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Introduction 
This course will develop the algebraic formulation of problems and formal proof by way of examples 
involving the integers.  The material enables academic study of Computer Science and will be 
illustrated with examples from cryptography and the analysis of algorithms. 

These notes only cover the first half of the course.  A further 12 lectures will be given in the Lent Term, 
concentrating on sets, relations and functions. 

Syllabus 
• Proof.  Deduction, contradiction.  Integers, mathematical induction.  [3 lectures] 

• Factors.  Division: highest common factors and least common multiples.  Euclid’s algorithm: 
solution in integers of ax + by = c, the complexity of Euclid’s algorithm.  Euclid’s proof of the 

infinity of primes.  Existence and uniqueness of prime factorisation.  Irrationality of p .  
[4 lectures] 

• Modular arithmetic.  Congruences.  Units modulo m, Euler’s totient function.  Chinese remainder 
theorem.  Wilson’s theorem.  The Fermat-Euler theorems, testing for primes.  Public key 
cryptography, Diffie-Hellman, RSA.  [5 lectures] 

Objectives 
On completing the course, students should be able to: 

• Write a clear statement of a problem as a theorem in mathematical notation. 

• Prove and disprove assertions using a variety of techniques. 

• Describe, analyse and use Euclid’s algorithm. 

• Explain and apply prime factorisation. 

• Perform calculations with modular arithmetic. 

• Use number theory to explain public key cryptography. 
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Appropriate books 
The following books are relevant for the course: 

• JA Anderson: Discrete mathematics with combinatorics, Prentice-Hall, 2001, ISBN 
0-13-086998-8, £41.99. 

• JH Conway & RK Guy: The book of numbers, Springer-Verlag, 1996, ISBN 0-387-97993-X, 
£21.95 
A beautiful book – deeply subtle mathematics presented in an accessible and exciting way. 

• H Davenport: The higher arithmetic (6th edition), Cambridge University Press, 1992, ISBN 
0-521-42227-2, £14.95. 

• P Giblin: Primes and programming, Cambridge University Press, 1993, ISBN 0-521-40988-8, 
£15.95. 

• RL Graham, DE Knuth & O Patashnik: Concrete mathematics (2nd edition), Addison Wesley, 
1994, ISBN 0-201-55802-5, £26.00. 
The ultimate reference book. 

• JF Humphreys & MY Prest: Numbers, groups and codes, Cambridge University Press, 1989, 
ISBN 0-521-35938-4, £14.95. 
Close to the approach in this course, but using different notation. 

• G Pólya: How to solve it, Penguin, 1990, ISBN 0-14-012499-3, £8.99. 

• KH Rosen: Discrete mathematics and its applications (5th edition), McGraw-Hill, 2002, ISBN 
0-07-119881-4, £42.99. 
An excellent book covering a wide range of topics and useful throughout the whole of Computer 
Science. 

These notes do not constitute a complete transcript of all the lectures and they are not a substitute for 
text books.  They are intended to give a reasonable synopsis of the subjects discussed, but they give 
neither complete proofs of all the theorems nor all the background material. 

Further support material is available on-line at http://www.cl.cam.ac.uk/Teaching/current/DiscMathI/.  
In particular, there is an on-line help system in the form of a set of frequently asked questions which 
are revised as new questions are asked. 
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Proof 
What is a proof?  If a theorem is a logical statement, the proof is meant to convince you that the 
statement is true.  When faced with a proof you should convince yourself of three things: 

• The arguments put forward are all true and the sequence follows logically from beginning to 
end. 

• The arguments are sufficient to prove the theorem. 

• The arguments are all necessary to prove the theorem. 

A proof has to encompass all the possible cases permitted by the statement of the proof.  Usually it 
will not be possible to work through all of these in turn, so some generality will be required.  On the 
other hand, a single counter-example is sufficient to show that a theorem is false.  Indeed, such a 
counter-example should be as simple as possible.  Good mathematicians like to avoid effort. 

This should not be confused with proof by contradiction.  This is an elegant technique in which we 
prove a theorem by accepting the possibility that it is not true.  If it is not true, there must be a counter-
example.  Examining this counter-example then gives rise to a logical inconsistency.  If all the 
intermediate steps are correct, the only explanation is that the original assumption (accepting that the 
theorem was not true) was itself mistaken.  In other words, the theorem is true. 

Examples 
• Theorem:  an + bn = cn has no solutions. 

Proof:  Left as an exercise for the reader. 

• Theorem:  The whole numbers that can be expressed as the difference of two squares are 
precisely those that leave a remainder of 0, 1 or 3 when divided by 4. 

Proof:  Work through a sequence of simpler problems. 

a) Any odd number can be expressed as the difference of two squares  
– consider (n+1)2 – n2. 

b) No even number can be expressed as the difference of two squares 
– false, consider 4 = 22 – 02. 

c) Any exact multiple of 4 can be expressed as the difference of two squares 
– consider (n+1)2 – (n–1)2. 

d) No odd multiple of two can be expressed as the difference of two squares 
– assume true and find a contradiction by examining cases. 

Now combine these results.  (d) shows that any difference of two squares leaves a remainder of 
0, 1 or 3 when divided by 4.  (c) shows that a number that leaves remainder 0 when divided by 
4 can be expressed as the difference of two squares, and (a) shows that a number that leaves a 
remainder of 1 or 3 can. 

• Theorem:  2  is irrational, that is, it can not be written as a fraction 
y
x

 for whole numbers 

x and y. 

Proof: Assume that 
y
x

=2  for whole numbers x and y.  Without loss of generality, we can 

assume that x and y are not both even and deduce a contradiction. 
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How to solve it 
Pólya suggests the following four step plan for problem solving: 

Understanding the problem 
What is the unknown?  What are the data?  What is the condition? 

Is it possible to satisfy the condition?  Is the condition sufficient to determine the unknown?  Or is it 
insufficient?  Or redundant?  Or contradictory? 

Draw a figure.  Introduce suitable notation. 

Separate the various parts of the condition.  Can you write them down? 

Devising a plan 
Find the connection between the data and the unknown.  You may be obliged to consider auxiliary 
problems if an immediate connection cannot be found.  You should obtain eventually a plan of the 
solution. 

Have you seen it before?  Or have you seen the same problem in a slightly different form? 

Do you know a related problem?  Do you know a theorem that could be useful? 

Look at the unknown!  And try to think of a familiar problem having the same or a similar unknown. 

Here is a problem related to yours and solved before.  Could you use it?  Could you use its results?  
Could you use its method?  Should you introduce some auxiliary element in order to make its use 
possible? 

Could you restate the problem?  Could you restate it still differently?  Go back to definitions. 

If you cannot solve the proposed problem try to solve first some related problem.  Could you imagine a 
more accessible related problem?  A more general problem?  A more special problem?  An analogous 
problem?  Could you solve a part of the problem?  Keep only a part of the condition, drop the other 
part; how far is the unknown then determined, how can it vary?  Could you derive something useful 
from the data?  Could you think of other data appropriate to determine the unknown?  Could you 
change the unknown or data, or both if necessary, so that the new unknown and the new data are 
nearer to each other? 

Did you use all the data?  Did you use the whole condition?  Have you taken into account all essential 
notions involved in the problem? 

Carrying out the plan 
Carrying out your plan of the solution, check each step.  Can you see clearly that the step is correct?  
Can you prove that it is correct? 

Looking back 
Can you check the result?  Can you check the argument? 

Can you derive the result differently?  Can you see it at a glance? 

Can you use the result, or the method, for some other problem? 
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Integers 
We start with the sets of natural numbers, N = {1, 2, 3, …}, the natural numbers augmented with 0, 
N0 = {0, 1, 2, …}, and integers, Z = {…, –2, –1, 0, 1, 2, …} (rather like the type int in ML), and 
will refer to the rational numbers (fractions), Q (which includes the type real in ML), and the real 
numbers R (which includes significantly more values).  The curly brackets just wrap up enumerations 
of elements.  The empty set is Ø = {}.  We will discuss the notation for sets more formally in the 
second half of the course, but here is enough to get started. 

A particular value, x, is an element of a set X if it is in it.  We write this with a sort of Greek epsilon: 
x ∈ X.  So –3 ∈ Z but –3 ∉ N. 

One set, X, is a subset of another set, Y, if every element of X is also an element of Y.  We write this 
with a rounded less-than-or-equal sign: X ⊆ Y.  So N ⊆ N0 ⊆ Z ⊆ Q ⊆ R. 

We can also define sets by predicates or conditions: N = {x ∈ Z | x > 0}.  This notation is a bit 
unfortunate because we will also use the vertical bar to indicate exact divisibility: 3 | 6.  So the set of 
even numbers might be defined as E = {x ∈ Z | 2|x}, which is a bit confusing.  Sorry.  The vertical 
bar is also used in another way to count the number of elements |X| in a (finite) set. 

There are two particularly important properties of the natural numbers, which turn out to be equivalent: 
induction and well-ordering. 

Mathematical induction 

Let P(n) be any mathematical assertion involving the natural number n which may be true or false.  
(Think of P as a function with n as an argument and returning a Boolean result.)  The principle of 
mathematical induction states that, if 

• P(1) is true, and 

• whenever P(k) is true then P(k+1) is true as well 

then P(n) is true for every natural number n. 

The two conditions are known as the base case and the inductive step, and they give rise to the 
conclusion. 

Examples 

• )1(
2
1321 +=++++ nnnL . 

Base case:  1 = ½×1×2. 

Inductive step:  Suppose 1 + 2 + 3 + … + k = ½ × k × (k+1). 
Then 1 + 2 + 3 + … + k + (k+1) = ½ × k × (k+1) + (k+1) = ½ × (k+1) × (k+2). 

• Let an = 23n+1 + 3n+1.  Then, for all positive integers n, an is exactly divisible by 5. 

Base case:  a1 = 24 + 32 = 16 + 9 = 25, which is divisible by 5. 

Inductive step:  Suppose ak is divisible by 5. 
Then ak+1 = 23(k+1)+1 + 3(k+1)+1 = 8×23k+1 + 3×3k+1 = 5×23k+1 + 3×ak, which is divisible by 5. 
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• If n is a positive integer and x and y are any numbers, then 

( )x y
n

x
n

x y
n
i

x y
n
n

y
n n n n i i n+ =

⎛
⎝
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⎞
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⎜
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⎠
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⎝
⎜
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⎠
⎟− −
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where 
n
k
⎛
⎝
⎜
⎞
⎠
⎟  is the binomial coefficient, defined to be 

n
k n k

!
!( )!−

 with 0! = 1. 
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Inductive step:  Observe that ⎟⎟
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1
 by direct algebra. 

Assume the expansion for (x + y)k and multiply it by (x + y) to produce (x + y)k+1 and group 
terms with the same powers of x and y in the sum. 

Course of values induction 
An alternative statement of the principle (known as course of values induction) states that, whenever 
P(k) can be inferred from the truth of P(j) for all j < k, then P(n) is true for every natural number n.  
Note that P(1) is true since there are no natural numbers j with j < 1. 

Fundamental theorem of arithmetic 
A natural number p is prime if p > 1 and p is only divisible by 1 and itself.  Every natural number 
greater than 1 can be expressed as a product of primes. 

Proof:  Let P(n) be the proposition “n can be expressed as a product of primes.”  For any integer k, 
either k is prime and so P(k) is true, or k = ab with 1 < a, b < k.  In this case, both P(a) and P(b) are 
true, so we can express k as the product of the expressions for a and b.  Hence P(k) is true. 

If there are no values a and b with 1 < a, b < k, then k = 2 and P(k) is true. 

Well ordering 
Any non-empty subset of N contains a smallest element. 

That may seem obvious, but it is not true for the integers, rationals or reals.  It is also an important 
property that will extend to other sets where each element does not have a natural successor and so 
ordinary induction can not be used.  However, some sort of ordering relation ≤ is still necessary.  We 
can use well ordering to prove results in a way similar to induction. 

Fundamental theorem of arithmetic 
We can now use well ordering to prove that every natural number greater than 1 can be expressed as 
a product of primes in a different way. 

Proof:  Use contradiction.  Let S = {n ∈ N | n can not be expressed as a product of primes}.  S is 

not empty (or there would be no counter-examples).  Let s ∈ S be its smallest element.  s can not be 
prime, since it is in S.  So s = ab for some a, b ∈ N with 1 < a, b < s.  a and b are smaller than the 
least element of S, and so can not be in S.  Write them as products of primes and combine them to 
give an expression for s. 

This proves that n can be expressed as a product of primes, but gives us no help in showing how to 
do it.  Factoring a large integer into primes is computationally hard, which assures us of the security of 
some of the codes we will be considering. 

We will be studying prime numbers in (much) more detail later. 
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Exercises 

1. Prove that )12)(1(
6
1321 2222 ++=++++ nnnnL . 

2. Find the sum of the first n cubes.  Calculate the first few cases, formulate a general rule and 
confirm it by induction. 

3. Evaluate the sum 
)!1(!4

3
!3

2
!2

1
+

++++
n

n
L . 

4. Show that 7 divides 24n+2 + 32n+1 and 13 divides 3n+1 + 42n-1 for all natural numbers n. 

5. The Fibonacci numbers are defined by f0 = 0, f1 = 1 and f f fn n n= +− −1 2  for n > 1. 

Show that f n

n n

=
+⎛

⎝
⎜

⎞

⎠
⎟ −

−⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

1
5

1 5
2

1 5
2

 for all n ≥ 0. 

Hint:  If using induction, you need to consider two base cases. 

6. Prove that, for all n ∈ N and x ∈ R  with x ≥ –1, (1 + x)n ≥ 1 + n x. 

7. A triomino is an L-shaped pattern made from three square tiles.  A 2k×2k chessboard, whose 
squares are the same size as the tiles, has an arbitrary square painted purple.  Show that the 
chessboard can be covered with triominoes so that only the purple square is exposed. 

8. A prison houses 100 inmates, one in each of 100 cells, guarded by a total of 100 warders.  
One evening, all the cells are locked and the keys left in the locks.  As the first warder leaves, 
she turns every key, unlocking all the doors.  The second warder turns every second key, re-
locking every even numbered cell.  The third warder turns every third key and so on.  Finally the 
last warder turns the key in just the last cell.  Which doors are left unlocked and why? 

 Hint:  This is a question about division. 

9. Thevenin’s theorem states that any two-terminal network consisting of voltage sources and 
resistors is equivalent to a single voltage source and resistor in series.  The simplest case is a 
single voltage source (e) and a single resistor (R).  Two possible ways of connecting networks 
are series and parallel composition: 

 

 
The series circuit is equivalent to a voltage source e = e1 + e2 and a resistance R = R1 + R2.  

Show that the that the parallel circuit is equivalent to a voltage source 
21

1221

RR
eReRe

+
+

=  and a 

resistance 
21

21

RR
RR

R
+

= . 

R 

e 

R2 

e2 

R1 

e1 

R2 

e2 

R1 

e1 
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The following circuit shows a digital to analogue converter built from a ladder of resistors: 

 
where R is an arbitrary, fixed resistance and where di are n input bits (either 0 or 1).  Use 

induction to prove that the output voltage is given by n

n

i

i
id

V
2

2
1

0
∑
−

== . 

10. Let S = {1, 2, …, n}.  Write ∑
∈Ss

sf )(  for the sum ∑
=

n

s

sf
1

)(  and ∏
∈Ss

sf )(  for the product 

similarly.  For example, with n = 2, S = {1, 2} so ∑
∈

+=
Ss

ffsf )2()1()(  and 

)2()1()( ffsf
Ss

×=∏
∈

.  By convention that the empty sum 0)( =∑
∈φs

sf  and the empty 

product 1)( =∏
∈φs

sf .   

Use induction to prove that ∑∏∏
⊆ ∈∈

=+
ST Tt

t
Ss

s xx )1( , where all the xi ∈ R and the sum is taken 

over all possible subsets T ⊆ S.  Again, for n = 2, the left hand side is (1+x1)(1+x2), and the 
possible values for T on the right hand side are Ø, {1}, {2}, and {1, 2}, giving corresponding 
products of 1, x1, x2, and x1x2, so the sum is 1 + x1 + x2 + x1x2 (which is correct!). 

 Deduce that ∑ ∏∏
⊆ ∈∈

−=−
ST Tt

t
T

Ss
s xx ||)1()1( . 

11. Prove Pythagoras’ theorem. 

This has nothing to do with Discrete Mathematics, but you ought to know a proof! 

12. [Mathematical Tripos Part 1A 1988, Paper 6, Question 9] 

 State the principle of mathematical induction.  Prove your statement, assuming that every non-
empty subset of the natural numbers contains a least element. 

Hint:  Consider an assertion P(n) that satisfies the two conditions for mathematical induction.  
So P(1) is true and P(k) implies P(k+1).  You need to show that P(n) is true for every natural 
number n.  Use contradiction.  Consider the set S = {x ∈ N | P(x) is false}.  Show that S can 

not be empty and so has a least element.  Call it s.  Show that s ≠ 1 and consider P(s–1). 

d0

2R
2R

d1

R
2R

d2

R
2R

dn-1

R
2R

V
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 The Master of Regents’ College and his wife invite n Fellows and their spouses to a party.  After 
the party the Master asks everyone (including his own wife) how many people they shook hands 
with, and receives 2n + 1 different answers.  Of course, no woman shook hands with her own 
husband.  Show that the person who shook the most hands was not the Master’s wife. 

 How many hands did the Master shake? 

 Hint:  Consider the largest and smallest numbers of people with whom a guest could shake 
hands.  What does this tell you about the answers that the Master received?  What does this tell 
you about the relationship between the person who shook most hands and the person who 
shook least? 

13. [Not to be taken too seriously.]  Comment on the following alleged proofs by induction (with 
acknowledgements to Professor JWS Cassels): 

• Let n be a natural number and a j  be real numbers for 1 ≤ j ≤ n.  Then a aj k=  for 

1 ≤ j ≤ n, 1 ≤ k ≤ n. 

Proof  Certainly true for n = 1.  Assume the result is true for n and prove it for n+1.  By 
case n of the result, we have a a an1 2= = =L .  Applying this to the a j+1 instead of the 

a j  we have 12 +=== nn aaa L .  Hence a a a an n1 2 1= = = = +L , which is the result 

for n+1. 

• Every natural number n is interesting. 

Proof  There certainly are some interesting natural numbers:  0 is the smallest, 1 is the 
only natural number whose reciprocal is a natural number, 2 is the smallest prime, 3 is 
the number of persons in the Trinity, and so on.  So, if the statement were false, there 
would be a smallest natural number n which is not interesting.  This is a contradiction, 
since n would be a very interesting number indeed. 

• Every odd integer > 1 is prime. 

Proof  The economist’s proof runs as follows.  3 is prime, 5 is prime, 7 is prime.  Three 
cases in a row is surely enough. 

If, however, we imagine an idealised economist who would not be satisfied by this, then 
the rest of the proof would continue as follows:  Look at the next odd integer, 9.  Well, it is 
admittedly not a prime;  there must be some unusual factor of some kind operating.  Let’s 
go on looking at the figures.  11 is prime, 13 is prime.  Two more confirmations, so it must 
be true. 

• Every prime is odd. 

Proof  3, 5, 7, 11, 13, 17, 19, … are all odd.  There only remains 2, which must be the 
oddest prime of all. 

• n2 – n + 41 is prime for all natural numbers n. 

Proof  The physicist’s proof runs as follows.  Write a computer program to check 
successively that n2 – n + 41 is prime for n = 0, 1, 2, … 40.  Since quite a number of 
cases have now been verified using very expensive equipment, the result must be true. 
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Factors 
The operations of addition, multiplication and ordering on the integers have some useful properties. 

Division 

Given integers a and b ∈ Z, we say that a divides b or a is a factor of b (written a | b) if b = q a for 

some integer q ∈ Z.  Moreover, a is a proper divisor of b if a | b and a ≠ ±1 or ± b. 

Observations 
• If a | b and b | a then a = ±b. 

Proof:  If a | b and b | a then b = q a and a = r b for some q and r. 
So a = (r q) a and r q = 1.  Now r, q ∈ Z, so r = q = ±1, and a = ±b. 

• If a | b and b | c then a | c. 

Proof:  If a | b and b | c then b = q a and c = r b for some q and r. 
So c = (r q) a and a | c. 

• If d | a and d | b then d | (a x + b y) for any integers x and y. 

Proof:  If d | a and d | b then a = q d and b = r d for some q and r. 
So a x + b y = q x d + r y d = (q x + r y) d and d | (a x + b y). 

(a x + b y) is called a linear combination of a and b (or of x and y). 

Division algorithm 

Given a ∈ Z and b ∈ N, there exist unique integers q, r ∈ Z with a = bq + r and 0 ≤ r < b.  q is 
called the quotient and r is the remainder after dividing a by b.  The latter is written as a mod b or, 
sometimes, as a % b.  So b | a if, and only if, r = 0, that is, a mod b = 0. 

Proof:  Existence.  Consider R = {a – bk | k ∈ Z and (a – bk) ≥ 0}.  R ⊆ N0 and is not empty, so 
use well ordering to find its smallest element, r.  r ∈ R, so r ≥ 0  and we can write r = a – bq.  Now 
r < b or r – b would be a smaller element of R. 

Uniqueness.  Suppose a = bq1 + r1 and a = bq2 + r2 with 0 ≤ r1 < b and 0 ≤ r2 < b.  Then  
b(q1–q2) + (r1–r2) = 0, but –b < (r1–r2) < b, so r1 = r2 and q1 = q2. 

This is not actually an algorithm in the normal sense understood by computer scientists, but there are 
algorithms that implement division in hardware or software.  The important mathematical result is the 
existence and uniqueness of quotients and remainders. 

A further complication arises if we consider b ∈ Z rather than b ∈ N.  You might like to think about 
the best way to complete the following table: 

  Quotient Remainder 

a b a div b a mod b 

7 3 2 1 

~7 3   

7 ~3   

~7 ~3   
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Highest common factors 

Given a, b ∈ Z (not both 0), the highest common factor (HCF) or greatest common divisor (GCD) of 

a and b, written as (a, b), is defined to be d ∈ N satisfying: 

• d | a and d | b, and 

• if e | a and e | b then e | d. 

The second condition implies that e ≤ d, but is a more general expression that allows the proofs that 
follow to be extended easily into sets other than the integers. 

Observations 
• The HCF exists and is unique. 

 Proof:  Existence.  Consider D = {as + bt | s, t ∈ Z and (as + bt) > 0}. 
If a > 0, then a = a1 + b0 ∈ D.  If a < 0, then a = a(–1) + b0 ∈ D.  If a = 0, then repeat the 
argument with b.  In all cases, D ≠ Ø.  By well ordering D has a least element, d, and 
d = as + bt for some s and t.  Use the division algorithm to write a = dq + r with 0 ≤ r < d.  
Now r = a – dq = a – (as + bt)q = a(1 – sq) + b(–tq).  If r > 0, then r ∈ D.  But r < d and 
d is minimal in D, so r ∉ D and r ≤ 0.  But r ≥ 0 so r = 0 and d | a.  d | b similarly. 

 Now suppose e | a and e | b.  Say a = fe and b = ge. 
Then d = as + bt = fes + get = e(fs + gt) and e | d. 

 Uniqueness.  Suppose d1 and d2 are both HCFs satisfying the two conditions. 
Then d1 | d2 and d2 | d1, so d1 = d2. 

• There are integers x and y with (a, b) = ax + by.  Moreover, x and y can be calculated 
efficiently. 

Proof:  x = s and y = t in the above for existence.  See below for an efficient algorithm. 

• Let L = {as + bt | s, t ∈ Z} be the set of linear combinations of a and b, and 

M = {n (a,b) | n ∈ Z} be the set of multiples of their highest common factor.  Then L = M. 

Proof:  We need to show that L ⊆ M and M ⊆ L. 

• If a | bn and (a, b) = 1, then a | n. 

Proof:  a | bn, so write bn = aq.  (a, b) = 1, so find x and y with ax + by = 1. 
Now n = nax + nby = nax + aqy = a(nx + qy), and so a | n. 

• If a | n, b | n and (a, b) = 1, then ab | n. 

Proof:  (a, b) = 1, so write n = nax + nby as before.  a | n, so ab | nb and ab | nby.   
b | n so ab | nax similarly.  Hence ab | n. 

• 1
),(

,
),(

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ba

b
ba

a
. 

Proof:  Use contradiction.  Suppose 1
),(

,
),(

>=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
k

ba
b

ba
a

.  Then k (a, b) | a and 

k (a, b) | b, which contradicts (a, b) being the highest common factor. 
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We say that a and b are co-prime if (a, b) = 1. 

The least common multiple of a and b is the smallest number m which is exactly divisible by both 
a and b.  This is sometimes written as [a, b] and is equal to ab ÷ (a, b). 

Euclid’s algorithm 
It turns out that it is important to calculate highest common factors quickly.  Simply working through the 
positive integers and trying all possible common factors would give an O(n) algorithm.  We can do 
much better.  The approach relies on the following result: 

• If a, b ∈ N and a = bq + r for integers q and r with 0 ≤ r < b, then (a, b) = (b, r). 

Proof:  Suppose d = (a, b) and a = bq + r by the division algorithm.   
d | a and d | b so d | (a – bq) = r.  Therefore d | (b, r). 
But (b, r) | b and (b, r) | r, so (b, r) | a.  Therefore (b, r) | (a, b) = d, so (b, r) = d. 

Now, given a, b ∈ N, use the division algorithm to write: 

 a = q1b + r1 0 ≤ r1 < b 
 b = q2r1 + r2 0 ≤ r2 < r1 
 r1 = q3r2 + r3 0 ≤ r3 < r2 
  … 
 ri-2 = qiri-1 + ri 0 ≤ ri < ri-1 
  … 
 rn-2 = qnrn-1 with remainder rn = 0 

Then (a, b) = (b, r1) = (r1, r2) = … = (rn-2, rn-1) = (rn-1, 0) = rn-1. 

Moreover, we can now work backwards through the algorithm to calculate the integers x and y with 
(a, b) = ax + by. 

Alternatively, we can produce the same result working forwards by observing that line i is just the 
difference of line i–2 and qi times line i–1.  Write r-1 = a and r0 = b, so qi is just the integer quotient 
of ri-2 divided by ri-1.  Now express ri = sia + tib so s-1 = 1, t-1 = 0, s0 = 0 and t0 = 1 and observe 
that ri = ri-2 – qiri-1,  si = si-2 – qisi-1 and ti = ti-2 – qiti-1. 

Here is a worked example: 
 

 i qi ri  si ti

   a = 55 = 2.20 + 15 1 0

   b = 20 = 1.15 + 5 0 1

 1 2 15 = 3.5 + 0 1 –2

 2 1 5  –1 3

n = 3 3 0  4 –11

The last line tells us that 4.55 – 11.20 = 0 so 4k.55 – 11k.20 = 0.  This is rather like the finding the 
complementary function that solves the homogeneous part of a differential equation. 

The penultimate line tells us that (55, 20) = 5 = –1.55 + 3.20.  This is rather like finding the particular 
solution for an inhomogeneous differential equation. 
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Observations 
• The signs of si alternate 1 0 1 – + – … and those of ti alternate 0 1 – + – + …. 

 Proof:  a, b and all the remainders ri are positive, so the quotients qi will be as well. 

• si-1ti – siti-1 = (–1)i for i ≥ 0, so, in particular, si and ti are co-prime. 

 Proof:  By induction. 

 Corollary:  We have a linear combination of si and ti which is equal to 1, so (si, ti) = 1. 

• | |
( , )

,| |
( , )

.s
b

a b
t

a
a bn n= =  

Proof:  Note that rn = sna + tnb = 0 and divide through by (a, b) to show 

( ) ( )ba
bt

ba
as nn ,,

= .  Remember 1
),(

,
),(

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ba

a
ba

b
, so ( ) ns

ba
b |
,

. 

But (sn, tn) = 1 by the above, so ( )ba
bsn ,

| .  Hence ( )ba
bsn ,

= . 

Applications 
• Given a, b, c ∈ Z with a and b not both zero, the linear Diophantine equation ax + by = c has 

a solution with x, y ∈ Z if, and only if, (a, b) | c. 

Proof:  This must be true since the set of linear combinations of two integers is equal to the set 
of multiples of their HCF.  However, it is helpful to find the actual values of x and y. 

(⇒)  (a, b) | a and (a, b) | b, so (a, b) | (ax + by) = c. 

(⇐)  Suppose (a, b) | c.  Write ( )ba
cf
,

= .  Find s and t with (a, b) = as + bt using Euclid.  

Now ( ) ( ) c
ba

cbafbtasbftafs ==+=+
,

,)( .  So x0 = fs and y0 = ft is a solution. 

• Moreover, any solution to ax + by = c has 
),(0 ba

kbxx −=  and 
),(0 ba

kayy +=  for some 

arbitrary k ∈ Z. 

Proof:  Suppose ax0 + by0 = c and ax + by  = c.  Then a(x0–x) + b(y0–y) = 0, so  

a(x0–x) = b(y–y0).  Divide by (a, b), so ( ) ( ) ( ) ( )00 ,,
yy

ba
bxx

ba
a

−=− . 

But 1
),(

,
),(

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ba

b
ba

a
, so ( ) ( )0|

,
yy

ba
a

− .  Hence 
),(0 ba

kayy += . 

Now 
( )

( )ba
kbx

a
yyb

xx
,0

0
0 −=

−
−= . 

• The general solution is just the sum of the particular solution x = x0 and y = y0 with the 

complementary function 
),( ba

kbx −=  and 
),( ba

kay =  where k ∈ Z is an arbitrary constant. 
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• a ÷ b can be written as the continued fraction q
q

q

q
q q1

2
3

1
2 3

1
1

1 1
+

+
+

= +
+ +

L

L . 

Proof:  Write a = q1b + r1 so 
1

1
1

1
1
rb

q
b
rq

b
a

+=+= . 

But b = q2r1 + r2 so 
21

2
1

1
rr

q
r
b

+= , and so on until 0
1

2 +=
−

−
n

n

n q
r
r

. 

Efficiency 
Euclid’s algorithm finds (a, b) in O(log a) steps. 

Proof:  a = q1b + r1 ≥ b + r1 > 2r1 > 22r3 > 23r5 > … > 2kr2k-1.  So r2k-1 < a / 2k.  In particular, 
k > log2 a implies that r2k-1 < 1, so r2k-1 = 0 and the algorithm has finished.  Hence Euclid’s algorithm 
takes at most 2 log2 a steps. 

Recall that 210 = 1024 ≈ 1000 = 103.  So, if a has d digits, then a < 10d < (210)d/3 = 210d/3, and the 
algorithm terminates in at most 20d/3 steps, or less than 7d steps. 

In fact we can do better than this.  If a > b and b has d digits (to the base 10), then Euclid’s algorithm 
will take at most 5d + 2 steps to find (a, b). 
It is actually rather hard to say how many steps will be required for any given pair of numbers.  So we 
follow Pólya’s advice and ask a different question.  What is the smallest number that will require n 
steps?  This will arise when qi = 1 for 1 ≤ i < n and qn = 2. 

Using the earlier notation, |si| = |si-1| + |si-2| and |ti| = |ti-1| + |ti-2| so |si| = fi and |ti| = fi+1 where fi is 
the ith Fibonacci number.  So, if b < fn, |sn| < fn and we need fewer than n steps. 

However, if n = 5d + 2, then fn > (1.6)n-2 = (1.6)5d > 10d > b, as required.  Of course, this is still 
O(log a). 

Primes 

A natural number p is prime if p > 1 and p has no proper divisor. 

Observations 
• If p is a prime and p | ab for a, b ∈ N but ap |/ , then p | b. 

Proof:  If ap |/ , then (p, a) = 1 and so p | b. 

• There are infinitely many primes. 

Proof:  Use contradiction.  Suppose that the only primes were p1, p2, p3, … pn.  Consider 
N = p1 p2 p3 … pn + 1.  The smallest number that divides exactly into N must be a prime, but 
each of p1, p2, p3, … pn leaves remainder 1 when divided into N.  Hence N itself must be a 
prime, but it isn’t in the list. 

• If p is a prime then p  is irrational;  that is, it can not be expressed as a ratio of two natural 
numbers. 

Proof:  Use contradiction.  Suppose 
b
ap =  for a, b ∈ N with (a, b) = 1.  Then p | pb2 = a2, 

so p | a.  Write a = pc so pb2 = p2c2 and p | b.  Hence p | (a, b). 
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Digressions 
• 232 582 657 – 1 is prime. 

• The Mersenne number Mn = 2n – 1 is prime only when n is prime, but that is not sufficient.  For 
example, 11 is prime, but 211 – 1 = 2047 = 23 × 89. 

• The Fermat number 2n + 1 is prime only when n is of the form 2m, but that is not sufficient. 

• If p is a Fermat prime, then it is possible to construct a regular p–gon using only pencil, ruler 
and compasses. 

• Let Π(x) be the number of primes ≤ x.  Then Π(x) ≈ x / ln x. 

• Prime pair conjecture:  There are infinitely many primes p with p + 2 also prime. 

• Goldbach conjecture:  Every even integer greater than 2 can be expressed as the sum of two 
primes. 

Fundamental theorem of arithmetic 
Every natural number greater than 1 can be expressed as a product of primes.  Moreover, the 
expression is unique up to the order of the primes. 

Proof 
Existence (again…).  Use contradiction.  Let n ∈ N be the smallest counter-example.  If n is prime, 

then we are done.  Otherwise n = ab for some a, b ∈ N with a, b < n.  Write a and b as products of 
primes and combine them to give an expression for n. 

Uniqueness.  Suppose n = p1 p2 p3 … pr = q1 q2 q3 … qs with the pi and qj all prime.  p1 | n, so 
p1 | q1 q2 q3 … qs.  Now, either p1 | q1 or p1 | q2 q3 … qs.  In the latter case, continue until p1 | qj for 
some j.  But qj is prime, so p1 = qj.  Renumber so j = 1.  Now p1 p2 p3 … pr = p1 q2 q3 … qs so 
p2 p3 … pr = q2 q3 … qs.  Continue in this way until pr = qs and r = s. 

Observation 

• If kr
k

rr pppm K21
21=  and ks

k
ss pppn K21

21=  then 
),min(),min(

2
),min(

1
2211),( kk sr

k
srsr pppnm K=  and ),max(),max(

2
),max(

1
2211],[ kk sr

k
srsr pppnm K= . 
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Exercises 
1. Are the following statements true or false? 

• (a, b) (c, d) = (ac, bd) 

• (a, b) (a, d) = (a2, bd) 

• (a, b) = (a, d) = 1 implies that (a, bd) = 1 

2. Prove that, if x and y are integers such that 57x + 44y = 1, then there is an integer k such that 
x = 17 – 44k and y = 57k – 22. 

3. Does the equation 1992x + 1752y = 12 have a solution in integers?  Find all the integer 
solutions to the equation 1992x + 2622y = 12. 

4. Find all sets of integers x, y and z such that 56x + 63y + 72z = 1. 

Hint:  Consider the values taken by 56x + 63y as x and y range through Z. 

5. A photocopier charges 7.2p for each copy.  However, it only accepts 10p coins and gives no 
change, although unused credit is carried forward.  What is the smallest number of copies that 
must be made if the user is not to forgo any change? 

6. Define the least common multiple of a and b to be m = [a, b] = ab ÷ (a, b).  Show that: 

• a | m and b | m, and 

• if a | n and b | n then m | n. 

7. Show that there are infinitely many prime numbers of the form 4k + 3.   
[Hint:  Consider N = 22.3.5.7.…pn – 1.] 

8. A Pythagorean Triad is a triple (a, b, c) with a, b, c ∈ N such that a2 + b2 = c2.  For example, 
(3, 4, 5) and (5, 12, 13) are Pythagorean Triads.  Complete the details of the following proof: 

• (m(p2–q2), 2mpq, m(p2+q2)) is a Pythagorean Triad for any m, p, q ∈ N with p > q. 

• If (a, b, c) is a Pythagorean Triad, then we can write a = md, b = me and c = mf where 
d, e and f are pairwise co-prime (that is, (d, e) = (e, f) = (f, d) = 1), and exactly one of 
d and e is even, say e = 2g.  Moreover, f + d = 2h and f – d = 2i for h, i ∈ N.  Since 

g2 = hi and (h, i) = 1, it follows that h = p2 and i = q2 for p, q ∈ N. 

• Hence every Pythagorean Triad is of the form (m(p2–q2), 2mpq, m(p2+q2)).  Moreover, 
different values of m, p and q give rise to different values as long as (p,q) = 1. 

9. Recall the Fibonacci numbers {fn}. 

• Show, by induction on k or otherwise, that fn+k = fk fn+1 + fk–1 fn.   

• Deduce that fn | fln for all l ≥ 1. 

• Show that (fn, fn–1) = 1. 

• Deduce also that (fm, fn) = (fm-n, fn) and hence that (fm, fn) = f(m, n). 

• Show that fmfn | fmn if (m, n) = 1. 
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10. Let Z[√5] = {a + b√5 | a, b ∈ Z}. 

• Show that α, β ∈ Z[√5] ⇒ α + β, α – β, α × β ∈ Z[√5]. 

• Given α = a + b√5 ∈ Z[√5], define the conjugate of α to be α  = a – b√5, and the 

norm of α to be N(α) = αα ×  = |a2 – 5b2|.  Show that N(α × β) = N(α) × N(β). 

• Define a unit ε ∈ Z[√5] to be an element that divides exactly into 1.  Show that ε is a 
unit if and only if N(ε) = 1.  Find a unit that is not ±1. 

• By considering residues modulo 5 (see the next section), show that there is no 
α ∈ Z[√5] with N(α) = 2. 

• Factor 4 in Z[√5] in two different ways, say 4 = α1β1 = α2β2, where α1 has no factors in 

common with α2 other than units. 

• Deduce that there is no analogue in Z[√5] to the uniqueness of prime factorisation. 

[It makes sense to define π ∈ Z[√5] to be prime if α | π ⇒ α = ε or π = ε α for some unit ε.] 

Programming 
11. Write an ML function to factor an integer into a list of prime factors. 

12. Write an ML function to implement Euclid’s algorithm.  Given two integers a and b, this should 
return a triple (x, y, z) such that ax + by = z where z is the greatest common divisor of a and b. 
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Modular arithmetic 
If a, b ∈ Z and m ∈ N then we say that a and b are congruent modulo m if m | (a – b), and we write 

this as a ≡ b (mod m). 

This equivalent to saying that there is q ∈ Z such that a = b + qm. 

Observations 
• For all a ∈ Z and m ∈ N we have a ≡ a (mod m). 

Proof:  m | 0 = (a – a). 

• If a ≡ b (mod m) then  b ≡ a (mod m). 

Proof:  If a ≡ b (mod m) then m | (a – b), so m | (b – a), and b ≡ a (mod m). 

• If a ≡ b (mod m) and b ≡ c (mod m), then a ≡ c (mod m). 

Proof:  If a ≡ b (mod m) and b ≡ c (mod m), then find r, s ∈ Z such that a – b = rm and  

b – c = sm.  Then a – c = (r + s) m and a ≡ c (mod m). 

• If a1 ≡ b1 (mod m) and a2 ≡ b2 (mod m) then 
a1 + a2 ≡ b1 + b2 (mod m), a1 – a2 ≡ b1 – b2 (mod m) and a1 × a2 ≡ b1 × b2 (mod m). 

Proof:  Find q1, q2 ∈ Z such that a1 – b1 = q1m and a2 – b2 = q2m.  Then 

(a1 + a2) – (b1 + b2) = (q1 + q2) m, so a1 + a2 ≡ b1 + b2 (mod m), 
(a1 – a2) – (b1 – b2) = (q1 – q2) m, so a1 –  a2 ≡ b1 – b2 (mod m), and 
a1a2 – b1b2 = (b1 + q1m)(b2 + q2m) – b1b2 = (b1q2 + q1b2 + q1q2m) m, so 
a1 a2 ≡ b1 b2 (mod m). 
Mathematicians will recognise that this is a ring. 

• However, a ≡ b (mod m) does not imply that ca ≡ cb (mod m).  For example, consider a = 1, 
b = 4, c = 2, and m = 3. 

Examples 
Here are the addition and multiplication tables modulo 4: 
 

+ 0 1 2 3  × 0 1 2 3 

0 0 1 2 3  0 0 0 0 0 

1 1 2 3 0  1 0 1 2 3 

2 2 3 0 1  2 0 2 0 2 

3 3 0 1 2  3 0 3 2 1 
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and multiplication modulo 5: 
 

× 0 1 2 3 4 

0 0 0 0 0 0 

1 0 1 2 3 4 

2 0 2 4 1 3 

3 0 3 1 4 2 

4 0 4 3 2 1 

Applications 
• No integer congruent to 3 modulo 4 can be expressed as the sum of two squares. 

Proof:  All squares modulo 4 are congruent to either 0 or 1, so the sum of two squares will be 
congruent to 0, 1 or 2. 

• No integer congruent to 7 modulo 8 can be expressed as the sum of three squares. 

Proof:  All squares modulo 8 are congruent to 0, 1 or 4, so the sum of three squares will be 
congruent to 0, 1, 2, 3, 4, 5 or 6. 

It transpires that any integer can be expressed as the sum of four squares, but this is harder to 
prove. 

• )32(|5 113 ++ + nn  

Proof:  Observe that 23n+1 ≡ 2, 1, 3, 4, 2, 1, 3, 4, … (mod 5) and 
3n+1 ≡ 3, 4, 2, 1, 3, 4, 2, 1 (mod 5) for n = 0, 1, 2, 3, …, so their sum will be congruent to 
0 (mod 5). 

• There is no integer solution to x3 – x2 + x + 1 = 0. 

Proof:  Consider the equation modulo 2.  x ≡ 0 could not be a solution, but x ≡ 1 might be.  
This tells us that any solution would have to be odd.  However, considering the equation modulo 
3 shows that none of x ≡ 0, x ≡ 1 or x ≡ 2 could be a solution and so there is no solution. 

• )12(|641
52 + . 

Proof:  Consider p = 641, so p = 625 + 16 = 54 + 24 and 24 ≡ –54 (mod p).  Observe also 
that p–1 = 640 = 5×128 = 5×27 so 5×27 ≡ –1 (mod p).  Combine these to see that 
232 = 24 × 228 ≡ (–54)×(27)4 = –(5×27)4 ≡ –(–1)4 = –1 (mod p).  So p | (232+1). 

Congruences 

The residues modulo m are Zm = {0, 1, 2, … (m–1)}. 

Addition, subtraction and multiplication all work for residues, but what about division? 

Given a, c ∈ Z and m ∈ N, the congruence ax ≡ c (mod m) has a solution for x if, and only if, 
(a, m) | c. 
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Proof 
ax ≡ c (mod m) has a solution 
⇔ we can find x with m | (ax – c) 
⇔ we can find x and y with ax – c = my 
⇔ we can find x and y with ax – my = c 
⇔ (a, m) | c by the application of Euclid’s algorithm to linear Diophantine equations. 

Moreover, by considering the complementary function to the equation, the solution is unique modulo 
m ÷ (a, m). 

Units 
In particular, we can calculate the reciprocal of a modulo m if, and only if, (a, m) = 1.  Such values a 
are called units modulo m and we write Um = {a ∈ Zm  | a is a unit}. 

Observations 
• If a, b ∈ Um then ab ∈ Um. 

Proof:  If a, b ∈ Um then we can find x, y so that ax ≡ by ≡ 1 (mod m).  So the product 
(ab)(xy) = (ax)(by) ≡ 1 (mod m) and ab is a unit. 

• The reciprocal of a modulo m is unique modulo m. 

Proof:  Suppose ax ≡ 1 (mod m) and ay ≡ 1 (mod m).  Then m | (ax – 1) and m | (ay – 1), 
so m | ((ax – 1) – (ay – 1)) = a(x–y).  But (m, a) = 1 so m | (x – y) and x ≡ y (mod m). 

• We can calculate reciprocals of units by using the extended Euclid’s algorithm to express 
(a, m) = 1 as a linear combination of a and m. 

Euler’s totient function 
Define ϕ(m) to be the number of natural numbers less than m and co-prime to m, so ϕ(m) is the 
number of units modulo m. 

Given a prime p, observe ϕ(p) = (p – 1) and ϕ(pn) = pn – pn–1. 

Chinese Remainder Theorem 

Given two natural numbers m and n with greatest common divisor 1, there is a simultaneous solution 
to the congruences x ≡ a (mod m) and x ≡ b (mod n) and this solution is unique (mod mn). 

Proof 
Existence.  Use Euclid’s algorithm to find s and t such that ms + nt = 1.  Let c = bms + ant.  Now 
nt ≡ 1 (mod m) so c ≡ ant ≡ a (mod m).  Similarly c ≡ b (mod n). 

Uniqueness.  Suppose there is a further solution d. Observe that c – d ≡ 0 (mod m) and  
c – d ≡ 0 (mod n), so c – d ≡ 0 (mod mn) as required. 

Corollaries 
• Euler’s totient function is multiplicative:  if (m, n) = 1 then ϕ(mn) = ϕ(m)ϕ(n). 

Proof:  Given c ∈ Um and d ∈ Un find e ∈ Zmn with e ≡ c (mod m) and e ≡ d (mod n).  Then 

e ∈ Umn and each such pair (c, d) is linked to a unique e. 
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• ∏ −=
mp

pmm
| prime

)11()(ϕ . 

Proof:  Consider the unique expression of m as a product of primes. 

Wilson’s theorem 

If p is a prime, then (p–1)! ≡ –1 (mod p). 

Proof 
Associate each of the numbers 1, 2, …, p–1 with its reciprocal (mod p).  The reciprocal of a may be 
the same as a, but only if a2 ≡ 1 (mod p) which requires a = 1 or p–1.  Apart from these, the 
numbers 2, 3, …, p–2 can be paired off so that the product of each pair is 1 (mod p).  It follows that 
2.3. … .(p–2) ≡ 1 (mod p).  Multiply by p–1 ≡ –1 (mod p) to obtain the result. 

This proof actually fails if p = 2 or 3, but these cases are easily verified independently. 

Euler’s theorem1 

Given m ≥ 2 and a with (a, m) = 1, then aϕ(m) ≡ 1 (mod m). 

Proof 
Let Um = {x | 0 < x < m and (x, m) = 1} be the set of units modulo m.  Say Um = {u1, u2, … uf} 
where f = ϕ(m). 

Multiply each of these ui by a modulo m.  The resulting values are coprime to m, since ui and a are.  
Moreover they are distinct, since a is a unit and can be divided, so aui ≡ auj (mod m) ⇒ 
ui ≡ uj (mod m).  So they are just a permutation of the f values in Um. 

Hence the product (au1)(au2)…(auf) ≡ u1u2…uf (mod m).  But u1, u2, … uf are all units and so can 
be divided out, leaving a f ≡ 1 (mod m) as required. 

This is often referred to as the Fermat-Euler Theorem, but Fermat’s contribution was a special case: 

Corollary (Fermat’s little theorem)2 
Given a prime p and a not divisible by p, then ap–1 ≡ 1 (mod p). 

Moreover, for any a, ap ≡ a (mod p). 

Observation 
This gives a test for primality.  If a number p does not satisfy ap–1 ≡ 1 (mod p) for any single value of 
a, then p can not be prime. 

However, passing this test is not sufficient to prove primality.  Composite numbers p that satisfy 
ap-1 ≡ 1 (mod p).are called pseudo-prime with respect to the base a.  Carmichael numbers are 
Fermat pseudo-primes for all bases a with (a, p) = 1.  For example, 561 = 3×11×17.  Observe that 
(3–1)|(561–1), (11–1)|(561–1) and (17–1)|(561–1), so a561–1 ≡ 1 (mod 3, 11 and 17) for all a with 
(a, p) = 1, and so a561–1 ≡ 1 (mod 561) by the Chinese Remainder Theorem. 

                                                      
1 Humphreys & Prest, p 58. 
2 Humphreys & Prest, p 54. 
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The Fermat-Euler test )(mod12
1

pa
p

±≡
−

 is sharper but is still not sufficient.  In particular, it reveals 

561 to be composite since )561 mod(42122 2802
1561

≡=
−

.  However, it fails to catch 1729. 

Public key cryptography 
With the increasing use of computer networks and digital, electronic communications, it becomes 
important to ensure that messages can be sent securely with the meaning revealed only to the 
intended recipient and that they can be authenticated as having been sent by the real originator. 

The general approach is to choose some large modulus m and encode blocks of a message as 
numbers in Zm. 

Caesar’s cypher encodes a message a as a1 = a + e (mod m) for some encryption key, e.  This is 
decoded by calculating a1 – e = (a + e) – e ≡ a (mod m).  Unfortunately, the code is also easily 
broken by frequency analysis. 

Using larger blocks and changing e in some agreed sequence unknown to interceptors gives a one-
time pad, which is secure but difficult to administer. 

A further problem is the distribution of the keys.  The key can be any secret shared by the two 
participants.  How can one pass it safely to the other?  The trick is to imagine a box with two locks and 
proceed as follows: 

• The sender (conventionally called Alice) places the secret in the box, locks one of the locks with 
her key and sends the locked box to the recipient (conventionally called Bob). 

• Bob locks the second lock with his key and returns the box to Alice. 

• Alice unlocks the first lock and returns the box to Bob. 

• Bob unlocks the second lock, opens the box and extracts the secret. 

Note that Alice and Bob never have to share their private keys with anyone else but the box is always 
securely locked when in transit between them.  The trick is to find an arithmetic equivalent of a box 
with two locks. 

Modular addition is a possibility.  Alice and Bob agree on a modular base m (which can be made 
public) and choose private values e and f.  Alice now sends a message a to Bob as follows: 

• A → B:  a1 ≡ a + e (mod m) 

• B → A:  a2 ≡ a1 + f = a + e + f (mod m) 

• A → B:  a3 ≡ a2 – e = a + f (mod m) 

Bob can now recover a = a3 – f (mod m).  Unfortunately, anyone overhearing the conversation 
(traditionally called Eve) can recover a ≡ a1 – a2 + a3 (mod m). 

Modular multiplication is another possibility.  As long as e and f are co-prime to m, Alice and Bob can 
calculate multiplicative inverses and replace the subtractions by divisions in the above protocol.  The 
same problem arises and Eve can recover a or, strictly speaking, a (mod m/(m,a)) if (m,a) > 1. 

However, modular exponentiation really does work. 
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Diffie-Hellman key exchange3 
Choose a large prime modulus, p.  Pick e with (e, p–1) = 1 and find d such that de ≡ 1 (mod p–1) so 
de = 1 + (p–1)t for some t. 

Given a message encoded as a natural number a < p, observe that p can not be a factor of a.  Now 
use Fermat’s Little Theorem: (ae)d = aed = a1+(p-1)t = a(ap-1)t ≡ a1t (mod p) = a. 

This gives a protocol: 

• Alice chooses p and the value e, encodes a message a as a1 ≡ ae (mod p) and sends it with p 
to Bob. 

• Bob picks another value f with inverse g and sends a2 = a1
f ≡ (ae)f (mod p) back to Alice. 

• Alice works out a3 = a2
d ≡ ((ae)f)d = ((ae)d)f ≡ af (mod p) and sends it back to Bob. 

• Bob now works out a3
g = (af)g ≡ a to recover the original message. 

Breaking this from intercepting the intermediate messages requires discrete logarithms, which is as 
hard as factoring a large integer.  Note that Alice does not know f and g, and Bob does not know 
e and d.  However, three messages have to be transmitted to pass the single value a. 

The RSA code4 
The Rivest, Shamir and Adleman (RSA) public key system5 uses Euler’s Theorem to provide secure 
communications and digital signatures with only a single message transmission. 

Let p and q be two primes with product m so ϕ(m) = (p–1)(q–1).  Choose e (the encryption 
exponent) relatively prime to ϕ(m) and use Euclid’s algorithm to find d (the decryption exponent) and 
c such that ed + ϕ(m)c = 1 so ed ≡ 1 (mod ϕ(m)). 

Given a message encoded as a natural number a less than both p and q, observe that neither p nor q 
can be a factor of a, so (a, m) = 1.  Now use Euler’s Theorem: 
(ae)d = aed = a1-ϕ(m)c = a(aϕ(m))-c ≡ a1-c = a (mod m). 
This gives a protocol: 

• Alice picks two large primes and publishes their product m and the value e while keeping d 
secret. 

• Bob encodes a message a as a1 = ae (mod m) and sends it to Alice. 

• Alice recovers a by calculating a1
d = (ae)d ≡ a (mod m). 

Anyone intercepting the message knows m and e but not d which can only be calculated easily if ϕ(m) 
is known.  However, this is believed to be difficult, at least as difficult as factoring m. 

Conversely, if d is known, then m can be factored as follows: 

de ≡ 1 (mod ϕ(m)), so suppose that de – 1 = nϕ(m).  Observe ϕ(m) = (p–1)(q–1) = 
pq – p –  q + 1, which is slightly smaller than pq = m.  So n is slightly greater than  
(de – 1)/m.  Calculating this fraction and rounding up will give n. 

Once n is known, ϕ(m) = (de – 1)/n.  Now m + 1 – ϕ(m) = p + q and m = pq, so p and q are the 
roots of the quadratic equation x2 – (m + 1 – ϕ(m))x + m = 0. 

                                                      
3 Davenport, p 191. 
4 Humphreys & Prest, p 60. 
5 R Rivest, A Shamir & L Adleman: A method for obtaining digital signatures and public-key cryptosystems, Communications ACM 21(2), February 
1978, pp 120-6. 
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The encoding and decoding processes are symmetric and can be performed in either order.  Thus 
Alice can prove her identity by taking a challenge a and returning ad (mod m) which anyone can then 
decode but only she could have encoded. 

Coin-tossing by telephone6 

Let p  be a prime of the form 4 3k +  and suppose a x p≡ 2 (mod ) .  Now 

x x pk p4 2 1 1+ −= ≡ (mod ) , so ( ) (mod )a x x a pk k+ +≡ ≡ ≡1 2 4 4 2  and x a k= +1  is a solution to the 
original equation.  So we can calculate square roots mod p . 

Let p  and q  be two such primes with product n  and suppose a z n≡ 2 (mod ) .  Now a  is also a 

square modulo both p  and q , say a x p≡ 2 (mod )  and a y q≡ 2 (mod ) .  Use the Chinese 

Remainder Theorem to construct 4 solutions z ≡ ±s, ±t (mod n). 

Observe that, if we know both s  and t , it is possible to factor n .  s t a n2 2≡ ≡ (mod ) , so 

pq n s t s t s t= − = + −|( ) ( )( )2 2 .  However, s  and t  are distinct so neither ( )s t+  nor ( )s t−  is 
divisible by n .  Without loss of generality, p s t|( )+  and q s t|( )− , and we can use Euclid to find 
p  and q  as the HCFs of n  and ( )s t+  and ( )s t−  respectively. 

We now have a protocol: 

• Alice picks two large primes and tells Bob their product n . 

• Bob picks s  co-prime to n  and tells Alice a s n≡ 2 (mod ) . 

• Alice calculates the 4 roots, picks one at random and tells Bob. 

• If this is ± s , Bob concedes defeat.  Otherwise it is ± t  which allows Bob to factor n  and, by so 
doing, win. 

Practical remarks 
These mathematical results are not sufficient by themselves to build secure encryption systems.  Care 
must be taken over the actual choice of the prime numbers used and, even more importantly, over the 
systems procedures.  The security course explores these issues further. 

                                                      
6 Giblin, p 145. 
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Exercises 

1. Show that a number is divisible by 9 if, and only if, the sum of its digits is divisible by 9.  (This is 
known as casting out the 9s.)  For example, 23714 is not divisible by 9 as 2+3+7+1+4 = 17 
which is not divisible by 9. 

2. Find a similar test for divisibility by 11. 

3. Is it possible to form a sum of numbers using each of the digits 0 to 9 exactly once whose total 
is 100?  (Tricks like exponentiation are not allowed.) 

4. A 1 000 000 digit number is exactly divisible by 99.  A new number is formed by reversing the 
order of its digits.  What is the probability that the new number is also exactly divisible by 99? 

5. The International Standard Book Number (ISBN) found in the front of many books is a 10 digit 
code such as 0-521-35938-4 (where the hyphens can be ignored).  In this case, the 0 indicates 
that the book was published in the UK and some other English speaking countries, 521 is the 
publisher (the Cambridge University Press), 35938 is the book number and 4 a check digit.  The 
check digit is chosen so that if the ISBN is d1d2…d10 then )11(mod9

110 ii did ⋅∑= = .  It may be 
that the last digit has to be 10, in which case X is written, as in 0-387-97993-X. 

Prove that )11(mod010
1 ≡⋅∑ = ii di  and verify that the two given ISBNs satisfy the congruence.  

Prove that the check digit will show up common copying errors caused by interchanging two 
adjacent digits (so, for example, 67 becomes 76) or doubling the wrong one of a triple (so, for 
example, 667 becomes 677).  Why do you think the modulus 11 was chosen instead of the 
more natural 10? 

6. Show that the equation x5 – 3x2 + 2x – 1 = 0 has no solutions for x ∈ Z. 

7. Solve the following congruences: 

• 77x ≡ 11 (mod 40) 

• 12y ≡ 30 (mod 54) 

• z ≡ 13 (mod 21) and 3z ≡ 2 (mod 17) 
8. A band of 15 pirates acquires a hoard of gold pieces.  When they come to divide up the coins, 

they find that three are left over.  Their discussion of what to do with these extra coins becomes 
animated and, by the time some semblance of order returns, there remain only seven pirates 
capable of making an effective claim on the hoard.  However, when the hoard is divided 
between these seven, it is found that two pieces are left over.  There ensues an unfortunate 
repetition of the earlier disagreement, but this does at least have the consequence that the four 
pirates who remain are able to divide the hoard evenly between themselves.  What is the 
smallest number of gold pieces that could have been in the hoard?7 

9. Calculate 20! 2120 (mod 23). 

10. Calculate 31000000000 (mod 257). 

11. Show that 42 | (n7 – n) for all positive integers n. 

                                                      
7 Humphreys & Prest, p 50. 
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12. An unwise person publishes the RSA enciphering scheme (m, e) = (3901, 1997) via which he 
wishes to receive messages.  You intercept the transmission 

1099 1307 2477 3490 0506 0615 0952 2697 0016 3333 0601 

Factor m and hence find the deciphering key d such that de ≡ 1 (mod ϕ(m)).  Assuming that 
each block of four digits encodes two letters under the map a-z, space, ?, !, 0-9 become 00-25, 
26, 27, 28, 29-38, decipher the text.  (You may need to write and use the programs below.) 

13. The previous question uses code blocks that are larger than the two primes whose product 
forms the base.  Verify that a particular code block which shares a factor with m still can be 
encoded and decoded correctly.  Why does this work? 

14. 11 is a prime of the form 4k + 3 (with k = 2) so we can extract the square root of a by raising a 
to the power k + 1 = 3.  For example, the square root of 5 is 53 = 125 ≡ 4 (mod 11) and we 
can check that 42 = 16 ≡ 5 (mod 11).  However, the same approach fails to calculate the 
square root of 6.  Explain. 

Programming 
15. Write an ML function to calculate the reciprocal of a number to a given modular base.  This may 

well use the function for Euclid’s algorithm written earlier. 

16. Write an ML function to calculate powers of numbers to a given modular base. 
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Revision guide 
The following diagram shows the development of the key ideas presented in this part of the course: 

Integers 

Well ordering 

Induction Division 

Highest common 
factors 

Euclid’s 
algorithm 

Modular 
arithmetic Primes 

Diophantine 
equations 

Chinese 
Remainder thm 

Linear 
congruences 

RSA Diffie-Hellman Coin tossing 

Fermat-Euler 
theorem 

 


