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Announcements 

• TBD
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Architectural Implications for Embedded Processors

• Simpler, predictable processor cores

– In-order pipelines, VLIW, vectors, … 

– Limited use of prediction, out-of-order, … 

• Simpler memory hierarchies

– Software managed scratchpads instead of caches

• Program explicitly manages subset of data close to processor

– DMA transfers 

– Shallow cache hierarchies

• Support for fast interrupt processing

– See EE282: multiple interrupt vectors, multithreading, … 

• Note: most of these are good for power consumption as well… 
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Code Size Optimizations

• Use multiple width instructions sets (e.g. MIPS-16, Thumb-2)

– 32-bit for performance critical, 16-bit for the rest

• On the fly memory compression

– Using dictionary based compression or other techniques
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Performance Optimizations: ISA Extensions

• Add app-specific instructions to CPU

– E.g. special bit permutation

– E.g. special MAC instruction

• Benefits

– Better cost/performance

– Better power/performance

• Several domain-specific extensions

– Image processing, networking, 

– Video processing, Java, … 

• Can be automated

– Given a CPU/ISA template

– Analyze apps for common ops

– Define as new instructions

– Implement in CPU/compiler

microarchitectural

model

for (i=0; i<N; i++)
c[i] = foo(a[i],b[i]);

application

code
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Performance Optimizations: 
Custom  Coprocessors and Accelerators

• Coprocessors: extend ISA for specific domain

– E.g. FPU, vector/SIMD

– Tightly integrated, fed instructions on each cycle

• Accelerators: custom or domain-specific 

functionality

– E.g. encryption engine, TPC offloading engine, 

GPU, ME engine, …

– Typically as a device on a bus, accessed through 

registers

• But may be able to DMA in/out of its registers

– Accelerators often implement a standard protocol 

• Why accelerators

– Better cost/performance 

– Better real-time performance (particularly for I/O)

– May consume less energy

– May not be able to do all the work on even the 

largest single CPU
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Power Optimizations
(see EE282)

• Simpler architectures

– Processor and memory hierarchy

• Aggressive clock gating and use of low-power/idle modes

• Bus encoding or compression

• Reducing power supply (big wins as P=CV2f)

– Dynamic adjustment of Vdd and clock frequency

– Save energy by reducing performance to minimum required

• Parallelism and pipelining

– Allow for same performance with lower clock frequency

– Enable aggressive clock frequency and power supply gating
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Example: Vector Power Consumption

• Can trade-off parallelism for power

– Power = C *Vdd2 *F

– If we double the lanes, peak performance doubles

– Halving F restores peak performance but also allows halving the Vdd

– Powernew = (2C)*(Vdd/2)2*(f/2) = Power/4

• Simpler logic for large number of operations/cycle

– Replicated control for all lanes

– No multiple issue or dynamic execution logic

• Simpler to gate clocks

– Each vector instruction explicitly describes all the resources it needs for a 

number of cycles

– Conditional execution leads to further savings
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Embedded Software Development

• Still a lot of it done in assembly

– Reasons: real-time constraints, limited performance, cost sensitive

• If 1 month of assembly coding saves $1 per device, it may be worth it

• Large market of tools for embedded software development

– Libraries, code development frameworks, analysis frameworks,…

– System partitioning tools, … 

– Moving towards high-level frameworks (e.g. matlab or simulink)

• Operating systems

– Simpler and typically customizable

– Fast interrupt processing, real-time/priority scheduling, power management

– Main players: VxWorks, GreenHill, QNX, RT-Linux, Windows-CE, PalmOS, 
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Example: HP DesignJet architecture
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Example: CD/MP3 player
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Example: TI OMAP

• Targets communications, multimedia.

• Multiprocessor with DSP, RISC.
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Example: ST Nomadik

• Targets mobile multimedia

• A multiprocessor-of-multiprocessors.
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Example Nomadik video accelerator
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Multithreaded Processors
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Instruction-Level Parallelism

• When executing a program, how many “independent” operations can 

be performed in parallel

• How to take advantage of ILP

– Pipelining (including superpipelining)

• Overlap different stages from different instructions

• Limited by divisibility of an instruction and ILP

– Superscalar (including VLIW)

• Overlap processing of different instructions in all stages

• Limited by ILP

• How to increase ILP

– Dynamic/static register renaming ⇒ reduce WAW and WAR

– Dynamic/static instruction scheduling ⇒ reduce RAW hazards

– Use predictions to optimistically break dependence
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Thread-Level Parallelism

• Most computers actually executes several “programs” at the same time

– A.k.a. processes, threads of control, etc 

Time Multiplexing

• The instructions from these different threads have lots of parallelism

– No dependences across programs

• Taking advantage of “thread-level” parallelism, i.e. by concurrent 

execution, can improve the overall throughput of the processor 

– But not execution latency of any one thread

Basic Assumption: the processor has idle resources when running only one 

thread at a time
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The Cheap Cousin of Multithreading:
Multiprocessing

• Time-multiplex multiprocessing on uniprocessors started back in 1962

• Even concurrent execution by time-multiplexing improves throughput

How?

– A single thread would effectively idle the processor when spin-waiting for 

I/O to complete, e.g. disk, keyboard, mouse, etc.

– can spin for thousands to millions of cycles at a time

– a thread should just go to “sleep” when waiting on I/O and let other 

threads use the processor, a.k.a. context switch

compute
waiting

for I/O
compute

waiting

for I/O
compute

waiting

for I/O

compute1 compute2 compute1 compute2 compute1 compute2
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What is a Thread or Context or Process

• Register state

– PC

– General purpose registers (integer, FP, …)

• Memory state

– Control and exception handling registers

– Page-table base register

– Private page-table

• What about the state in caches (L1, L2, TLBs)? 
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Classic Context Switch

• The process

– Timer interrupt stops a program mid-execution (precise)

– OS saves away the context of the stopped thread

• State that occupies unique resources must be copied and saved to a special 

memory region belonging exclusively to the OS

• State that occupies commodity resources just needs to be hidden from the other 

threads (e.g. pages in physical memory)

– OS restores the context of a previously stopped thread (all except PC)

– OS uses a “return from exception” to jump to the restarting PC

The restored thread has no idea it was interrupted, removed, later restored 

and restarted

⇒ can take a few hundred cycles per switch, but the cost is amortize 

over the execution “quantum”

(If you want the full story, take a real OS course!)
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Fast Context Switches

• A processor becomes idle when a thread runs into a cache miss 

Why not switch to another thread? 

• Cache miss lasts only tens of cycles, but it costs OS at least 64 cycles 

just to save and restore the 32 GPRs

• Solution: fast context switch in hardware

– replicate hardware context registers: PC, GPRs, cntrl/status, PT base ptr

eliminates copying

– allow multiple context to share some resources, i.e. include process ID as 

cache, BTB and TLB match tags

eliminates cold starts

– hardware context switch takes only a few cycles

• set the PID register to the next process ID 

• select the corresponding set of hardware context registers to be active 
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Simple Multithreaded Processor

• Some number of threads supported in hardware

– Switch thread on a cache miss or other high latency event

• Examples? Trade-offs? 

• What happens if all HW threads are blocked?
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Example: MIT’s Sparcle Processor

• Based SUN SPARC II processors

– Provided HW contexts for 4 threads, one is reserved for the interrupts

– Hijacked SPARC II’s register windowing mechanism to support fast

switching between 4 sets of 32 GPRs

– Switches context in 4 cycles

• Why would it take >1 cycle to switch?

• Used in a cache-coherent distributed shared memory machine

– On a cache miss to remote memory (takes hundreds of cycles to satisfy), 

the processor automatically switches to a different user thread

– The network interface can interrupt the processor to wake up the message 

handler thread to handle communication
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Coarse-grain Multithreading Explained

• Low-overhead approach for improving processor throughput

– Also known as “switch-on-event”

• Long history: Denelcor HEP

• Commercialized in IBM Northstar, Pulsar

• Now in many MT processors

Cache miss

Miss complete

SwappedStalled

ReadyRunning

Thread inactiveThread active

Preemption

Thread switch

Thread ready to run

Thread stalled

Thread switch



EE382A – Winter 2006 Christos KozyrakisLecture 15 - 25

Really Fast Context Switches

• When pipelined processor stalls due to RAW dependence between 

instructions, the execution stage is idling

Why not switch to another thread?

• Not only do you need hardware contexts, switching between 

contexts must be instantaneous to have any advantage!!

– What is the cost of 1-cycle context switching? 

• If this can be done,

– Don’t need complicated forwarding logic to avoid stalls

– RAW dependence and long latency operations (multiply, cache 

misses) do not cause throughput performance loss

Multithreading is a “latency hiding” technique
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Fine-grain Multithreading

• Suppose instruction processing can be divided into several stages, but 

some stages has very long latency

– run the pipeline at the speed of the slowest stage, or

– superpipeline the longer stages, but then back-to-back dependencies cannot 

be forwarded

t0 t1 t2 t3 t4
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Fa Fb Da Db Ea Eb Wa Wb

Fa Fb Da Db Ea Eb Wa Wb

t0 t1 t2 t3 t4
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Db Ea
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Fa Fb Ea Eb Wa WbDa Db
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2-way multithreaded

superpipelined

InstT2-x

InstT2-y
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Examples: Instruction Latency Hiding
• Using the previous scheme, MIT Monsoon pipeline cycles through 8 statically 

scheduled threads to hide its 8-cycle (pipelined) memory access latency

• HEP and Tera MTA [B. Smith]: 

– on every cycle, dynamically selects a “ready” thread (i.e. last instruction has 

finished) from a pool of upto 128 threads

– worst case instruction latency is 128 cycles (may need 128 threads!!)

– a thread can be waken early (i.e. before the last instruction finishes) using 

software hints to indicate no data dependence 
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Really Really Fast Context Switches

• Superscalar processor datapath must be over-resourced

– Has more functional units than ILP because the units are not universal 

– Current 4 to 8 way designs only achieves IPC of 2 to 3 

• Some units must be idling in each cycle

Why not switch to another thread?
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Simultaneous Multi-Threading [Eggers, et al.]

• Dynamic and flexible sharing of functional units between multiple threads 

⇒ increases utilization ⇒ increases throughtput
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Multithreading Options

EE382A – Winter 2006 Christos KozyrakisLecture 15 - 31

SMT Resource Sharing
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• What are the trade-offs here? 
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SMT Processors

• Alpha EV8: would be the 1st SMT CPU if not cancelled

– 8-wide superscalar with support for 4-way SMT

– SMT mode: like 4 CPUs with shared caches and TLBs

– Replicated HW: PCs, registers (different maps, shared physical regs)

– Shared: instruction queue, caches, TLBs, branch predictors, … 

• Pentium4 HT: 1st commercial SMT CPU (2 threads) 

– Logical CPUs share: caches, FUs, predictors (5% area increase)

– Separate: RAS, 1st level global branch history table

• Shared second-level branch history table, tagged with logical processor IDs

• Why? 

– No logical CPUs can use all entries in queues when 2 threads active

• IBM Power5, Opterons, … 
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Regular OOO Vs. SMT OOO: the Alpha Approach
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Intel Pentium 4 with HT 
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Fetch Policies for SMT

• Icount policy: fetch from thread with the least instructions in flight

– Keep hardware counts

• Why does Icount work?

– Priority to fastest moving threads

– Avoids thread starvation 

• Optimizations

– Recognize when a thread is busy waiting and reduce it’s priority

– Adapt number of threads running depending on interference

• ILP per thread

• Cache misses etc
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Other SMT Issues

• Adding a SMT to superscalar

– Single-thread performance is slight worse due to overhead (longer pipeline, 

longer combinational delays)

– Over-utilization of shared resources

• contention for instruction and data memory bandwidth

• interferences in caches, TLB and BTBs

But remember multithreading can hide some of the penalties. For a given 

design point, SMT should be more efficient than superscalar if thread-level 

parallelism is available

• High-degree SMT faces similar scalability problems as superscalars

– needs numerous I-cache and d-cache ports

– needs numerous register file read and write ports

– the dynamic renaming and reordering logic is not simpler
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Sun’s UltraSparc T1 or Niagara

• A fine-grain multithreaded system

– With multiple processors on a chip

• 4-threads per CPU, round-robin switch

– Thread blocked on stalls, mul, div, loads, … 
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Explicitly Multithreaded Processors

All contexts concurrently active; no 

switching

Secondary cache, system interconnectCMP

Next lecture…

All contexts concurrently active; no 

switching

Everything but instruction fetch buffers, return 

address stack, architected register file, control 

logic/state, reorder buffer, store queue, etc.

SMT

Switch on pipeline stallEverything but I-fetch buffers, register file and 

control logic/state

Coarse-grained

Switch every cycleEverything but register file and control logic/stateFine-grained

Explicit operating system context 

switch

EverythingNone

Context Switch MechanismResources shared between threadsMT Approach

So far, it’s all been about throughput with multiple programs

Can MT help with a single program? 
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Out-of-Order & Increasing Memory Latency

• Good Case

• Bad Case

Compute & Memory Phases

Compute & Memory Phases
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Slipstream or Run-ahead Processors

• Execute a single-threaded application redundantly on a “modified” 2-way SMT, 

with one thread slightly ahead

– an advanced stream (A-stream) followed by a redundant stream (R-stream)

– “The two redundant programs combined run faster than either can alone”

[Rotenberg]

• How is this possible?

– A-stream is highly speculative

• Can use all kinds of branch and value predictions

• Doesn’t go back to check or correct misprediction

• Even selectively skip some instructions

– e.g. some instructions compute branch decisions, why execute them if I am going to predict the 

branch anyways

– A-stream should run faster, but its results can’t be trusted 

– R-stream is executed normally, but it still runs faster because caches and TLB would 

have been warmed by the A-stream!!
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Illustration

• Why execute the same thread twice?
– Detect faults

– Better performance
• Prefetch, resolve branches

(a) Fault detection

(b) Pre-execution

Main thread

Detect faults by 
comparing results

Redundant thread

Runahead thread

Prefetch into caches, 
resolve branches

Main thread
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Speculative Multithreading

• SMT can justify wider-than-ILP datapath

• But, datapath is only fully utilized by multiple threads

• How to make single-thread program run faster?

Think about predication

• What to do with spare resources?

– Execute both sides of hard-to-predictable branches

– Send another thread to scout ahead to warm up caches & BTB

– Speculatively execute future work

e.g. start several loop iterations concurrently as different threads, if data 

dependence is detected, redo the work

Must have ways to contain the effects of incorrect speculations!!

– Run a dynamic compiler/optimizer on the side
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Implicitly Multithreaded Processors

• Goal: speed up execution of a single thread

• Implicitly break program up into multiple smaller threads, execute them 

in parallel

• Parallelize loop iterations across multiple processing units

• Usually, exploit control independence in some fashion

• Many challenges:

– Maintain data dependences (RAW, WAR, WAW) for registers

– Maintain precise state for exception handling

– Maintain memory dependences (RAW/WAR/WAW)

– Maintain memory consistency model

• Not really addressed in any of the literature

• Active area of research

– Only a subset is covered here, in a superficial manner
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Sources of Control Independence

(a) Loop-closing (a) Control-flow convergence (a) Call/return
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Implicit Multithreading Proposals

Dependence speculation; 

checked with simple 
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