113

Space Complexity

We've already seen the definition $\mathsf{SPACE}(f(n))$: the languages accepted by a machine which uses O(f(n)) tape cells on inputs of length *n*. Counting only work space

NSPACE(f(n)) is the class of languages accepted by a *nondeterministic* Turing machine using at most f(n) work space.

As we are only counting work space, it makes sense to consider bounding functions f that are less than linear.

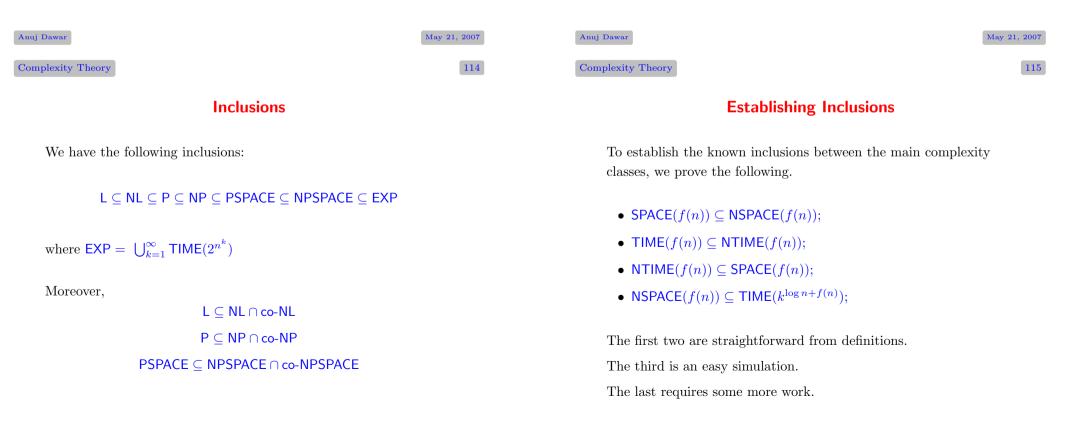
Classes

$$\begin{split} \mathsf{L} &= \mathsf{SPACE}(\log n) \\ \mathsf{NL} &= \mathsf{NSPACE}(\log n) \\ \mathsf{PSPACE} &= \bigcup_{k=1}^{\infty} \mathsf{SPACE}(n^k) \\ & \text{The class of languages decidable in polynomial space.} \\ \mathsf{NPSPACE} &= \bigcup_{k=1}^{\infty} \mathsf{NSPACE}(n^k) \end{split}$$

Also, define

co-NL – the languages whose complements are in NL.

 $\operatorname{co-NPSPACE}$ – the languages whose complements are in $\mathsf{NPSPACE}$.



NL Reachability

We can construct an algorithm to show that the Reachability problem is in NL:

- 1. write the index of node a in the work space;
- 2. if i is the index currently written on the work space:
 - (a) if i = b then accept, else
 - guess an index j (log n bits) and write it on the work space.
 - (b) if (i, j) is not an edge, reject, else replace i by j and return to (2).

Complexity Theory

Anuj Dawar

Configuration Graph

Define the *configuration graph* of M, x to be the graph whose nodes are the possible configurations, and there is an edge from i to j if, and only if, $i \to_M j$.

Then, M accepts x if, and only if, some accepting configuration is reachable from the starting configuration $(s, \triangleright, x, \triangleright, \varepsilon)$ in the configuration graph of M, x.

Reachability

Recall the Reachability problem: given a *directed* graph G = (V, E) and two nodes $a, b \in V$, determine whether there is a path from a to b in G.

A simple search algorithm solves it:

- mark node a, leaving other nodes unmarked, and initialise set S to {a};
- while S is not empty, choose node i in S: remove i from S and for all j such that there is an edge (i, j) and j is unmarked, mark j and add j to S;
- 3. if b is marked, accept else reject.

Anuj Dawar

May 21, 2007

Complexity Theory

118

We can use the $O(n^2)$ algorithm for Reachability to show that: NSPACE $(f(n)) \subset \mathsf{TIME}(k^{\log n + f(n)})$

for some constant k.

Let M be a nondeterministic machine working in space bounds f(n).

For any input x of length n, there is a constant c (depending on the number of states and alphabet of M) such that the total number of possible configurations of M within space bounds f(n) is bounded by $n \cdot c^{f(n)}$.

Here, $c^{f(n)}$ represents the number of different possible contents of the work space, and n different head positions on the input.

May 21, 2007

119

Using the $O(n^2)$ algorithm for Reachability, we get that M can be

 $c'(nc^{f(n)})^2 = c'c^{2(\log n + f(n))} = k^{(\log n + f(n))}$

In particular, this establishes that $NL \subseteq P$ and $NPSPACE \subseteq EXP$.

simulated by a deterministic machine operating in time

120

Savitch's Theorem

Further simulation results for nondeterministic space are obtained by other algorithms for Reachability.

We can show that Reachability can be solved by a *deterministic* algorithm in $O((\log n)^2)$ space.

Consider the following recursive algorithm for determining whether there is a path from a to b of length at most n (for n a power of 2):

Anuj Dawar May 21, 2007 Anuj Dawar 122 Complexity Theory Complexity Theory $O((\log n)^2)$ space Reachability algorithm: Savitch's Theorem - 2 Path(a, b, i)The space efficient algorithm for reachability used on the configuration graph of a nondeterministic machine shows: if i = 1 and (a, b) is not an edge reject else if (a, b) is an edge or a = b accept else, for each node x, check: $\mathsf{NSPACE}(f(n)) \subset \mathsf{SPACE}(f(n)^2)$ 1. is there a path a - x of length i/2; and 2. is there a path x - b of length i/2? for $f(n) > \log n$. if such an x is found, then accept, else reject. The maximum depth of recursion is $\log n$, and the number of bits This yields of information kept at each stage is $3 \log n$. PSPACE = NPSPACE = co-NPSPACE

Anuj Dawar

May 21, 2007

123

Complementation

A still more clever algorithm for **Reachability** has been used to show that nondeterministic space classes are closed under complementation:

If $f(n) \ge \log n$, then

 $\mathsf{NSPACE}(f(n)) = \mathsf{co-NSPACE}(f(n))$

In particular

NL = co-NL.

Anuj Dawar

May 21, 2007