
Complexity Theory 23

Decidability and Complexity

For every decidable language L, there is a computable function f

such that

L ∈ TIME(f(n))

If L is a semi-decidable (but not decidable) language accepted by

M , then there is no computable function f such that every

accepting computation of M , on input of length n is of length at

most f(n).

Anuj Dawar May 2, 2007

Complexity Theory 24

Complexity Classes

A complexity class is a collection of languages determined by three

things:

• A model of computation (such as a deterministic Turing

machine, or a nondeterministic TM, or a parallel Random

Access Machine).

• A resource (such as time, space or number of processors).

• A set of bounds. This is a set of functions that are used to

bound the amount of resource we can use.

Anuj Dawar May 2, 2007

Complexity Theory 25

Polynomial Bounds

By making the bounds broad enough, we can make our definitions

fairly independent of the model of computation.

The collection of languages recognised in polynomial time is

the same whether we consider Turing machines, register

machines, or any other deterministic model of computation.

The collection of languages recognised in linear time, on

the other hand, is different on a one-tape and a two-tape

Turing machine.

We can say that being recognisable in polynomial time is a

property of the language, while being recognisable in linear time is

sensitive to the model of computation.

Anuj Dawar May 2, 2007

Complexity Theory 26

Polynomial Time

P =

∞⋃

k=1

TIME(nk)

The class of languages decidable in polynomial time.

The complexity class P plays an important role in our theory.

• It is robust, as explained.

• It serves as our formal definition of what is feasibly computable

One could argue whether an algorithm running in time θ(n100) is

feasible, but it will eventually run faster than one that takes time

θ(2n).

Making the distinction between polynomial and exponential results

in a useful and elegant theory.

Anuj Dawar May 2, 2007



Complexity Theory 27

Example: Reachability

The Reachability decision problem is, given a directed graph

G = (V,E) and two nodes a, b ∈ V , to determine whether there is a

path from a to b in G.

A simple search algorithm as follows solves it:

1. mark node a, leaving other nodes unmarked, and initialise set

S to {a};

2. while S is not empty, choose node i in S: remove i from S and

for all j such that there is an edge (i, j) and j is unmarked,

mark j and add j to S;

3. if b is marked, accept else reject.

Anuj Dawar May 2, 2007

Complexity Theory 28

Analysis

This algorithm requires O(n2) time and O(n) space.

The description of the algorithm would have to be refined for an

implementation on a Turing machine, but it is easy enough to show

that:

Reachability ∈ P

To formally define Reachability as a language, we would have to also

choose a way of representing the input (V,E, a, b) as a string.

Anuj Dawar May 2, 2007

Complexity Theory 29

Example: Euclid’s Algorithm

Consider the decision problem (or language) RelPrime defined by:

{(x, y) | gcd(x, y) = 1}

The standard algorithm for solving it is due to Euclid:

1. Input (x, y).

2. Repeat until y = 0: x← x mod y; Swap x and y

3. If x = 1 then accept else reject.

Anuj Dawar May 2, 2007

Complexity Theory 30

Analysis

The number of repetitions at step 2 of the algorithm is at most

O(log x).

why?

This implies that RelPrime is in P.

If the algorithm took θ(x) steps to terminate, it would not be a

polynomial time algorithm, as x is not polynomial in the length of

the input.

Anuj Dawar May 2, 2007



Complexity Theory 31

Primality

Consider the decision problem (or language) Prime defined by:

{x | x is prime}

The obvious algorithm:

For all y with 1 < y ≤ √x check whether y|x.

requires Ω(
√
x) steps and is therefore not polynomial in the length

of the input.

Is Prime ∈ P?

Anuj Dawar May 2, 2007

Complexity Theory 32

Boolean Expressions

Boolean expressions are built up from an infinite set of variables

X = {x1, x2, . . .}

and the two constants true and false by the rules:

• a constant or variable by itself is an expression;

• if φ is a Boolean expression, then so is (¬φ);

• if φ and ψ are both Boolean expressions, then so are (φ ∧ ψ)

and (φ ∨ ψ).

Anuj Dawar May 2, 2007

Complexity Theory 33

Evaluation

If an expression contains no variables, then it can be evaluated to

either true or false.

Otherwise, it can be evaluated, given a truth assignment to its

variables.

Examples:

(true ∨ false) ∧ (¬false)
(x1 ∨ false) ∧ ((¬x1) ∨ x2)

(x1 ∨ false) ∧ (¬x1)

(x1 ∨ (¬x1)) ∧ true

Anuj Dawar May 2, 2007

Complexity Theory 34

Boolean Evaluation

There is a deterministic Turing machine, which given a Boolean

expression without variables of length n will determine, in time

O(n2) whether the expression evaluates to true.

The algorithm works by scanning the input, rewriting formulas

according to the following rules:

Anuj Dawar May 2, 2007



Complexity Theory 35

Rules

• (true ∨ φ)⇒ true

• (φ ∨ true)⇒ true

• (false ∨ φ)⇒ φ

• (false ∧ φ)⇒ false

• (φ ∧ false)⇒ false

• (true ∧ φ)⇒ φ

• (¬true)⇒ false

• (¬false)⇒ true

Anuj Dawar May 2, 2007

Complexity Theory 36

Analysis

Each scan of the input (O(n) steps) must find at least one

subexpression matching one of the rule patterns.

Applying a rule always eliminates at least one symbol from the

formula.

Thus, there are at most O(n) scans required.

The algorithm works in O(n2) steps.

Anuj Dawar May 2, 2007

Complexity Theory 37

Satisfiability

For Boolean expressions φ that contain variables, we can ask

Is there an assignment of truth values to the variables

which would make the formula evaluate to true?

The set of Boolean expressions for which this is true is the language

SAT of satisfiable expressions.

This can be decided by a deterministic Turing machine in time

O(n22n).

An expression of length n can contain at most n variables.

For each of the 2n possible truth assignments to these variables, we

check whether it results in a Boolean expression that evaluates to

true.

Is SAT ∈ P?

Anuj Dawar May 2, 2007


