Complexity Theory Easter 2007 Suggested Exercises 4

1. On page 39 of the notes, a number of functions are listed as being constructible. Show that this is the case by giving, for each one, a description of an appropriate Turing machine.

Prove that if f and g are constructible functions and $f(n) \ge n$, then so are $f(g), f + g, f \cdot g$ and 2^{f} .

- 2. For any constructible function f, and any language $L \in \mathsf{NTIME}(f(n))$, there is a nondeterministic machine M that accepts L and all of whose computations terminate in time O(f(n)) for all inputs of length n. Give a detailed argument for this statement, describing how M might be obtained from a machine accepting L in time f(n).
- 3. In the lecture, a proof of the Time Hierarchy Theorem was sketched. Give a similar argument for the following Space Hierarchy Theorem:

Space Hierarchy. For every constructible function f, there is a language in $SPACE(f(n) \cdot \log f(n))$ that is not in SPACE(f(n)).

- 4. Show that, if $\mathsf{SPACE}((\log n)^2) \subseteq \mathsf{P}$, then $\mathsf{L} \neq \mathsf{P}$. (Hint: use the Space Hierarchy Theorem from Exercise 3 above.)
- 5. POLYLOGSPACE is the complexity class

$$\bigcup_k \mathsf{SPACE}((\log n)^k).$$

- (a) Show that, for any k, if $A \in \mathsf{SPACE}((\log n)^k)$ and $B \leq_L A$, then $B \in \mathsf{SPACE}((\log n)^k)$.
- (b) Show that there are no POLYLOGSPACE-complete problems with respect to \leq_L . (Hint: use (a) and the space hierarchy theorem).
- (c) Which of the following might be true: $P \subseteq POLYLOGSPACE$, $P \supseteq POLYLOGSPACE$, P = POLYLOGSPACE?