Protocol Implementation

An Engineering Approach to Computer Networking

Protocol implementation

= Depends on structure and environment
= Structure
partitioning of functionality between user and kernel
separation of layer processing (interface)
= Environment
data copy cost
interrupt overhead
context switch time
latency in accessing memory
cache effects

Partitioning strategies

= How much to put in user space, and how much in kernel space?
tradeoff between
- software engineering
= customizability
= security
« performance
= Monolithic in kernel space
= Monolithic in user space
m Per-process in user space

Interface strategies

= Single-context
= Tasks
= Upcalls

Monolithic in kernel

| ATPLICATION ‘ ‘ ATPLICATION ‘
_&
LSER ¥
KERMEL SESSION
TEANSFORT
MNETWORE

DEVICE DREIVEER

DIEVICE

Monolithic in user space

SESSICH APPLICATION

TEANSPOIRT L
APPLICATION

METIWWORE

e
e

LIENICE DEIVER
& USER
EERMEL

T
RO

DEVICE

Per-process in user space

ArrLCaTion | APPLICATION
SESSION SESSION
TRANSPORT TRAMSPORT
HIETWORE, CONTROL HETWORK
DEVICE DRIVER DEVICE DRIVER
e o LSER
w‘\ o KERMEL
A
FRCEY

DEVICE

Interfaces

= Single-context
= Tasks
= Upcalls

Single context

APFLICATION

TRAMSPORT

NETWORE

DEVICE DEIVER

R

Tasks

APPLICATION APPLICATION

_/

BLIFFER

N

DEVICE

11"\

O

SCHEDULER

.

T = TRANSFORT
M = METWORK
DL~ DATALINE

Upcalls

APPLICATION APPLICATION

REGISTRATION
TIME Rl

B T] swon
T 1 T
\\A‘ | | |
SEP REP [s H]‘Eﬂ
|] | o-’lﬂ!l | TRANSPORT
2L RET [arr 0
S R . sU/'»/ B nenworx
(e -
HI
. . . [s R'FLS" [TALINK/
RGE ® 'R\ DEVICEDEIVER

[)
PACKET PACKET
SENT RECEIVED

NI
PACKET TO SENDY

Protocol implementation

LPFER UFPER

LAYEE LAY
SERD RECEIVE
A
¥
.]
- 4 TIWESUT
- L]
F
Ll
LOAWER LOWER
LAYER LAY

Some numbers

u 10 Kbps 400 ms
[100 Kbps, 40 ms
n 1 Mbps, 4 ms

u 100 Mbps, 40 ps

= User-to-kernel context switch

= Copying the packet

= Checksum in software

m Scheduling delays
workload)

= Interrupt handling
bus)

= Protocol processing
protocol complexity)

~40 us
~25 ps
~40 ps
~150 us (depends on

~10-50 us (depends on the

~15 -100 ps (depends on

Rules of thumb

= Optimize common case

= Watch out for bottlenecks

= Fine tune inner loops

= Choose good data structures
= Beware of data touching

= Minimize # packets sent

= Send largest packets possible
= Cache hints

= Use hardware

= Exploit application properties

