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Going Beyond ILP

e Diminishing returns for further effort extracting ILP from a
single thread?
e System-level parallelism

— some workloads naturally parallel

* multi-user machine
x application plus XServer

* application plus asynchronous I/O

e Process/Thread-level parallelism

— Some applications already multithreaded



x database, HT TP server, NFS server
x fork, pthreads
— may have smaller cache footprint

— may be same Virtual address space

e [ oop-level parallelism

— generated by auto-parallelizing compilers
— Cco-operative threads

— need fast synchronization, communication, fork



Exploiting Parallelism

e Multiple CPUs on a chip
— Exploit thread/process level parallelism
— Use traditional SMP mechanisms
X Need correspondingly bigger caches and external memory bandwidth

— IBM Power4 2-way SMP on a chip

e Multi-threading
— Use one CPU to execute multiple threads
— Replicate PCs, architectural register file

— Different virtual address spaces?

e Static multi-threading
— Round-robin issue from a large # threads
v No instruction dependencies

v Hides memory latency
* NO expensive caches

v Fast synchronization / fork possible

X Requires many register files



X Progress of an individual thread is slow
* Poor SPEC marks (great SPEC Rate)

— Tera/Cray MTA, 128 threads

e Course-grained multi-threading
— Switch between threads on a major stall
— e.g. cache miss on Stanford SPARCLE



Simultaneous Multi-Threading (SMT)

e \Work on a small number of threads at once, aiming to keep
all function units busy

e Duplicate architectural state
e Duplicate instruction fetch units

e Need to control allocation of resources
— priority . fair share

— (prioritising can be counter productive)

v Progress of individual threads is pretty good



v Cooperating threads may have smaller cache footprint than
independent ones

v Potential for register-register synchronization and
communication

v Potential for lightweight thread create

e Pentium IV Xeon uses 2-way “hyperthreading”
— 2 virtual CPUs per chip
— |looks like SMP - separate VM contexts
— Staticly partitions resources if both active
— SMT halt and pause instructions

— OS scheduler should understand SMT



Sun Niagra T1

Fine Grain Multiplexing (Barrel Processor)
Five stage pipeline only

A new, non-halted thread each issue.
Four DRAM controllers on chip

Shared FPU



Texas TriMedia
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5 issue slots filled with up to 43 functional units
128 32-bit General Purpose Registers

SIMD & DSP operations

32-bit IEEE 754 floating point operations

8/16/32/64 KB Instruction cache, 8/16/32/64/128 KB Data cache

Separate memory and peripheral bus interfaces.



Custom Silicon

Compilation of SystemC to hardware.

New HDLs, such as System Verilog.

Can make special purpose co-processors (steadycam,
MPEG).

Compile legacy code to FPGA for acceleration.

Greaves CTOV datapath inference algorithm.

Ramp Blue, PicoChip and Clearspeed.
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Other techniques

e Data-flow processors

— Fine-grained control-flow, course-grained data-flow
(opposite of standard super-scalar)

— Begin execution of a block of sequential instructions
when all inputs become available

X Inputs are memory locations. The matching store
required to figure out when all inputs are ready is large
and potentially slow. (matching is easier with a small
number of registers a /la out-of-order execution)



