
Complexity Theory 38

Circuits

A circuit is a directed graph G = (V, E), with V = {1, . . . , n}

together with a labeling: l : V → {true, false,∧,∨,¬}, satisfying:

• If there is an edge (i, j), then i < j;

• Every node in V has indegree at most 2.

• A node v has

indegree 0 iff l(v) ∈ {true, false};

indegree 1 iff l(v) = ¬;

indegree 2 iff l(v) ∈ {∨,∧}

The value of the expression is given by the value at node n.

Anuj Dawar May 4, 2007

Complexity Theory 39

CVP

A circuit is a more compact way of representing a Boolean

expression.

Identical subexpressions need not be repeated.

CVP - the circuit value problem is, given a circuit, determine the

value of the result node n.

CVP is solvable in polynomial time, by the algorithm which

examines the nodes in increasing order, assigning a value true or

false to each node.

Anuj Dawar May 4, 2007

Complexity Theory 40

Composites

Consider the decision problem (or language) Composite defined by:

{x | x is not prime}

This is the complement of the language Prime.

Is Composite ∈ P?

Clearly, the answer is yes if, and only if, Prime ∈ P.

Anuj Dawar May 4, 2007

Complexity Theory 41

Hamiltonian Graphs

Given a graph G = (V, E), a Hamiltonian cycle in G is a path in

the graph, starting and ending at the same node, such that every

node in V appears on the cycle exactly once.

A graph is called Hamiltonian if it contains a Hamiltonian cycle.

The language HAM is the set of encodings of Hamiltonian graphs.

Is HAM ∈ P?

Anuj Dawar May 4, 2007



Complexity Theory 42

Examples

The first of these graphs is not Hamiltonian, but the second one is.

Anuj Dawar May 4, 2007

Complexity Theory 43

Polynomial Verification

The problems Composite, SAT and HAM have something in

common.

In each case, there is a search space of possible solutions.

the factors of x; a truth assignment to the variables of φ; a

list of the vertices of G.

The number of possible solutions is exponential in the length of the

input.

Given a potential solution, it is easy to check whether or not it is a

solution.

Anuj Dawar May 4, 2007

Complexity Theory 44

Verifiers

A verifier V for a language L is an algorithm such that

L = {x | (x, c) is accepted by V for some c}

If V runs in time polynomial in the length of x, then we say that

L is polynomially verifiable.

Many natural examples arise, whenever we have to construct a

solution to some design constraints or specifications.

Anuj Dawar May 4, 2007

Complexity Theory 45

Nondeterministic Complexity Classes

We have already defined TIME(f(n)) and SPACE(f(n)).

NTIME(f(n)) is defined as the class of those languages L which are

accepted by a nondeterministic Turing machine M , such that for

every x ∈ L, there is an accepting computation of M on x of

length at most f(n).

NP =
∞⋃

k=1

NTIME(nk)

Anuj Dawar May 4, 2007



Complexity Theory 46

Nondeterminism

(s, ., x)

(q0, u0, w0)(q1, u1, w1)(q2, u2, w2)

(q00, u00, w00)

(q11, u11, w11)
.
.
.

.

.

.

(rej, u2, w2)

(acc, . . .)

(q10, u10, w10)

For a language in NTIME(f(n)), the height of the tree is bounded

by f(n) when the input is of length n.

Anuj Dawar May 4, 2007

Complexity Theory 47

NP

A language L is polynomially verifiable if, and only if, it is in NP.

To prove this, suppose L is a language, which has a verifier V ,

which runs in time p(n).

The following describes a nondeterministic algorithm that accepts

L

1. input x of length n

2. nondeterministically guess c of length ≤ p(n)

3. run V on (x, c)

Anuj Dawar May 4, 2007

Complexity Theory 48

NP

In the other direction, suppose M is a nondeterministic machine

that accepts a language L in time nk.

We define the deterministic algorithm V which on input (x, c)

simulates M on input x.

At the ith nondeterministic choice point, V looks at the ith

character in c to decide which branch to follow.

If M accepts then V accepts, otherwise it rejects.

V is a polynomial verifier for L.

Anuj Dawar May 4, 2007

Complexity Theory 49

Generate and Test

We can think of nondeterministic algorithms in the generate-and

test paradigm:

yes

no
generatex Vx verify

Where the generate component is nondeterministic and the verify

component is deterministic.

Anuj Dawar May 4, 2007


