Reductions

Given two languages $L_1 \subseteq \Sigma_1^{\star}$, and $L_2 \subseteq \Sigma_2^{\star}$,

A reduction of L_1 to L_2 is a computable function

$$f: \Sigma_1^{\star} \to \Sigma_2^{\star}$$

such that for every string $x \in \Sigma_1^{\star}$,

$$f(x) \in L_2$$
 if, and only if, $x \in L_1$

Anuj Dawar

May 4, 2007

Complexity Theory

52

Reductions 2

If $L_1 \leq_P L_2$ we understand that L_1 is no more difficult to solve than L_2 , at least as far as polynomial time computation is concerned.

That is to say,

If
$$L_1 \leq_P L_2$$
 and $L_2 \in P$, then $L_1 \in P$

We can get an algorithm to decide L_1 by first computing f, and then using the polynomial time algorithm for L_2 .

Resource Bounded Reductions

If f is computable by a polynomial time algorithm, we say that L_1 is polynomial time reducible to L_2 .

$$L_1 \leq_P L_2$$

If f is also computable in $SPACE(\log n)$, we write

$$L_1 <_L L_2$$

Anuj Dawar

May 4, 2007

Complexity Theory

53

Completeness

The usefulness of reductions is that they allow us to establish the *relative* complexity of problems, even when we cannot prove absolute lower bounds.

Cook (1972) first showed that there are problems in NP that are maximally difficult.

A language L is said to be $\ensuremath{\mathsf{NP}}\mbox{-}hard$ if for every language $A \in \ensuremath{\mathsf{NP}}\mbox{,}$ $A \leq_P L$.

A language L is NP-complete if it is in NP and it is NP-hard.

Anuj Dawar May 4, 2007 Anuj Dawar

May 4, 2007

56

57

SAT is NP-complete

Cook showed that the language SAT of satisfiable Boolean expressions is NP-complete.

To establish this, we need to show that for every language L in NP, there is a polynomial time reduction from L to SAT.

Since L is in NP, there is a nondeterministic Turing machine

$$M = (K, \Sigma, s, \delta)$$

and a bound n^k such that a string x is in L if, and only if, it is accepted by M within n^k steps.

Anuj Dawar

Complexity Theory

Intuitively, these variables are intended to mean:

- $S_{i,q}$ the state of the machine at time i is q.
- $T_{i,j,\sigma}$ at time i, the symbol at position j of the tape is σ .
- $H_{i,j}$ at time i, the tape head is pointing at tape cell j.

We now have to see how to write the formula f(x), so that it enforces these meanings.

Boolean Formula

We need to give, for each $x \in \Sigma^*$, a Boolean expression f(x) which is satisfiable if, and only if, there is an accepting computation of M on input x.

f(x) has the following variables:

$$S_{i,q}$$
 for each $i \leq n^k$ and $q \in K$

$$T_{i,j,\sigma}$$
 for each $i,j \leq n^k$ and $\sigma \in \Sigma$

$$H_{i,j}$$
 for each $i, j \leq n^k$

Anuj Dawar

Complexity Theory

Initial state is s and the head is initially at the beginning of the tape.

$$S_{1,s} \wedge H_{1,1}$$

The head is never in two places at once

$$\bigwedge_i \bigwedge_j (H_{i,j} \to \bigwedge_{j' \neq j} (\neg H_{i,j'}))$$

The machine is never in two states at once

$$\bigwedge_{q} \bigwedge_{i} (S_{i,q} \to \bigwedge_{q' \neq q} (\neg S_{i,q'}))$$

Each tape cell contains only one symbol

$$\bigwedge_{i} \bigwedge_{j} \bigwedge_{\sigma} (T_{i,j,\sigma} \to \bigwedge_{\sigma' \neq \sigma} (\neg T_{i,j,\sigma'}))$$

Anuj Dawar May 4, 2007 Anuj Dawar

The initial tape contents are x

$$\bigwedge_{j \le n} T_{1,j,x_j} \wedge \bigwedge_{n < j} T_{1,j,\sqcup}$$

The tape does not change except under the head

$$igwedge_i igwedge_j igwedge_j igwedge_\sigma (H_{i,j} \wedge T_{i,j',\sigma})
ightarrow T_{i+1,j',\sigma}$$

Each step is according to δ .

$$\bigwedge_{i} \bigwedge_{j} \bigwedge_{\sigma} \bigwedge_{q} (H_{i,j} \wedge S_{i,q} \wedge T_{i,j,\sigma})$$

$$\rightarrow \bigvee_{\Delta} (H_{i+1,j'} \wedge S_{i+1,q'} \wedge T_{i+1,j,\sigma'})$$

where Δ is the set of all triples (q', σ', D) such that $((q, \sigma), (q', \sigma', D)) \in \delta$ and

$$j' = \begin{cases} j & \text{if } D = S \\ j - 1 & \text{if } D = L \\ j + 1 & \text{if } D = R \end{cases}$$

Finally, some accepting state is reached

$$\bigvee_{i} S_{i,\text{acc}}$$

Anuj Dawar May 4, 2007 Anuj Dawar