Reduction

If a Boolean expression ϕ in 3CNF has n variables, and m clauses, we construct for each variable v the following gadget.

In addition, for every clause c, we have two elements x_{c} and y_{c}.
If the literal v occurs in c, we include the triple

$$
\left(x_{c}, y_{c}, z_{v c}\right)
$$

in M.

Similarly, if $\neg v$ occurs in c, we include the triple

$$
\left(x_{c}, y_{c}, \bar{z}_{v c}\right)
$$

in M.
Finally, we include extra dummy elements in X and Y to make the numbers match up.

Set Covering

More generally, we have the Set Covering problem:
Given a set U, a collection of $S=\left\{S_{1}, \ldots, S_{m}\right\}$ subsets of
U and an integer budget B, is there a collection of B sets
in S whose union is U ?

Knapsack

KNAPSACK is a problem which generalises many natural scheduling and optimisation problems, and through reductions has been used to show many such problems NP-complete.

In the problem, we are given n items, each with a positive integer value v_{i} and weight w_{i}.

We are also given a maximum total weight W, and a minimum total value V.

Can we select a subset of the items whose total weight does not exceed W, and whose total value exceeds V ?

Scheduling

Some examples of the kinds of scheduling tasks that have been proved NP-complete include:

Timetable Design
Given a set H of work periods, a set W of workers each with an associated subset of H (available periods), a set T of tasks and an assignment $r: W \times T \rightarrow \mathbb{N}$ of required work, is there a mapping $f: W \times T \times H \rightarrow\{0,1\}$ which completes all tasks?

Reduction

The proof that KNAPSACK is NP-complete is by a reduction from the problem of Exact Cover by 3-Sets.

Given a set $U=\{1, \ldots, 3 n\}$ and a collection of 3-element subsets of $U, S=\left\{S_{1}, \ldots, S_{m}\right\}$.

We map this to an instance of KNAPSACK with m elements each corresponding to one of the S_{i}, and having weight and value

$$
\Sigma_{j \in S_{i}}(m+1)^{j}
$$

and set the target weight and value both to

$$
\Sigma_{j=0}^{3 n-1}(m+1)^{j}
$$

Scheduling

Sequencing with Deadlines

Given a set T of tasks and for each task a length $l \in \mathbb{N}$, a release time $r \in \mathbb{N}$ and a deadline $d \in \mathbb{N}$, is there a work schedule which completes each task between its release time and its deadline?

Job Scheduling

Given a set T of tasks, a number $m \in \mathbb{N}$ of processors a length $l \in \mathbb{N}$ for each task, and an overall deadline $D \in \mathbb{N}$, is there a multi-processor schedule which completes all tasks by the deadline?

Responses to NP-Completeness

Confronted by an NP-complete problem, say constructing a timetable, what can one do?

- It's a single instance, does asymptotic complexity matter?
- What's the critical size? Is scalability important?
- Are there guaranteed restrictions on the input? Will a special purpose algorithm suffice?
- Will an approximate solution suffice? Are performance guarantees required?
- Are there useful heuristics that can constrain a search? Ways of ordering choices to control backtracking?

