Protocol Implementation

An Engineering Approach to Computer Networking

Protocol implementation

= Depends on structure and environment
= Structure
partitioning of functionality between user and kernel
separation of layer processing (interface)
= Environment
data copy cost
interrupt overhead
context switch time
latency in accessing memory
cache effects

Partitioning strategies

= How much to put in user space, and how much in kernel space?
tradeoff between
- software engineering
= customizability
= security
« performance
= Monolithic in kernel space
= Monolithic in user space
m Per-process in user space

Interface strategies

= Single-context
= Tasks
= Upcalls




Monolithic in kernel
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Monolithic in user space
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Per-process in user space
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Interfaces

= Single-context
= Tasks
= Upcalls




Single context
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Upcalls
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Protocol implementation
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Some numbers

u 10 Kbps 400 ms
[ 100 Kbps, 40 ms
n 1 Mbps, 4 ms

u 100 Mbps, 40 ps

= User-to-kernel context switch

= Copying the packet

= Checksum in software

m Scheduling delays
workload)

= Interrupt handling
bus)

= Protocol processing
protocol complexity)

~40 us
~25 ps
~40 ps
~150 us (depends on

~10-50 us (depends on the

~15 -100 ps (depends on

Rules of thumb

= Optimize common case

= Watch out for bottlenecks

= Fine tune inner loops

= Choose good data structures
= Beware of data touching

=  Minimize # packets sent

= Send largest packets possible
= Cache hints

= Use hardware

= Exploit application properties




