Complexity Theory

Complexity Theory

Anuj Dawar

Computer Laboratory University of Cambridge Easter Term 2007

http://www.cl.cam.ac.uk/Teaching/current/Complexity/

Anuj Dawar

April 27, 2007

Complexity Theory

3

Outline

A rough lecture-by-lecture guide, with relevant sections from the text by Papadimitriou (or Sipser, where marked with an S).

- Algorithms and problems. 1.1–1.3.
- Time and space. 2.1–2.5, 2.7.
- Time Complexity classes. 7.1, S7.2.
- Nondeterminism. 2.7, 9.1, S7.3.
- NP-completeness. 8.1–8.2, 9.2.
- Graph-theoretic problems. 9.3

Complexity Theory

Texts

The main texts for the course are:

Computational Complexity.

Christos H. Papadimitriou.

Introduction to the Theory of Computation.

Michael Sipser.

Other useful references include:

Computers and Intractability: A guide to the theory of

NP-completeness.

Michael R. Garey and David S. Johnson.

Structural Complexity. Vols I and II.

J.L. Balcázar, J. Díaz and J. Gabarró.

Computability and Complexity from a Programming Perspective.

Neil Jones.

Anuj Dawar

April 27, 2007

4

Complexity Theory

Outline - contd.

- Sets, numbers and scheduling. 9.4
- **coNP.** 10.1–10.2.
- Cryptographic complexity. 12.1–12.2.
- Space Complexity 7.1, 7.3, S8.1.
- **Hierarchy** 7.2, S9.1.
- **Protocols** 12.2, 19.1–19.2.

Anuj Dawar April 27, 2007 Anuj Dawar

Complexity Theory

Complexity Theory seeks to understand what makes certain problems algorithmically difficult to solve.

In Data Structures and Algorithms, we saw how to measure the complexity of specific algorithms, by asymptotic measures of number of steps.

In Computation Theory, we saw that certain problems were not solvable at all, algorithmically.

Both of these are prerequisites for the present course.

Anuj Dawar

April 27, 2007

Complexity Theory

7

Lower and Upper Bounds

What is the running time complexity of the fastest algorithm that sorts a list?

By the analysis of the Merge Sort algorithm, we know that this is no worse than $O(n \log n)$.

The complexity of a particular algorithm establishes an *upper* bound on the complexity of the problem.

To establish a *lower bound*, we need to show that no possible algorithm, including those as yet undreamed of, can do better.

In the case of sorting, we can establish a lower bound of $\Omega(n \log n)$, showing that Merge Sort is asymptotically optimal.

Sorting is a rare example where known upper and lower bounds match.

Algorithms and Problems

Insertion Sort runs in time $O(n^2)$, while Merge Sort is an $O(n \log n)$ algorithm.

The first half of this statement is short for:

If we count the number of steps performed by the Insertion Sort algorithm on an input of size n, taking the largest such number, from among all inputs of that size, then the function of n so defined is eventually bounded by a constant multiple of n^2 .

It makes sense to compare the two algorithms, because they seek to solve the same problem.

But, what is the complexity of the sorting problem?

Anuj Dawar

April 27, 2007

Complexity Theory

Review

The complexity of an algorithm (whether measuring number of steps, or amount of memory) is usually described asymptotically:

Definition

For functions $f: \mathbb{N} \to \mathbb{N}$ and $g: \mathbb{N} \to \mathbb{N}$, we say that:

- f = O(g), if there is an $n_0 \in \mathbb{N}$ and a constant c such that for all $n > n_0$, $f(n) \le cg(n)$;
- $f = \Omega(g)$, if there is an $n_0 \in \mathbb{N}$ and a constant c such that for all $n > n_0$, $f(n) \ge cg(n)$.
- $f = \theta(g)$ if f = O(g) and $f = \Omega(g)$.

Usually, O is used for upper bounds and Ω for lower bounds.

Anuj Dawar

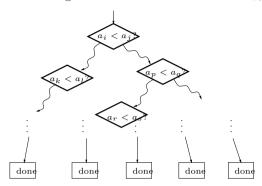
April 27, 2007

Anuj Dawar

April 27, 2007

Lower Bound on Sorting

An algorithm A sorting a list of n distinct numbers a_1, \ldots, a_n .



To work for all permutations of the input list, the tree must have at least n! leaves and therefore height at least $\log_2(n!) = \theta(n \log n)$.

Anuj Dawar

April 27, 2007

11

Complexity Theory

Complex

Complexity of TSP

Obvious algorithm: Try all possible orderings of V and find the one with lowest cost.

The worst case running time is $\theta(n!)$.

Lower bound: An analysis like that for sorting shows a lower bound of $\Omega(n \log n)$.

Upper bound: The currently fastest known algorithm has a running time of $O(n^22^n)$.

Between these two is the chasm of our ignorance.

Travelling Salesman

Given

- V a set of nodes.
- $c: V \times V \to \mathbb{N}$ a cost matrix.

Find an ordering v_1, \ldots, v_n of V for which the total cost:

$$c(v_n, v_1) + \sum_{i=1}^{n-1} c(v_i, v_{i+1})$$

is the smallest possible.

April 27, 2007

Complexity Theory

Formalising Algorithms

To prove a lower bound on the complexity of a problem, rather than a specific algorithm, we need to prove a statement about all algorithms for solving it.

In order to prove facts about all algorithms, we need a mathematically precise definition of algorithm.

We will use the *Turing machine*.

The simplicity of the Turing machine means it's not useful for actually expressing algorithms, but very well suited for proofs about all algorithms.

April 27, 2007 Anuj Dawar April 27, 2007