78

Reduction

If a Boolean expression ϕ in **3CNF** has *n* variables, and *m* clauses, we construct for each variable v the following gadget.

Anuj Dawar Complexity Theory May 14, 2007

80

Exact Set Covering

Two other well known problems are proved NP-complete by immediate reduction from 3DM.

Exact Cover by 3-Sets is defined by:

Given a set U with 3n elements, and a collection $S = \{S_1, \ldots, S_m\}$ of three-element subsets of U, is there a sub collection containing exactly n of these sets whose union is all of U?

The reduction from **3DM** simply takes $U = X \cup Y \cup Z$, and S to be the collection of three-element subsets resulting from M.

In addition, for every clause c, we have two elements x_c and y_c . If the literal v occurs in c, we include the triple

 (x_c, y_c, z_{vc})

in M.

Similarly, if $\neg v$ occurs in *c*, we include the triple

 $(x_c, y_c, \overline{z}_{vc})$

in M.

Finally, we include extra dummy elements in X and Y to make the numbers match up.

Anuj Dawar

May 14, 2007

81

Complexity Theory

Set Covering

More generally, we have the *Set Covering* problem:

Given a set U, a collection of $S = \{S_1, \ldots, S_m\}$ subsets of U and an integer budget B, is there a collection of B sets in S whose union is U?

value v_i and weight w_i .

total value V.

83

Reduction

The proof that KNAPSACK is NP-complete is by a reduction from the problem of Exact Cover by 3-Sets.

Given a set $U = \{1, ..., 3n\}$ and a collection of 3-element subsets of $U, S = \{S_1, ..., S_m\}.$

We map this to an instance of KNAPSACK with m elements each corresponding to one of the S_i , and having weight and value

$\sum_{j \in S_i} (m+1)^j$

and set the target weight and value both to

 $\sum_{j=0}^{3n-1} (m+1)^j$

Anuj Dawar	May 14, 2007	Anuj Dawar	
Complexity Theory	84	Complexity Theory	

Scheduling

Knapsack

scheduling and optimisation problems, and through reductions has

In the problem, we are given n items, each with a positive integer

We are also given a maximum total weight W, and a minimum

not exceed W, and whose total value exceeds V?

Can we select a subset of the items whose total weight does

KNAPSACK is a problem which generalises many natural

been used to show many such problems NP-complete.

Some examples of the kinds of scheduling tasks that have been proved NP-complete include:

Timetable Design

Given a set H of *work periods*, a set W of *workers* each with an associated subset of H (available periods), a set Tof *tasks* and an assignment $r: W \times T \to \mathbb{N}$ of *required work*, is there a mapping $f: W \times T \times H \to \{0, 1\}$ which completes all tasks?

Scheduling

Sequencing with Deadlines

Given a set T of *tasks* and for each task a *length* $l \in \mathbb{N}$, a release time $r \in \mathbb{N}$ and a deadline $d \in \mathbb{N}$, is there a work schedule which completes each task between its release time and its deadline?

Job Scheduling

Given a set T of *tasks*, a number $m \in \mathbb{N}$ of processors a length $l \in \mathbb{N}$ for each task, and an overall deadline $D \in \mathbb{N}$, is there a multi-processor schedule which completes all tasks by the deadline?

Anuj Dawar

May 14, 2007

May 14, 2007

85

86

Responses to NP-Completeness

Confronted by an NP-complete problem, say constructing a timetable, what can one do?

- It's a single instance, does asymptotic complexity matter?
- What's the critical size? Is scalability important?
- Are there guaranteed restrictions on the input? Will a special purpose algorithm suffice?
- Will an approximate solution suffice? Are performance guarantees required?
- Are there useful heuristics that can constrain a search? Ways of ordering choices to control backtracking?

May 14, 2007