Circuits

A circuit is a directed graph G = (V, E), with $V = \{1, ..., n\}$ together with a labeling: $l: V \to \{\texttt{true}, \texttt{false}, \land, \lor, \neg\}$, satisfying:

- If there is an edge (i, j), then i < j;
- Every node in V has *indegree* at most 2.
- A node v has indegree 0 iff l(v) ∈ {true, false}; indegree 1 iff l(v) = ¬; indegree 2 iff l(v) ∈ {∨, ∧}

The value of the expression is given by the value at node n.

Anuj Dawar Complexity Theory Composites

Consider the decision problem (or *language*) Composite defined by:

 $\{x \mid x \text{ is not prime}\}$

This is the complement of the language Prime.

Is Composite $\in P$?

Clearly, the answer is yes if, and only if, $\mathsf{Prime} \in \mathsf{P}$.

May 4, 2007

Anuj Dawar

A circuit is a more compact way of representing a Boolean expression.

Identical subexpressions need not be repeated.

 CVP - the *circuit value problem* is, given a circuit, determine the value of the result node n.

CVP is solvable in polynomial time, by the algorithm which examines the nodes in increasing order, assigning a value true or false to each node.

	40	Complexity Theory	41		
	Hamiltonian Graphs				
omposite defined by:		Given a graph $G = (V, E)$, a <i>Hamiltonian cycle</i> in G is a path in the graph, starting and ending at the same node, such that every node in V appears on the cycle <i>exactly once</i> .			
		A graph is called <i>Hamiltonian</i> if it contains a Hamiltonian cycle.			
		The language HAM is the set of encodings of Hamiltonian graphs.			

Is $HAM \in P$?

Complexity Theory

38

7ar

May 4, 2007

Polynomial Verification

The problems Composite, SAT and HAM have something in common.

In each case, there is a *search space* of possible solutions.

the factors of x; a truth assignment to the variables of ϕ ; a list of the vertices of G.

The number of possible solutions is *exponential* in the length of the input.

Given a potential solution, it is *easy* to check whether or not it is a solution.

nuj	Dawar	

May 4, 2007

45

43

Complexity Theory

Nondeterministic Complexity Classes

We have already defined $\mathsf{TIME}(f(n))$ and $\mathsf{SPACE}(f(n))$.

 $\mathsf{NTIME}(f(n))$ is defined as the class of those languages L which are accepted by a *nondeterministic* Turing machine M, such that for every $x \in L$, there is an accepting computation of M on x of length at most f(n).

Examples

The first of these graphs is not Hamiltonian, but the second one is.

Anuj Dawar	May 4, 2007
Complexity Theory	44

Verifiers

A verifier V for a language L is an algorithm such that

 $L = \{x \mid (x, c) \text{ is accepted by } V \text{ for some } c\}$

If V runs in time polynomial in the length of x, then we say that

L is polynomially verifiable.

Many natural examples arise, whenever we have to construct a solution to some design constraints or specifications.

47

NP

A language L is polynomially verifiable if, and only if, it is in NP.

To prove this, suppose L is a language, which has a verifier V, which runs in time p(n).

The following describes a nondeterministic algorithm that accepts ${\cal L}$

- 1. input x of length n
- 2. nondeterministically guess c of length $\leq p(n)$
- 3. run V on (x, c)

Generate and Test

We can think of nondeterministic algorithms in the generate-and test paradigm:

Where the *generate* component is nondeterministic and the *verify* component is deterministic.

In the other direction, suppose M is a nondeterministic machine that accepts a language L in time n^k .

NP

Nondeterminism

 (rej, u_2, w_2)

 $(\dot{q}_{11}, u_{11}, w_{11})$

 $(q_0, u_0, w_0)(q_1, u_1, w_1)(q_2, u_2, w_2)$

 (q_{10}, u_{10}, w_{10})

For a language in $\mathsf{NTIME}(f(n))$, the height of the tree is bounded

 (q_{00}, u_{00}, w_{00})

(acc, . . .)

by f(n) when the input is of length n.

We define the *deterministic algorithm* V which on input (x, c) simulates M on input x.

At the i^{th} nondeterministic choice point, V looks at the i^{th} character in c to decide which branch to follow.

If M accepts then V accepts, otherwise it rejects.

V is a polynomial verifier for L.

May 4, 2007

49