
Complexity Theory 112

Space Complexity

We’ve already seen the definition SPACE(f(n)): the languages

accepted by a machine which uses O(f(n)) tape cells on inputs of

length n. Counting only work space

NSPACE(f(n)) is the class of languages accepted by a

nondeterministic Turing machine using at most f(n) work space.

As we are only counting work space, it makes sense to consider

bounding functions f that are less than linear.

Anuj Dawar May 21, 2007

Complexity Theory 113

Classes

L = SPACE(log n)

NL = NSPACE(log n)

PSPACE =
⋃

∞

k=1 SPACE(nk)

The class of languages decidable in polynomial space.

NPSPACE =
⋃

∞

k=1 NSPACE(nk)

Also, define

co-NL – the languages whose complements are in NL.

co-NPSPACE – the languages whose complements are in NPSPACE.

Anuj Dawar May 21, 2007

Complexity Theory 114

Inclusions

We have the following inclusions:

L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE ⊆ NPSPACE ⊆ EXP

where EXP =
⋃

∞

k=1 TIME(2nk

)

Moreover,

L ⊆ NL ∩ co-NL

P ⊆ NP ∩ co-NP

PSPACE ⊆ NPSPACE ∩ co-NPSPACE

Anuj Dawar May 21, 2007

Complexity Theory 115

Establishing Inclusions

To establish the known inclusions between the main complexity

classes, we prove the following.

• SPACE(f(n)) ⊆ NSPACE(f(n));

• TIME(f(n)) ⊆ NTIME(f(n));

• NTIME(f(n)) ⊆ SPACE(f(n));

• NSPACE(f(n)) ⊆ TIME(klog n+f(n));

The first two are straightforward from definitions.

The third is an easy simulation.

The last requires some more work.

Anuj Dawar May 21, 2007



Complexity Theory 116

Reachability

Recall the Reachability problem: given a directed graph G = (V, E)

and two nodes a, b ∈ V , determine whether there is a path from a

to b in G.

A simple search algorithm solves it:

1. mark node a, leaving other nodes unmarked, and initialise set

S to {a};

2. while S is not empty, choose node i in S: remove i from S and

for all j such that there is an edge (i, j) and j is unmarked,

mark j and add j to S;

3. if b is marked, accept else reject.

Anuj Dawar May 21, 2007

Complexity Theory 117

NL Reachability

We can construct an algorithm to show that the Reachability

problem is in NL:

1. write the index of node a in the work space;

2. if i is the index currently written on the work space:

(a) if i = b then accept, else

guess an index j (log n bits) and write it on the work space.

(b) if (i, j) is not an edge, reject, else replace i by j and return

to (2).

Anuj Dawar May 21, 2007

Complexity Theory 118

We can use the O(n2) algorithm for Reachability to show that:

NSPACE(f(n)) ⊆ TIME(klog n+f(n))

for some constant k.

Let M be a nondeterministic machine working in space bounds

f(n).

For any input x of length n, there is a constant c (depending on the

number of states and alphabet of M) such that the total number of

possible configurations of M within space bounds f(n) is bounded

by n · cf(n).

Here, cf(n) represents the number of different possible

contents of the work space, and n different head positions

on the input.

Anuj Dawar May 21, 2007

Complexity Theory 119

Configuration Graph

Define the configuration graph of M, x to be the graph whose nodes

are the possible configurations, and there is an edge from i to j if,

and only if, i →M j.

Then, M accepts x if, and only if, some accepting configuration is

reachable from the starting configuration (s, ., x, ., ε) in the

configuration graph of M, x.

Anuj Dawar May 21, 2007



Complexity Theory 120

Using the O(n2) algorithm for Reachability, we get that M can be

simulated by a deterministic machine operating in time

c′(ncf(n))2 = c′c2(log n+f(n)) = k(log n+f(n))

In particular, this establishes that NL ⊆ P and NPSPACE ⊆ EXP.

Anuj Dawar May 21, 2007

Complexity Theory 121

Savitch’s Theorem

Further simulation results for nondeterministic space are obtained

by other algorithms for Reachability.

We can show that Reachability can be solved by a deterministic

algorithm in O((log n)2) space.

Consider the following recursive algorithm for determining whether

there is a path from a to b of length at most n (for n a power of 2):

Anuj Dawar May 21, 2007

Complexity Theory 122

O((log n)2) space Reachability algorithm:

Path(a, b, i)

if i = 1 and (a, b) is not an edge reject

else if (a, b) is an edge or a = b accept

else, for each node x, check:

1. is there a path a − x of length i/2; and

2. is there a path x − b of length i/2?

if such an x is found, then accept, else reject.

The maximum depth of recursion is log n, and the number of bits

of information kept at each stage is 3 log n.

Anuj Dawar May 21, 2007

Complexity Theory 123

Savitch’s Theorem - 2

The space efficient algorithm for reachability used on the

configuration graph of a nondeterministic machine shows:

NSPACE(f(n)) ⊆ SPACE(f(n)2)

for f(n) ≥ log n.

This yields

PSPACE = NPSPACE = co-NPSPACE.

Anuj Dawar May 21, 2007



Complexity Theory 124

Complementation

A still more clever algorithm for Reachability has been used to show

that nondeterministic space classes are closed under

complementation:

If f(n) ≥ log n, then

NSPACE(f(n)) = co-NSPACE(f(n))

In particular

NL = co-NL.

Anuj Dawar May 21, 2007


