will push a closure onto
the Stack. The closure will include the current Environment and will hold M as a list of
commands, from compilation:

[[λx.M]] = closure(x, [[M]])

Applications are compiled to the app command at compile time. Under the interpreted
SECD machine, this work occurred at run time:

[[MN]] = [[N]]; [[M]]; app

We could add further instructions, say for conditionals. Let test(C1, C2) be replaced
by C1 or C2, depending upon whether the value on top of the Stack is true or false :

[[if E then M else N]] = [[E]]; test([[M]], [[N]])

To allow built-in 2-place functions such as + and × could be done in several ways.
Those functions could be made to operate upon ordered pairs, constructed using a pair

32 5 ISWIM: THE λ-CALCULUS AS A PROGRAMMING LANGUAGE

−
−

twice sqr 3
−

applic
7−→

−
−

3; twice sqr ; app
−

const
7−→

3
−

twice sqr ; app
−

applic
7−→

3
−

sqr ; twice ; app; app
−

const
7−→

sqr ; 3
−

twice ; app; app
−

abstr
7−→

Clo(f, λx.f(f x),−); sqr ; 3
−

app; app
−

app

7−→

−
f = sqr
λx.f(f x)

(3,−, app,−)

abstr
7−→

Clo(x, f(f x), f = sqr)
f = sqr
−

(3,−, app,−)

return
7−→

Clo(x, f(f x), f = sqr); 3
−

app
−

app

7−→

−
x = 3; f = sqr

f(f x)
(−,−,−,−)

applic
7−→

−
x = 3; f = sqr

f x; f ; app
(−,−,−,−)

applic
7−→

−
x = 3; f = sqr
x; f ; app; f ; app

(−,−,−,−)

var
7−→

3
x = 3; f = sqr
f ; app; f ; app
(−,−,−,−)

var
7−→

sqr ; 3
x = 3; f = sqr
app; f ; app
(−,−,−,−)

apply
7−→

9
x = 3; f = sqr

f ; app
(−,−,−,−)

var
7−→

sqr ; 9
x = 3; f = sqr

app
(−,−,−,−)

app

7−→

81
x = 3; f = sqr

−
(−,−,−,−)

return
7−→

81
−
−
−

Figure 1: SECD evaluation of twice sqr 3

5.11 Recursive Functions 33

instruction. More efficient is to introduce arithmetic instructions such as add and mult ,
which pop both their operands from the Stack. Now ((λx y.x + y) 3) 5 compiles to

const(5); const(3); closure(x,C0); app; app

and generates two further lists of commands:

C0 = closure(y, C1)

C1 = var(y);var(x); add

Many further optimisations can be made, leading to an execution model quite close
to conventional hardware. Variable names could be removed from the Environment, and
bound variables referred to by depth rather than by name. Special instructions enter and
exit could efficiently handle functions that are called immediately (say, those created by
the declaration letx = N inM), creating no closure:

[[(λx.M)N]] = [[N]]; enter; [[M]]; exit

Tail recursive (sometimes called iterative) function calls could be compiled to the
tailapp command, which would cause the following state transition:

Clo(x,C,E ′); a
E

tailapp
D

7−→

−
x = a; E ′

C
D

The useless state (−, E,−, D) is never stored on the dump, and the function return after
tailapp is never executed—the machine jumps directly to C!

5.11 Recursive Functions

The usual fixed point combinator, Y , fails under the SECD machine; it always loops. A
modified fixed point combinator, including extra λ’s to delay evaluation, does work:

λf.(λx.f(λy.x x y)(λy.x x y))

But it is hopelessly slow! Recursive functions are best implemented by creating a closure
with a pointer back to itself.

Suppose that f(x) = M is a recursive function definition. The value of f is represented
by Y (λf x.M). The SECD machine should interpret Y (λfx.M) in a special manner,
applying the closure for λf x.M to a dummy value, ⊥. If the current Environment is E
then this yields the closure

Clo(x, M, f = ⊥; E)

Then the machine modifies the closure, replacing the ⊥ by a pointer looping back to the
closure itself:

34 5 ISWIM: THE λ-CALCULUS AS A PROGRAMMING LANGUAGE

Clo(x, M, f = · ; E)-

When the closure is applied, recursive calls to f in M will re-apply the same closure. The
cyclic environment supports recursion efficiently.

The technique is called “tying the knot” and works only for function definitions. It does
not work for recursive definitions of data structures, such as the infinite list [0, 0, 0, . . .],
defined as Y (λl. cons 0 l). Therefore strict languages like ML allow only functions to be
recursive.

5.12 A lambda-interpreter in ML

The SECD-machine, while conceptually “merely an abstract machine” does a fair amount
of administration for the same reason (e.g. it has explicitly to save its previous state when
starting to evaluate a λ-application).

This section exhibits an interpreter written in ML directly on the syntax of the lambda-
calculus with integer constants. Many people find this easier to read and understand that
the SECD approach.

The syntax of the λ-calculus with constants can be expressed in ML as

datatype Expr = Name of string |

Numb of int |

Plus of Expr * Expr |

Fn of string * Expr |

Apply of Expr * Expr;

Values are of course either integers or functions (closures):

datatype Val = IntVal of int | FnVal of string * Expr * Env;

Environments are just a list of (name,value) pairs (these represent delayed subsitutions—
we never actually do the substitutions suggested by β-reduction, instead we wait until
we finally use a substituted name and replace it with the λ-value which would have been
substituted at that point);

datatype Env = Empty | Defn of string * Val * Env;

and name lookup is natural:

fun lookup(n, Defn(s, v, r)) =

if s=n then v else lookup(n, r);

| lookup(n, Empty) = raise oddity("unbound name");

The main code of the interpreter is as follows:

35

fun eval(Name(s), r) = lookup(s, r)

| eval(Numb(n), r) = IntVal(n)

| eval(Plus(e, e’), r) =

let val v = eval(e,r);

val v’ = eval(e’,r)

in case (v,v’) of (IntVal(i), IntVal(i’)) => IntVal(i+i’)

| (v, v’) => raise oddity("plus of non-number")

end

| eval(Fn(s, e), r) = FnVal(s, e, r)

| eval(Apply(e, e’), r) =

case eval(e, r)

of IntVal(i) => raise oddity("apply of non-function")

| FnVal(bv, body, r_fromdef) =>

let val arg = eval(e’, r)

in eval(body, Defn(bv, arg, r_fromdef))

end;

Note particularly the way in which dynamic typing is handled (Plus and Apply have
to check the type of arguments and make appropriate results). Also note the two different
environments (r, r fromdef) being used when a function is being called.

A fuller version of this code (with test examples and with the “tying the knot” version
of Y appears on the course web page.

6 Lazy Evaluation via Combinators

The SECD machine employs call-by-value. It can be modified for call-by-need (lazy eval-
uation), as follows. When a function is called, its argument is stored unevaluated in a
closure containing the current environment. Thus, the call MN is treated something like
M(λu.N), where u does not appear in N . This closure is called a suspension. When a
strict, built-in function is called, such as +, its argument is evaluated in the usual way.

It is essential that no argument be evaluated more than once, no matter how many
times it appears in the function’s body:

let sqr n = n× n in

sqr(sqr(sqr 2))

If this expression were evaluated by repeatedly duplicating the argument of sqr, the waste
would be intolerable. Therefore, the lazy SECD machine updates the environment with
the value of the argument, after it is evaluated for the first time. But the cost of creating
suspensions makes this machine ten times slower than the strict SECD machine, according
to David Turner. Modern Haskell (the de facto standard for a lazy functional language)
implementation such as GHC achieve acceptable performance by other means.

36 6 LAZY EVALUATION VIA COMBINATORS

6.1 Graph Reduction in the λ-Calculus

Another idea is to work directly with λ-terms, using sharing and updating to ensure that
no argument is evaluated more than once. For instance, the evaluation of (λn.n × n)M
might be represented by the graph reduction

mult n

n

M

mult M
nλ

The difficulty here is that λ-abstractions may themselves be shared. We may not
modify the body of the abstraction, replacing the bound variable by the actual argument.
Instead, we must copy the body—including parts containing no occurrence of the bound
variable—when performing the substitution.

Both the lazy SECD machine and graph reduction of λ-terms suffer because of the treat-
ment of bound variables. Combinators have the same expressive power as the λ-calculus,
but no bound variables. Graph reduction in combinators does not require copying. David
Turner found an efficient method of translating λ-terms into combinators, for evaluation by
graph reduction [9]. Offshoots of his methods have been widely adopted for implementing
lazy functional languages.

6.2 Introduction to Combinators

Combinators exist in a system called combinatory logic (CL). This name derives from
hisorical reasons—we will not treat is as a logic. In the simplest version, there are only
two combinators, K and S .4 Combinators are simply constants. Indeed the language
of combinators is essentially the λ-calculus with constants, but without variables or λ-
abstractions!

P ::= c | PP ′ with c ::= K | S

We will use P , Q and R to range over combinator terms.

While combinatory terms do not formally contain variables, it is convenient to allow
them as an extension (for example during intermediate stages of the translation of λ-terms
to combinatory terms, e.g. Kx(S Kx)(K S K y)S . Although CL is not particularly
readable, it is powerful enough to encode the λ-calculus and hence all the computable
functions!

4Note that now K and S are constants within the language rather than the use of symbols of this
font-style as abbreviations earlier in the notes.

6.3 Abstraction on Combinators 37

The combinators obey the following (δ-)reductions:

KP Q →w P
SP QR →w P R(QR)

Thus, the combinators could have been defined in the λ-calculus by as the following ab-
breviations

K ≡ λx y.x

S ≡ λf g x.(f x)(g x)

But note that S K does not reduce—because S requires three arguments — while the cor-
responding λ-term does. For this reason, combinator reduction is known as weak reduction
(hence the “w” in →w). [This concept is distinct from that of WHNF earlier.]

Here is an example of weak reduction:

S K KP →w KP (KP)→w P

Thus S K KP ։w P for all combinator terms P ; let us define the identity combinator
by I ≡ S K K .

Many of the concepts of the λ-calculus carry over to combinators. A combinator term P
is in normal form if it admits no weak reductions. Combinators satisfy a version of the
Church-Rosser Theorem: if P = Q (by any number of reductions, forwards or backwards)
then there exists a term Z such that P ։w Z and Q ։w Z.

6.3 Abstraction on Combinators

Any λ-term may be transformed into a roughly equivalent combinatory term. (The
meaning of “roughly” is examined below.) The key is the transformation of a combi-
natory term P into another combinator term, written as λ∗x.P since it behaves like a
λ-abstraction5 even though it is a metalanguage concept—it translates one combinatory
term into another rather than being part of any combinatory term.

Definition 9 The operation λ∗x, where x is a variable, is defined recursively as follows:

λ∗x.x ≡ I
λ∗x.P ≡ KP (x not free in P)
λ∗x.P Q ≡ S (λ∗x.P)(λ∗x.Q)

Finally, λ∗x1 . . . xn.P abbreviates λ∗x1.(. . . λ
∗xn.P . . .).

5Some authors write [x]P for λ
∗
x.P .

38 6 LAZY EVALUATION VIA COMBINATORS

For example:

λ∗x y.y x ≡ λ∗x.(λ∗y.y x)

≡ λ∗x.S (λ∗y.y)(λ∗y.x)

≡ λ∗x.(S I)(Kx)

≡ S (λ∗x.S I)(λ∗x.Kx)

≡ S (K (S I))(S (λ∗x.K)(λ∗x.x))

≡ S (K (S I))(S (K K) I)

Each λ∗ can double the number of applications in a term; in general, growth is ex-
ponential. Turner discovered a better abstraction method, discussed in the next section.
First, let us show that combinatory abstraction behaves like its λ-calculus cousin. Let FV
be defined for combinatory terms in an analogous manner to Definition 3.

Theorem 10 For every combinatory term P we have

FV(λ∗x.P) = FV(P) \ {x}

(λ∗x.P)x ։w P

Proof We prove both properties independently, by structural induction on P . There are
three cases.

If P is the variable x, then λ∗x.x ≡ I . Clearly

FV(λ∗x.x) = FV(I) = ∅ = FV(x) \ {x}

(λ∗x.x)x ≡ Ix ։w x

If P is any term not containing x, then λ∗x.P ≡ KP and

FV(λ∗x.P) = FV(KP) = FV(P)

(λ∗x.P)x ≡ KPx→w P

If P ≡ QR, and x is free in Q or R, then λ∗x.P ≡ S (λ∗x.Q)(λ∗x.R). This case is the
inductive step and we may assume, as induction hypotheses, that the theorem holds for Q
and R:

FV(λ∗x.Q) = FV(Q) \ {x}

FV(λ∗x.R) = FV(R) \ {x}

(λ∗x.Q)x ։w Q

(λ∗x.R)x ։w R

We now consider the set of free variables:

FV(λ∗x.QR) = FV(S (λ∗x.Q)(λ∗x.R))

= (FV(Q) \ {x}) ∪ (FV(R) \ {x})

= FV(QR) \ {x}

6.4 The Relation Between λ-Terms and Combinators 39

Finally, we consider application:

(λ∗x.P)x ≡ S (λ∗x.Q)(λ∗x.R)x

→w (λ∗x.Q)x((λ∗x.R)x)

։w Q((λ∗x.R)x)

։w QR

⊓⊔

Using (λ∗x.P)x ։w P , we may derive an analogue of β-reduction for combinatory
logic. We also get a strong analogue of α-conversion—changes in the abstraction variable
are absolutely insignificant, yielding identical terms.

Theorem 11 For all combinatory terms P and Q,

(λ∗x.P)Q ։w P [Q/x]

λ∗x.P ≡ λ∗y.P [y/x] if y 6∈ FV(P)

Proof Both statements are routine structural inductions; the first can also be derived
from the previous theorem by a general substitution theorem [1]. ⊓⊔

6.4 The Relation Between λ-Terms and Combinators

The mapping ()CL converts a λ-term into a combinator term. It simply applies λ∗ re-
cursively to all the abstractions in the λ-term; note that the innermost abstractions are
performed first! The inverse mapping, ()λ, converts a combinator term into a λ-term.
Note that the latter is pretty trivial, we merely treat each use of S or K as if it were an
abbreviation.

Definition 12 The mappings ()CL and ()λ are defined recursively as follows:

(x)CL ≡ x

(M N)CL ≡ (M)CL(N)CL

(λx.M)CL ≡ λ∗x.(M)CL

(x)λ ≡ x

(K)λ ≡ λx y.x

(S)λ ≡ λx y z.x z(y z)

(P Q)λ ≡ (P)λ(Q)λ

Different versions of combinatory abstraction yield different versions of ()CL; the
present one causes exponential blow-up in term size, but it is easy to reason about. Let us

40 7 COMPILING TECHNIQUES USING COMBINATORS

abbreviate (M)CL as MCL and (P)λ as Pλ. It is easy to check that ()CL and ()λ do not
add or delete free variables:

FV(M) = FV(MCL) FV(P) = FV(Pλ)

Equality is far more problematical. The mappings do give a tidy correspondence be-
tween the λ-calculus and combinatory logic, provided we assume the principle of exten-
sionality. This asserts that two functions are equal if they return equal results for every
argument value. In combinatory logic, extensionality takes the form of a new rule for
proving equality:

Px = Qx

P = Q
(x not free in P or Q)

In the λ-calculus, extensionality can be expressed by a similar rule or by introducing η-
reduction:

λx.Mx→η M (x not free in M)

Assuming extensionality, the mappings preserve equality [1]:

(MCL)λ = M in the λ-calculus

(Pλ)CL = P in combinatory logic

M = N ⇐⇒ MCL = NCL

P = Q ⇐⇒ Pλ = Qλ

Normal forms and reductions are not preserved. For instance, S K is a normal form
of combinatory logic; no weak reductions apply to it. But the corresponding λ-term is not
in normal form:

(S K)λ ≡ (λx y z.x z(y z))(λx y.x) ։ λy z.z

There are even combinatory terms in normal form whose corresponding λ-term has no
normal form! Even where both terms follow similar reduction sequences, reductions in
combinatory logic have much finer granularity than those in the λ-calculus; consider how
many steps are required to simulate a β-reduction in combinatory logic.

Normal forms are the outputs of functional programs; surely, they ought to be preserved.
Reduction is the process of generating the outputs. Normally we should not worry about
this, but lazy evaluation has to deal with infinite outputs that cannot be fully evaluated.
Thus, the rate and granularity of reduction is important. Despite the imperfect correspon-
dence between λ-terms and combinators, compilers based upon combinatory logic appear
to work. Perhaps the things not preserved are insignificant for computational purposes.
More research needs to be done in the operational behaviour of functional programs.

7 Compiling Techniques Using Combinators

Combinator abstraction gives us a theoretical basis for removing variables from λ-terms,
and will allow efficient graph reduction. But first, we require a mapping from λ-terms

41

to combinators that generates more compact results. Recall that λ∗ causes exponential
blowup:

λ∗x y.y x ≡ S (K (S I))(S (K K) I)

The improved version of combinatory abstraction relies on two new combinators, B
and C , to handle special cases of S :

BP QR →w P (QR)
CP QR →w P R Q

Note that BP QR yields the function composition of P and Q. Let us call the new
abstraction mapping λT , after David Turner, its inventor:

λT x.x ≡ I
λT x.P ≡ KP (x not free in P)
λT x.P x ≡ P (x not free in P)
λT x.P Q ≡ BP (λT x.Q) (x not free in P)
λT x.P Q ≡ C (λT x.P)Q (x not free in Q)
λT x.P Q ≡ S (λT x.P)(λT x.Q) (x free in P and Q)

Although λT is a bit more complicated than λ∗, it generates much better code (i.e.
combinators). The third case, for P x, takes advantage of extensionality; note its similarity
to η-reduction. The next two cases abstract over P Q according to whether or not the
abstraction variable is actually free in P or Q. Let us do our example again:

λT x y.y x ≡ λT x.(λT y.y x)

≡ λT x.C (λT y.y)x

≡ λT x.C Ix

≡ C I

The size of the generated code has decreased by a factor of four! Here is another example,
from Paper 6 of the 1993 Examination. Let us translate the λ-encoding of the ordered pair
operator:

λT x.λT y.λT f.f x y ≡ λT x.λT y.C (λT f.f x) y

≡ λT x.λT y.C (C (λT f.f) x) y

≡ λT x.λT y.C (C I x) y

≡ λT x.C (C I x)

≡ B C (λT x.C I x)

≡ B C (C I).

Unfortunately, λT can still cause a quadratic blowup in code size; additional primitive
combinators should be introduced (See Field and Harrison [4, page 286]. Furthermore,

42 7 COMPILING TECHNIQUES USING COMBINATORS

all the constants of the functional language—numbers, arithmetic operators, . . . —must be
taken as primitive combinators.

Introducing more and more primitive combinators makes the code smaller and faster.
This leads to the method of super combinators, where the set of primitive combinators is
extracted from the program itself.

For a good set of combinators the translation if a λ-term of n symbols only requires
n log n combinators. While this might sound wasteful, there is a cheating involved. The
log n derives from the fact that we require log n operations (from any finite fixed set of
operators) to select from n different variables in scope. However, to have n different
variables in scope, a λ-term of n symbols needs n log n characters. So the translation is
linear after all in the true size of a program.

Exercise 9 Show BP I = P using extensionality.

Exercise 10 Verify that C I behaves like the λ-term λx y.y x when applied to two
arguments.

Exercise 11 What would λT x y.y x yield if we did not apply the third case in the
definition of λT ?

7.1 Combinator Terms as Graphs

Consider the ISWIM program

let sqr(n) = n× n in sqr(5)

Let us translate it to combinators:

(λT f.f 5)(λT n.multnn) ≡ C I 5 (S (λT n.multn)(λT n.n))

≡ C I 5 (S mult I)

This is a closed term—it contains no free variables (and no bound variables, of course).
Therefore it can be evaluated by reducing it to normal form.

Graph reduction works on the combinator term’s graph structure. This resembles a
binary tree with branching at each application. The graph structure for C I 5 (S mult I)
is as follows:

C I

5

S mult

I

7.2 The Primitive Graph Transformations 43

Repeated arguments cause sharing in the graph, ensuring that they are never evaluated
more than once.

7.2 The Primitive Graph Transformations

Graph reduction deals with terms that contain no variables. Each term, and its subterms,
denote constant values. Therefore we may transform the graphs destructively—operands
are never copied. The graph is replaced by its normal form!

The primitive combinators reduce as shown in Figure 2. The sharing in the reduction
for S is crucial, for it avoids copying R.

We also require graph reduction rules for the built-in functions, such as mult . Because
mult is a strict function, the graph for multP Q can only be reduced after P and Q have
been reduced to numeric constants m and n. Then multm n is replaced by the constant
whose value is m × n. Graph reduction proceeds by walking down the graph’s leftmost
branch, seeking something to reduce. If the leftmost symbol is a combinator like I , K ,
S , B , or C , with the requisite number of operands, then it applies the corresponding
transformation. If the leftmost symbol is a strict combinator like mult , then it recursively
traverses the operands, attempting to reduce them to numbers.

Figure 3 presents the graph reduction sequence for the ISWIM program

let sqr(n) = n× n in sqr(5).

The corresponding term reductions are as follows:

C I 5 (S mult I) → I (S mult I) 5

→ S mult I 5

→ mult 5 (I 5)

→ mult 5 5

→ 25

Clearly visible in the graphs, but not in the terms, is that the two copies of 5 are shared. If,
instead of 5, the argument of sqr had been a large combinatory term P compiled from the
program, then P would have been evaluated only once. Graph reduction can also discard
terms by the rule KP Q→w P ; here Q is never evaluated.

7.3 Booleans and Pairing

The λ-calculus encodings of ordered pairs, Church numerals and so forth work with com-
binators, but are impractical to use for compiling a functional language. New combinators
and new reductions are introduced instead.

44 7 COMPILING TECHNIQUES USING COMBINATORS

I P
P

K P

Q
P

S P

Q

R

P Q

R

B P

Q

R

RQ

P

C P

Q

R

P

Q

R

Figure 2: Graph reduction for combinators

7.3 Booleans and Pairing 45

C I

5

S mult

I
I

5

S mult

I

5

S mult

I

5

mult I

5
mult

25

Figure 3: A graph reduction sequence

46 7 COMPILING TECHNIQUES USING COMBINATORS

With lazy evaluation, if-then-else can be treated like a function, with the two reductions

if trueP Q →w P

if falseP Q →w Q.

These reductions discard P or Q if it is not required; there is no need for tricks to delay
their evaluation. The first reduction operates on graphs as shown.

Q

if true

P

P

Pairing is also lazy, as it is in the λ-calculus; we introduce the reductions

fst (pairP Q) →w P

snd (pairP Q) →w Q.

The corresponding graph reductions should be obvious:

fst

pair

Q

P

P

7.4 Recursion: Cyclic Graphs

Translating Y into combinator form will work, yielding a mult-step reduction resembling6

Y P

Y
P

This is grossly inefficient; Y must repeat its work at every recursive invocation! In-
stead, take Y as a primitive combinator satisfying Y P →w P (Y P) and adopt a graph
reduction rule that replaces the Y by a cycle:

Y P P

6The picture is an over-simplification; recall that we do not have Y P ։ P (Y P)!

47

Since P is never copied, reductions that occur in it yield permanent simplifications—
they are not repeated when the function is entered recursively.

To illustrate this, consider the ISWIM program

letrec from(n) = pairn(from(1 + n)) in from(1).

The result should be the infinite list (1, (2, (3, . . .))). We translate from into combinators,
starting with

Y (λT f n.pairn(f(add 1 n))

and obtain (verify this)
Y (B (S pair)(C B (add 1)))

Figures 4 and 5 give the graph reductions. A cyclic node, labelled θ, quickly appears.
Its rather tortuous transformations generate a recursive occurrence of from deeper in the
graph. The series of reductions presumes that the environment is demanding evaluation
of the result; in lazy evaluation, nothing happens until it is forced to happen.

Graph reduction will leave the term add 1 1 unevaluated until something demands its
value; the result of from(1) is really (1, (1+1, (1+1+1, . . .))). Graph reduction works a bit
like macro expansion. Non-recursive function calls get expanded once and for all the first
time they are encountered; thus, programmers are free to define lots of simple functions in
order to aid readability. Similarly, constant expressions are evaluated once and for all when
they are first encountered. Although this behaviour avoids wasteful recomputation, it can
cause the graph to grow and grow, consuming all the store—a space leak. The displayed
graph reduction illustrates how this could happen.

Exercise 12 Translate Y to combinators and do some steps of the reduction of Y P .

8 Continuations

Continuations, like combinators, arise from another cut-down version of the λ-calculus
being equipotent with it.

They arise from the question: which functions can be written in the λ-calculus if we
restrict to function (it is hard to such emasculated things as functions) which never return?
Additionally (perhaps not very surprising give the above restriction) all function calls are
tail calls. This is called “Continuation Passing Style” (CPS).

Rather surprisingly, it turns out that every function expressible in the λ-calculus can
be written in such a contination passing style and that there is a simple transformation
(the “CPS transform”) which effects this.

Before doing this formally, let us first consider an example to see how this might work.
Firstly, because there will be no “top-level answer” from a program, we need to pass in
a function which handles the final result. Thus instead of saying f12 we will pass an
additional argument: f ′12print where the function print does what the top-level printing
routine would have done. The called function, say fxy = M , becomes logically f ′xyk =

48 8 CONTINUATIONS

B

B

Y

1

S pair C B add 1

1

S pair C B add 1

from

1

S pair

C B add 1

from

Figure 4: Reductions involving recursion

49

pair 1

S pair

from

B add 1

1

fromB

C

pair

add 1

from

add 1

1
pair

Figure 5: Reductions involving recursion (continued)

50 11 TYPE SYSTEMS FOR FUNCTIONAL LANGUAGES

k(M)7 except that M may contain function calls. Suppose fxy = g(h(x + 1))(jy), then
what we need to do is to capture the result of h, then the result of j and then pass the
result of g to the continuation k. This results in

f ′ x y k = h′ (x + 1) (λr1.
j′ y (λr2.
g′ r1 r2 k))

Note how this parallels a machine-level implementation—first call h, then call j and finally
call g. We have even had to decide whether to call h or j first—it might not matter from
the programmer’s point of view, but a machine implementation has to choose.

[More to be written/see slides]
See http://en.wikipedia.org/wiki/Continuation_passing_style

and http://en.wikipedia.org/wiki/Continuation

9 Imperative Features

Some functional languages (e.g. ML) include primitive operations with side-effects on an
implicit state. This might include I/O or mutating an existing value (assignment). Such
languages are regarded as impure because many reasoning techniques for the pure subset
no longer apply—for example 2∗ e and e+ e may differ. In general such impure operations
are only found in eager funtional languages, as reasoning about the order of execution of
such operations is too difficult for humans in a lazy language.

[More to be written/see slides]

10 Haskell

[More to be written/see slides]

11 Type Systems for Functional Languages

This section gives a short formalisation of the type checking you have informally seen in
ML.

Figure 11 gives an implementation of the core ML type checker in five lines of Prolog.
[More to be written/see slides]

7Continuations are traditional called k.

51

% A simple Hindley-style type inference algorithm written in Prolog

% Alan Mycroft, January 2007.

% Expressions:

% Expr ::= icon(int) | var(string) | lam(string, Expr) | app(Expr, Expr)

% Type Expressions:

% Type ::= tint | tarrow(Type,Type)

% Type Environments: list of (string,Type) pairs

% In ’lookup’ the use of cut (!) ensures that we only find the most

% recent (i.e. non-scope-shadowed) version of a variable when the

% names of lambda-bound variables are not distinct.

lookup(X, [(X,T)|TEnv], T) :- !.

lookup(X, [(_,_)|TEnv], T) :- lookup(X, TEnv, T).

infer(var(X), TEnv, T) :- lookup(X,TEnv,T).

infer(icon(_), TEnv, tint).

infer(lam(X,E), TEnv, arrow(T1,T2)) :- infer(E, [(X,T1)|TEnv], T2).

infer(app(F,E), TEnv, T2) :- infer(F, TEnv, arrow(T1,T2)),

infer(E, TEnv, T1).

% a test function:

typeofScombinator(T) :-

infer(lam(f,lam(g,lam(x,

app(app(var(f),var(x)), app(var(g),var(x)))))),

[],

T).

% Note the following bug due to Prolog not doing

% proper(occurs-check) unification:

bug(T) :-

infer(lam(x, app(var(x),var(x))), [], T).

Figure 6: A Hindley-style type-inferer written in Prolog

52 REFERENCES

References

[1] H. P. Barendregt. The Lambda Calculus: Its Syntax and Semantics. North-Holland, 1984.

[2] W. H. Burge. Recursive Programming Techniques. Addison-Wesley, 1975.

[3] G. Cousineau and G. Huet. The CAML primer. Technical report, INRIA, Rocquencourt,
France, 1990.

[4] Anthony J. Field and Peter G. Harrison. Functional Programming. Addison-Wesley, 1988.

[5] Michael J. C. Gordon. Programming Language Theory and its Implementation.
Prentice-Hall, 1988.

[6] J. Roger Hindley and Jonathon P. Seldin. Introduction to Combinators and λ-Calculus.
Cambridge University Press, 1986.

[7] P. J. Landin. The mechanical evaluation of expressions. Computer Journal, 6:308–320,
January 1964.

[8] P. J. Landin. The next 700 programming languages. Communications of the ACM,
9(3):157–166, March 1966.

[9] David A. Turner. A new implementation technique for applicative languages.
Software—Practice and Experience, 9:31–49, 1979.

