
Wall’s Paper

Limits of instruction-level parallelism.

Wall, David W.

WRL-93-6

November 1993

External

68 Pages

Seminal paper. Does it still hold ? What is the way forward

then ?

1



Going Beyond ILP

• Diminishing returns for further effort extracting ILP from a

single thread?

• System-level parallelism

– some workloads naturally parallel

∗ multi-user machine

∗ application plus XServer

∗ application plus asynchronous I/O

• Process/Thread-level parallelism

– Some applications already multithreaded

2



∗ database, HTTP server, NFS server

∗ fork, pthreads

– may have smaller cache footprint

– may be same Virtual address space

• Loop-level parallelism

– generated by auto-parallelizing compilers

– co-operative threads

– need fast synchronization, communication, fork



Exploiting Parallelism

• Multiple CPUs on a chip

– Exploit thread/process level parallelism

– Use traditional SMP mechanisms

8 Need correspondingly bigger caches and external memory bandwidth

– IBM Power4 2-way SMP on a chip

• Multi-threading

– Use one CPU to execute multiple threads

– Replicate PCs, architectural register file

– Different virtual address spaces?

• Static multi-threading

– Round-robin issue from a large # threads

4 No instruction dependencies

4 Hides memory latency

∗ No expensive caches

4 Fast synchronization / fork possible

8 Requires many register files

3



8 Progress of an individual thread is slow

∗ Poor SPEC marks (great SPEC Rate)

– Tera/Cray MTA, 128 threads

• Course-grained multi-threading

– Switch between threads on a major stall

– e.g. cache miss on Stanford SPARCLE



Simultaneous Multi-Threading (SMT)

• Work on a small number of threads at once, aiming to keep

all function units busy

• Duplicate architectural state

• Duplicate instruction fetch units

• Need to control allocation of resources

– priority . fair share

– (prioritising can be counter productive)

4 Progress of individual threads is pretty good

4



4 Cooperating threads may have smaller cache footprint than

independent ones

4 Potential for register-register synchronization and

communication

4 Potential for lightweight thread create

• Pentium IV Xeon uses 2-way “hyperthreading”

– 2 virtual CPUs per chip

– looks like SMP - separate VM contexts

– Staticly partitions resources if both active

– SMT halt and pause instructions

– OS scheduler should understand SMT



Sun Niagra T1

• Fine Grain Multiplexing (Barrel Processor)

• Five stage pipeline only

• A new, non-halted thread each issue.

• Four DRAM controllers on chip

• Shared FPU

5



Texas TriMedia

• 5 issue slots filled with up to 43 functional units

• 128 32-bit General Purpose Registers

• SIMD & DSP operations

• 32-bit IEEE 754 floating point operations

• 8/16/32/64 KB Instruction cache, 8/16/32/64/128 KB Data cache

• Separate memory and peripheral bus interfaces.

6



Custom Silicon

• Compilation of SystemC to hardware.

• New HDLs, such as System Verilog.

• Can make special purpose co-processors (steadycam,

MPEG).

• Compile legacy code to FPGA for acceleration.

• Greaves CTOV datapath inference algorithm.

• Ramp Blue, PicoChip and Clearspeed.

7



State of the Art

8



Other techniques

• Data-flow processors

– Fine-grained control-flow, course-grained data-flow

(opposite of standard super-scalar)

– Begin execution of a block of sequential instructions

when all inputs become available

8 Inputs are memory locations. The matching store

required to figure out when all inputs are ready is large

and potentially slow. (matching is easier with a small

number of registers a la out-of-order execution)

9


