
Non-Blocking Steal-Half Work Queues

D a n n y H e n d l e r

T e l - A v i v U n i v e r s i t y

N i r S h a v i t

T e l - A v i v U n i v e r s i t y

Abstract

The non-blocking work-stealing algorithm of Arora et al.
has been gaining popularity as the multiprocessor load bal-
ancing technology of choice in both Industry and Academia.
At its core is an ingenious scheme for stealing a single item
in a non-blocking manner from an array based deque. In
recent years, several researchers have argued that stealing
more than a single item at a time allows for increased sta-
bility, greater overall balance, and improved performance.

This paper presents StealHalf, a new generalization of
the Arora et al. algorithm, that allows processes, instead
of stealing one, to steal up to half of the items in a given
queue at a time. The new algorithm preserves the key prop-
erties of the Arora et al. algorithm: it is non-blocking, and
it minimizes the number of CAS operations that the local
process needs to perform. We provide analysis that proves
that the new algorithm provides better load distribution:
the expected load of any process throughout the execution
is less than a constant away from the overall system average.

1 Introduction

The work-stealing algorithm of Arora et al. [2] has been
gaining popularity as the multiprocessor load-balancing tech-
nology of choice in both Industry and Academia [1, 2, 5, 7].
The scheme allows each process to maintain a local work
queue, and steal an item from others if its queue becomes
empty. At its core is an ingenious scheme for stealing an
individual item in a non-blocking manner from a bounded
size queue, minimizing the need for costly CAS (Compare-
and-Swap) synchronization operations when fetching items
locally.

Though stealing one item has been shown sufficient to
optimize computation along the "critical path" to within a
constant factor [2, 4], several authors have argued that the
scheme can be improved by allowing multiple items to be
stolen at a time [3, 8, 9, 12]. Unfortunately, the only imple-
mentat ion algorithm for stealing multiple items at a time,

° T h i s work was s u p p o r t e d in p a r t by a g r a n t f rom Sun Microsys-
terns. C on t ac t au thor : hend le rd@pos t . t au .ac . i l

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the fifll citation on the first page. To copy
otherwise, or repubfish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
PODC 2002, July 21-24, 2002, Monterey, California, USA.
Copyright 2002 ACM 1-58113-485-1/02/0007...$5.00.

due to Rudolph et al. [12], requires the local process owning
the queue to use a strong synchronization operation (CAS
or some other form of mutual exclusion) for every push or
pop. Since the local process' operations are far more fre-
quent, this makes the Rudolph et al. algorithm significantly
less effective than that of Arora et al.

This state of affairs leaves open the question of design-
ing an algorithm that, like Arora et al., does not use costly
synchronization operations in every step, yet allows stealing
multiple items at a time, thus achieving the stability, bal-
ance, and improved performance of algorithms like Rudolph
et al.

1.1 The New Algorithm

This paper presents a new work-stealing algorithm, Steal-
Half, a generalization of the Arora et al. algorithm, that
allows processes to steal up to half of the items in a given
queue at a time. Our StealHalf algorithm preserves the key
properties of the Arora et al. algorithm: it is non-blocking
and it minimizes the number of CAS operations that the
local process needs to perform. We provide a performance
analysis showing that our algorithm improves on Arora et
al. by providing an overall system balance similar to the
Rudolph et al. scheme: the expected load of any process
throughout the execution is less than a constant away from
the overall system average.

In our algorithm, as in the Arora et al. algorithm, each
process has a local work queue. This queue is actually a
deque, allowing the local process to push and pop items from
the bottom, while remote processes steal items from the top.
The Arora et al. algorithm is based on a scheme that allows
the local process, as long as there is more than one item
in the deque, to modify the bottom counter without a CAS
operation. Only when the top and bot tom are a distance
of 1 or less apart, so that processes potentially overlap on
the single item that remains in the deque, does the process
need to use a CAS operation to perform consensus. This
consensus is necessary because the inherent uncertainty [6]
regarding a single read or write operation to the top and
bot tom counters can affect whether the last item to be stolen
is still there or not. This yields an algorithm where for any

1 monotonic sequence of k pushes or k pops, the number of

1A mo n o to n i c sequence is a sequence of local ope ra t ions t h a t
mono ton ica l ly e i ther increases or decreases the b o t t o m counter . We
define the synchron iza t ion complex i ty in t e r m s of mono ton i c se-
quences since one c a n n o t m a k e c la ims in n o n -mo n o to n i c s i tua t ions
where the execu t ion p a t t e r n of the unde r ly ing app l i ca t ion causes
t h r a sh in g back and for th on a single locat ion.

280

CAS operations is O(1).
In order to steal more than one item at a time, say half of

the number of items in a deque, one must overcome a much
greater uncertainty. Since a stealing process might remove
up to half of the items, there are now many values of the
bottom counter, say, up to half of the difference between top
and bottom, for which there is a potential overlap. Thus,
eliminating the uncertainty regarding reading and writing
the counter requires consensus to be performed for half the
items in the deque, an unacceptable solution from a perfor-
mance point of view, since it would yield an algorithm with
O(k) synchronization complexity.

The key to our new algorithm is the observation that one
can limit the uncertainty so that the local process needs to
perform a consensus operation (use a CAS), only when the
number of remaining items in the deque (as indicated by the
difference between top and bottom), is a power of two! The
scheme works so that as the distance between the bottom
and top counters changes, it checks and possibly updates a
special half-point counter. The uncertainty regarding a sin-
gle read or write exists just as in the Arora et al. algorithm,
only now it happens with respect to this counter. What we
are able to show is that missing the counter update can only
affect locations beyond the next power-of-two at any given
point. For any monotonic sequence of k pushes or k pops,
our algorithm uses only O(logk) CAS operations, slightly
worse than Arora et al., but exponentially better than the
O(k) of the Rudolph et al. scheme.

Like the Arora et al. scheme, our StealHalf algorithm is
non-blocking: the slowdown of any process cannot prevent
the progress of any other, allowing the system as a whole
to make progress, independently of process speeds. Like
Arora et al., the non-blocking property in our algorithm
is not intended to guarantee fault-tolerance: the failure of
a process can cause loss of items. Arora et al. claim that
their empirical testing on various benchmarks shows that the
non-blocking property contributes to performance of work
stealing, especially in multiprogrammed systems [2].

In our algorithm, the price for unsuccessful steal op-
erations is a redundant copying of multiple item-pointers,
whereas in the Arora algorithm only a single pointer is copied
redundantly. However in our algorithm, successful stems
transfer multiple items at the cost of a single CAS, whereas
in the Arora et al. scheme a CAS is necessary for each stolen
item.

1.2 Performance Analysis

Mitzenmacher [9] uses his differential equations approach
[10] to analyze the behavior of work stealing algorithms in a
dynamic setting, showing that in various situations stealing
more than one item improves performance. Berenbrink et
al. [3] have used a markov model to argue that a system
that steals only one item at a time can slip into an instable
state from which it cannot recover, allowing the number of
items to grow indefinitely. This implies that no matter how
much buffer space is allocated, at some point the system
may overflow. Treating such overflow situations requires the
use of costly overflow mechanisms [5]. Berenbrink et al. [3]
further show that an Arora-like scheme that allows stealing,
say, half of the items, will prevent that system from slipping
into such an instable state. Rudolph et. al [12], and later
Luling and Monien [8], prove that in a load balancing scheme
that repeatedly balances the work evenly among random
pairs of local work queues, the expected load of each process

will vary only by a constant factor from the load of any other
process and that the overall variance is small.

The algorithm we present is generic, in the sense that
one can change the steal initiation policy to implement a
variety of schemes including those of [2, 3, 12]. We choose
to analyze its behavior in detail under a steai-attempt pol-
icy similar to [12]: ever so often, every process p performs
the following operation, which we call balancing initiation:
p flips a biased coin to decide if it should at tempt to balance
its work-load by stealing multiple items, where the proba-
bility of at tempting is inversely proportional to its load. If
the decision is to balance, then p randomly selects another
process and attempts to balance load with it. Our main The-
orem states that our algorithm maintains properties similar
to those of Rudulph et al. We provide it here since the proof
provided by Rudolph et al. turns out to be incomplete, and
also because there are significant differences between the al-
gorithms. As an example, the Rudolph et al. algorithm is
symmetric: a process can both steal-items-from and insert-
items-to the deque of another process. In our algorithm,
however, a process can only steal items.

Assume A~ is a time period where no deque grows or
shrinks by more than u items (through pushing or popping).
Let Lp,t denote the number of items in process p's deque at
time t; also, let At denote the average-load at time t. Then
if all processes perform balancing initiation every A~ time,
there exists a constant c~, not depending on the number of
processes or the application, such that:

'v'p,t : E[Lp,t] < oluAt

The existence of such Au is a natural assumption in most
systems, and can be easily maintained with slight protocol
modifications in others. In contrast, it can easily be shown,
that if one steals a single item at a time as in the Arora et
al. scheme, even if steal-attempts are performed every A1,
there are scenarios in which the system becomes instable.

In summary, we provide the first algorithm for stealing
multiple items using a single CAS operation, without requir-
ing a CAS for every item pushed or popped locally.

An outline of the algorithm is presented in Section 2; the
analysis is presented in Section 3; finally, correctness claims
are presented at Section 4.

2 The StealHalf algorithm

As noted earlier, the key issue in designing an algorithm
for stealing multiple items is the need to minimize the use
of strong synchronization operations both when performing
local operations and when stealing multiple items.

A first a t tempt at an algorithm might be to simply let
a process steal a range of items by repeatedly performing
the original code of stealing a single item for every item
in the group. This would make the algorithm a steal-many
algorithm 2 but at a very high cost: to steal k items, the thief
would have to perform k synchronization operations. The
algorithm presented here, utilizes an extended deque data
structure, a variant of the deque of [2] depicted in Figure
1, to achieve synchronization at a low cost. The extended
deque differs from the deque of [2] in two ways: (1) it is
implemented as a cyclic array, and (2) it contains a member-
structure, called steaIRange, which defines the range of items
that can be stolen atomically by a thief-process.

2Obviously with this technique the items-group is not stolen
atomically.

281

E x t e n d e d D e q u e

deque
steal-range 1

tag J *. ' up to 2^i items
top I can be stolen atomically

last j.--w" * I'
: ' there are at least 2"i

bot * items outside the steal-range

: the bottom of the deque is
somewhere in this group of
2^0+1) items

Figure 1: The extended deque

The algorithm allows stealing about half the items of the
victim in a single synchronization operation. It does this by
always maintaining the invariant that the number of items
in every process p's steaIRange is approximately half the
number of total items in p's deque. Process p's steaIRange
is updated by any process that succeeds in stealing items
from p's deque, and also by p itself. To keep the number of
synchronization operation performed by a local process p as
low as possible, p updates its steaIRange when pushing or
popping an item to/from its deque, only if at least one of
the following events occur:

• The number of items in p's deque crosses a 2 i bound-
ary, for some i E N;

• A successful-steal operation from p's deque has oc-
curred since the last time p modified its own steal-
Range.

2.1 Data structures

Each process owns an extended deque structure, which it
shares with all other processes. In this structure: deq is
an array that stores pointers or handles to items, which are
generated and consumed dynamically. It has DEQ_SIZE
entries. The range of occupied entries in deq includes all the
entries in the range: [top . . . bOt)DEQ_SIZE 3. As noted, it is
implemented as a cyclic array.

The steaIRange member-structure extends the age struc-
ture from [2]. It contains the following fields:

• tag - as in [2], a time stamp on the updating of the
steaIRange structure. A tag is required in order to
overcome the A B A problem inherent to the C A S prim-
itive. 4 As in [2], the bounded tag algorithm of [11]
can be used.

• top - as in [2], the pointer to the top-most item in the
deque. ~

3[a - " - b)m denotes the ha l f -open en t r ies - range , f rom e n t ry a up- to
en t ry b (including a b u t not b), m o d u l u s m.

4A ssum e a process p reads a value A f rom locat ion m, an d then
pe r fo rms a successful CAS opera t ion , which modif ies the conten ts of
m. P rocess p ' s CAS should ideal ly succeed only if the con ten t s of m
was not modif ied since it r ead va lue A. T h e p rob l e m is, t h a t if o the r
processes modif ied m ' s va lue to va lue B and then back aga in to A
in the in t e r im - t he CAS ope ra t ion still succeeds. To ove rcome this
p rob lem, a t ag field is a dde d to the s t ruc tu re .

5Note, t h a t because the e x t e n d e d deque is cyclic, the i t em po in ted
to by top is not necessar i ly the i t em s tored a t the t o p - m o s t deque-
entry.

The item pointed at by top is invariably the first item
of the stealRange.

• steaILast - points to the last item to be stolen. The
items that would be stolen next (unless the streal-
Range structure would be modified by the local process
before the next steal) are in the range
[top. . . steaILast]D~Q_~lZE 6. The stealLast variable
can assume the special value null, which indicates there
are no items to steal. The stealRange structure is mod-
ified via C A S operations.

The bot field points to the entry following the last entry
containing an item. Since the extended deque is cyclic, bot
may be smaller than top. If bot and top are equal, the ex-
tended deque is empty. In addition to the shared extended-
deque structure, each process has a static and local struc-
ture, called prevSteaIRange, of the same type as steaIRange.
It is used by the local process to determine whether a steal
has occurred since the last time the process modified the
stealRange.

2.2 High-level extended-deque methods description

We specify the algorithm in a generic manner, that allows
"plugging-in", in a modular way, components that allow
flexibility in regard to the conditions/policy that control
when a steal-attempt is initiated.

2.2.1 Balancing initiation code

The code that appears in figure 2 should be performed by
every process periodically, throughout the computation.

IF (shou ldBa lanceO)

P r o c e s s *vic t im=randomProcessO;
TryToSteal(victim);

Figure 2: steal-initiation code

The shouldBalance method determines the policy regard-
ing when to initiate a steal a t tempt 7. Many policies are
conceivable, a few of which are:

Try to steal only when the local deque is empty: this
is the scheme implemented by Arora et al. [2], and we
call it: steal-on-empty.

Try to steal probabilistically, with the probability de-
creasing as the number of items in the deque increases:
this scheme was suggested by Rudolph et al. [12], and
we call it probabilistie balancing s

Try to steal whenever the number of items in the deque
increases/decreases by a constant factor from the last
time a steal-attempt was performed: this is the policy
suggested in [3].

6[a • • • b]m deno tes the closed a r r ay - r ange , f rom en t ry a up - to en t ry
b (inc luding b o t h a an d b), m o d u l u s m.

7This can be i m p l e m e n t e d as inl ined code r a t h e r t h a n as a m e t h o d ,
if this code should be p e r f o r m e d ve ry often.

SThe scheme, as descr ibed , is a lways probabi l i s t ic in the sense t h a t
the v i c t i m process is se lected a t r a n d o m . T h e probabilistic balancing
scheme adds yet a n o t h e r probabi l i s t ic factor .

282

Steal-initiation policies can vary significantly with re-
spect to the extent they make the system balanced, but
obviously none can guarantee that the system is balanced,
if balancing is not at tempted frequently enough. Conse-
quently, we have to make some reasonable assumptions re-
garding the frequency at which the steal-initiation code is
performed.

Let Au be a time-period small enough, such that it is
guaranteed that no process p changes its load by more than
u items during that period, by generating/consuming items
(thefts notwithstanding). In the analysis we prove, that if
the probabilistie balancing policy is employed, and the steal-
initiation code is performed once every Au period, then the
expected number of deque-items of any process p at any
time during the execution is no more than o~ times the
total average, where a~ is a constant that does not depend
on the number of processes or the dynamic pattern of item
generation/consumption 9.

Not every steal-initiation policy can guarantee this prop-
erty, though. It can easily be shown, that under the steal-
on-empty policy, where only a single item is stolen at a time,
a system can grow unbalanced beyond any bound, even if
the steal-initiation code is performed every A1 time period!

The balancing initiation code can be performed period-
ically by the system or by an application, or it can be im-
plemented as a signal-handler.

2.2.2 pushBottom code

A high-level pseudo-code of pushBottom is shown in Figure
3.

RETIJRN_CODE pushBottom(Item *e) {
IF deq is full

return DEQ_FULL
deq[bot] = e
increment hot in a cyclic manner
IF (deq length now equals 2"i for some i)

Try to CAS-update the stealRange to
contain max(1,2"(i-1)) items

ELSE IF (stealRange != prevStealRange)
Try to CAS-update the stealRange to contain max(1,2"i)
items, where the current length of the deque is in
the range [2~(i+I) ,2~(i+2))

IF CAS was performed successfully
prevStealRange = stealRange

Figure 3: pushBottom pseudo code

The pushBottom operation is performed by the local pro-
cess p, whenever it needs to insert a new item into its local
deque. If the deque is not full, the new item is placed in the
entry pointed at by bot, and bot is incremented in a cyclic
manner. However, if following the insertion of the new item
the length of p's deque becomes 2 i for some i > 0, then p
tries to CAS-update its steaIRange to contain the topmost
2 i-1 items 1°. This is to make sure the length of the steal-
Range is not much less than half the total number of items
in the deque 11

Process p has to update the steaIRange even if the deque-
length is not a power of 2, if another process has succeeded

9Obviously, A~ itself does d e p e n d on this p a t t e r n .
1°or 1, if i=0.
1aWe ac tua l ly prove in the full p a p e r t h a t for any process p, a t any

t ime , the length of p 's stealRange is a t least ~ ' t h of the length of p 's
deque.

Before p u s h B o t t o m 0

de(

bot

|e
0¢

4
5
6
7
8
9
10
11
12
13
14
15
16

After pushBot tomO

dequ(s t e ~ o
!i'
4 ,
5 ,
6 '

y o
12
13

bot . ~ 1514

Figure 4: The extended deque before and after a pushBot-
tom. Right after pushBottom inserts a new item into the
deque, it checks whether the deque length reaches a power-
of-2 boundary (in the above Figure, the 16'th item was
added), in which case steaIRange is expanded to contain
the first half of the deque-elements.

in stealing items from p since the last time p updated its
stealRange. Process p can identify this by comparing the
current value of its steaIRange with the last value it wrote
to it - which is stored at its local prevStealRange. If the
values differ, p tries to set the length of its steaIRange (by a
CAS) to be max(l , 2/), where 2 TM _< len(deq) < 2/+2.

If p performed a successful CAS, prevStealRange is up-
dated with the value it wrote.

Figure 4 depicts the state of an extended deque before
and after the 16'th item is pushed into it. Since subse-
quent to the push the deque contains a power-of-2 number
of items, pushBottom tries (and in this case succeeds) to
expand stealRange. It is easily seen (and is proven in our
analysis) that immediately after every successful CAS oper-
ation performed by pushBottom, assuming that the pushed
item is not the first item in the deque 12, the following holds:

2 • len(stealRange) < len(deq) < 4 • len(steaIRange)

2.2.3 popBottom code

A high-level pseudo-code of popBottom is presented in Fig-
ure 5. The popBottom operation is performed by the local
process p whenever it needs to consume another deque-item.

• Section 1: In section 1 a process performs some pre-
checks to make sure the method may proceed. It first
checks whether the deque is empty, in which case the
method returns null; it next checks whether the length
of the deque is 2 i for some i _> 0. If this is indeed the
case, then the method tries to CAS-update its steal-
Range to contain the topmost 2 i-2 items 13. This is
done in order to maintain the invariant that the length
of stealRange neve~ exceeds half the total number of

12If the pushed i t em is the first i t em of the deque , t hen the lengths
of bo th the deque and the steaIRanye r ight a f te r the CAS equal 1.

lSor 1, if i < 2.

283

I t e m * p o p B o t t o m O

{
S e c t i o n 1

IF deq is empty
return null

IF (deq length now equals 2"i for some i)
Try to CAS-update the stealRange to contain
max(l,2^(i-2)) items

ELSE IF (stealRange != prevStealRange)
Try to CAS-update the stealRange to contain max(l,2*i)
items, where the current length of the deque
is in the range (2^(i+1) ... 2~(i+2)]

IF CAS was performed successfully
prevStealRange = stealRange

ELSE IF a CAS was attempted but failed
return ABORT;

Section 2

Decrement bot in a cyclic manner
Item *e = deq[bot]
oldStealRange = this->stealRange

IF oldStealRange does not contain bot
return e (no need to synchronize)

ELSE IF oldStealRange is empty
{
bot=O (the last item - e - was already stolen

by another process)
return null
}

ELSE
{
Try to CAS-update the stealRange to be empty
IF s u c c e e d e d

return e (e was not stolen so far)
ELSE

return null (the last item - e - was already
stolen by another process)

}
}

Figure 5: popBottom pseudo code

items in the deque, unless there's a single item in the
deque.

As in pushBottom, p has to CAS-update the stealRange
even if the deque-length is not a power of 2, if an-
other process has succeeded in stealing items from p
since the last time p updated its stealRange. Process
p can identify this by comparing the current value of
its stealRange with the last value it wrote to it - which
is stored at prevSteaIRange. If the values differ, p tries
to set the length of its stealRange to be max(1,2i),
where T +1 < len(deq) _< T +2.

If popBottom performed a successful CAS, it updates
prevSteaIRange with the value it wrote. If however a
CAS was at tempted and failed, popBottom returns a
special value ABORT, indicating this situation. Note,
that this can only happen if a successful steal has oc-
curred concurrently with the method's execution. 14.

• Section 2: Section 2 is very similar to its steal-one [2]
counterpart: it pops the bottom-item e off the deque,
and then reads steaIRange. If this read does not in-
clude e, then the method returns e and exits, as no

1 4 A n a l t e r n a t i v e i m p l e m e n t a t i o n is t o r e t r y a g a i n a n d a g a i n in a
l oop , u n t i l t h e m e t h o d s u c c e e d s in u p d a t i n g stealRange.

Before popBottom0
d~ue

steal-range 4 o 4
* 1 v f . 2:

~---=-t / * 3 ,
[t o o l s * 4 ,
I--'-"t * 5 ,
I l a s f l ~ * 6,
t . _ _ J ~ * 7 1

bot

* 8
* 9
* 10 l ~
* 11
* 12
* 13
* 14
* 15

16

After popBottomO
deque

s t e ~ a J

7
8
9
10
11
12
13

bot 14
16

Figure 6: The extended deque before and after a popBottom.
Just before popBottom pops the bottom-most item from the
deque, it checks whether the deque length is exactly at a
power-of-2 boundary (in the above Figure, the 16'th item
is about to be popped), in which case stealRange is being
shrank to contain the first quarter of the deque-elements

other process may have stolen e; otherwise, there are
2 possibilities:

- stealRange is empty - e was stolen by another pro-
cess during the method's execution. The method
returns null.

- e is the one-and-only item in the deque, in which
case the method tries to CAS-update stealRange
with an empty range value. If it succeeds - it
returns e as its result, otherwise it returns null.

Figure 6 depicts the state of an extended deque before
and after the 16'th item is popped off it. Since prior to
the pop the deque contains a power-of-2 number of items,
popBottom tries to shrink stealRange (and in this case suc-
ceeds). It is easily seen (and is proven in our analysis) that
immediately after every successful CAS operation performed
by popBottom the following inequalities hold 15

2 * len(steaIRange) _< len(deq) _< 4 * len(steaIRange)

2.2.4 tryToSteal code

The try ToSteal method is the method that actually at tempts
to perform a steal. It is called by a local process p, after the
steal-initiation policy has determined that a steal-attempt
should be made and a victim process has been selected. The
pseudo-code of tryToSteal is shown in Figure 7.

The method receives 2 parameters: d - a pointer to the
victim process' extended-deque, and pLen - the number of
items in p's deque, and returns the number of items actually
stolen. It first reads d.stealRange and computes its length,

1 5 T h e b e l o w i n e q u a l i t i e s h o l d , u n l e s s t h e n u m b e r o f i t e m s in t h e
d e q u e a f t e r t h e p o p is 0 o r 1. I f t h e p o p e m p t i e s t h e d e q u e , t h e n t h e
l e n g t h s o f b o t h t h e d e q u e a n d t h e steal_Range a f t e r t h e o p e r a t i o n a r e
0; i f a s i n g l e i t e m is l e f t in t h e d e q u e a f t e r t h e p o p , t h e l e n g t h s a r e
b o t h 1.

284

based on which the method can determine whether it is cer-
tain that the victim has more items than p has; if this is not
the case - the method returns 0 without stealing any item.

Otherwise, about half of the guaranteed difference be-
tween the sizes of the 2 deques is copied to p's deque, and
then p tries to CAS-update the victim's stealRange. The
length of the new steaiRange is set to be max(l , 2i-2), where
the length of the victim's deque before the theft was in the
range: [2 i . . . 2i+1). As we prove in our analysis, this guar-
antees that the new steaiRange has length that is at most
half, and at least one eighth the remaining number of items.

If the CAS fails, the steal-attempt has failed also, and
the method returns 0; otherwise - the steal-attempt has suc-
ceeded, and the method proceeds to update p's bot and steal-
Range to reflect the new number of items in the deque. Note
the following:

• If another process q succeeds in stealing items from
p's deque concurrently to p's successful steal-attempt,
then p might fail in updating its own steaIRange, but
it would still manage to update its bot and complete
the steal successfully.

• Although tryToSteal can be performed within a signal-
handler, it is required that no local operations (namely
pushBottom or pop Bottom) are performed concurrently
with tryToSteal's execution.

unsigned int *tryToSteal(ExDeque d, int pLen){

rangeLen = length of d.oldStealRange
oldLen = length of d.deque
IF pLen> 2*rangeLen -2

return 0 (no need to steal)
numToSteal = rangeLen - pLen/2
Copy first numToSteal items to the bottom of local deq

newSRLen = max(l, 2"(i-2)) [where 2"i <= oldLen < 2"(i+i)]
CAS-update d.stealRange to contain newSRLen items

IF CAS was performed successfully
{
update local bot to insert stolen items to the deque
newDeqLen = new number of items at the local deque
newSRLen=max(l,2"i) [where 2"(i+2)> newDeqLen >=2"(i+i)]
CAS-update local stealRange to contain newSRLen items
IF CAS was performed successfully

prevStealRange = stealRange
return numToSteal;
)

ELSE
return 0;

)

Figure 7: tryToSteal method pseudo-code

3 Analysis

In our analysis, we investigate the properties of the StealHalf
algorithm under the probabilistic balancing policy, aiming to
show that under reasonable assumptions, it keeps the system
balanced. The probabilistic balancing policy we employ is
very similar to the one described in [12], with the following
main differences:

1. In [12], a process initiating load-balancing can either
steal items from or insert items to a randomly selected
process, whereas in our scheme the initiating process

can only steal items. We therefore call the former
scheme symmetric probabilistic balancing and the lat-
ter asymmetric probabilistic balancing.

2. The model presented in [12] is synchronous in the sense
that it assumes that computation proceeds in time-
steps and that all processes at tempt load-balancing in
the beginning of every time-step, whereas in the asyn-
chronous model we investigate this cannot be assumed.

[12] supplies a proof that symmetric probabilistic balanc-
ing keeps the system well balanced. It turns out, however,
that this proof is incomplete. In the analysis presented in
this section, we therefore supply an alternative proof for
the symmetric case and then extend it also for asymmet-
ric probabilistic balancing and specifically for the SteaiHalf
algorithm. For lack of space, some of the proofs are omitted.

3.1 Notation

Wherever possible, we follow the notation of [12].
To simplify the analysis, we assume that an execution

is composed of a series of time-steps. In the beginning of
each time-step, all processes flip biased coins to determine
whether or not they should at tempt balancing (in other
words, they perform the balancing initiation code), and ac-
cording to the result a t tempt or do not at tempt balancing.

Let Lp,t denote the number of items in p's work-pile in
the beginning of step t; also, let At denote the average sys-
tem workload in the beginning of step t, namely:

At - ~ p e P Lp,~
[Pl

Process p decides to perform a balancing attempt at time
t with probability: _e_ for some constant 1 > # > O. When Lp,t '
Lp,t equals O, we define - - - to be 1. I fp does decide to bal- Lp,t
ance at time t, then it randomly selects another process q to
balance with and tries to communicate with q to that effect.
We denote this event by select(p, q, t) and therefore we have:

1 p(s~ t (p ,x , t))= ~ , - - .
Lp,t n - - 1

If at time t any one of the processes p or q selects the other in
a balancing attempt, we denote this event by: select(p, q, t),
namely:

select(p, q, t) de] ~ = select(p, q, t) V selec~(q,p, t).

If at time t, there are a few processes that initiate a
balancing attempt with process p, then only one of them
gets selected randomly. If process q is the one, we say that
q approaches p at time t and we denote this event by ap-
proaches(q,p,t). If process q is the only process initiating a
balancing attempt with p at time t, then approaches(q,p,t)
also holds. If at time t, approaches(q,p,t) and p does not ini-
tiate a balancing attempt at time t, then p and q balance at
time t. We denote a balancing event between p and q at time
t by: balance(p, q, t). If at time t, approaches(q,p,t) and ap-
proaches(p,q,t), then p and q balance at time t. If at time t,
approaches(p,q,t) and approaches(q,r,t), where p ¢ r, then q
decides between p and r with equal probability. We denote
this event by decide(q,x,t). Finally, if at time t both de-
cide(p,q,t) and decide(q,p,t) hold, then balance(p, q, t) holds.

The changes in the work-pile size of any process p at
time step t come from two sources: items which are added

285

or consumed due to the code executed by p at tha t step,
and items added as a result of balancing operations. Let
contrib[p, t] denote the change in the size of p 's work-pile at
t ime-step t which is a result of a balancing operation.

In Section 3.2 we analyze symmetric probabilistic bal-
ancing. In Section 3.3 we analyze asymmetric probabilistic
balancing in general, and the StealHalf algorithm in partic-
ular.

3.2 Symmetric probabilistic balancing analysis
In the following we investigate the relationship between p's
work-pile size in the beginning of t ime-step t, and the ex-
pectance of contrib[p, t].

L e m m a 3.1 For all p and t we have:

P(select(p,x , t)) = 1 -- (1 # 1 1)(1 # 1
- - Lp,---~ n - Lx,t n - 1)"

P r o o f

select(p, q, t) gel ~ = select(p, q, t) V t). select(q, p,

Consequently we have:

P(select(p, q, t)) = 1 - P(-~select(p, q, t)) =

(1 - P(-~se~ect(p, q, t))P(-~se~ect(q,p, t))).

Finally note, tha t for all different pairs of processes x, y
and for all t:

tt 1
P(-~select(x, y, t)) = 1 -- ~ * n -- 1"

Q.E.D.

L e m m a 3.2 Let hi, 1 < i < n be n positive real-numbers,
then the following holds:

~ n
- ~ > n - - "

i=1 a i -- (2 i = l a i) / n

P r o o f We actually have to prove that16:

ai aj
i=1 j = l

Note tha t for every two positive real-numbers a, b we
have:

a b
+ - > 2. (1)

a

By using inequality 1 we get:

(~ ~ 1 = n + - E (aj. ~) (~) = 2 hi) aj -q- > n + 2 * n .
i=1 j = l l<i~j_<n

Q.E.D.
The following lemma states tha t P(select(p,q, t)) and

P(balanee(p, q, t) differ only by a constant factor.

16This l e m m a is a c t u a l l y a r e p h r a s i n g of t h e a r i t h m e t i c / h a r m o n i c
m e a n inequa l i ty . S ince t h e p r o o f is ve ry s h o r t , we p rov ide i t for t h e
sake of p r e s e n t a t i o n - c o m p l e t e n e s s .

L e m m a 3.3 For every step t, and for every two processes
p and q,

2~P(select (p , q, t)) < P(balance(p, q, t)) < P(select(p, q, t)).

Proof outline: p and q can balance at step t only if at least
one of them selects the other at tha t step. Consequently

P(balance(p, q, t)) < P(select(p, q, t)).

As for the other direction, note tha t if all the following
conditions hold, it is guaranteed tha t balance(p, q, t) holds:

C1: select(p,q, t) holds;

C2: No other process r selects p or q at t ime t, namely:

Vr ~ p, q : -~select(r, p, t) A -~select(r, q, t).

C3: Neither of p, q select another process r at t ime t, or the
following holds: p[q] selects q[p], q[p] selects a different
process r, but q[p] decides to balance with p[q] rather
than with r. In other words:

(Vr # p, q : (-~select(p, r, t) A select(q, r, t)) OR
3r : [(select(p, q, t) A select(q, r, t) A decide(q, p, t))] OR
3r : [select(q,p, t) A select(p, r, t) A decide(p, q, t)]

Consequently we have:

P(balance(p, q, t)) > P(select(p, q, t)) * P(C2) * P(C3) .

In the full proof we show tha t P(C2) ~ e~ and
1 and thus obtain the result. P (C3) >

T h e o r e m 3.4 Let Lp,t = hAt , a > 1, then:

E[contrib(p, t)] = - f l (a) .

P r o o f Clearly

- - L p , ~
E[contrib(p,t)] = E P[balance(p,x,t)]L~'t 2

x 6 P , x ~ p
(2)

Let P~- denote the set of processes whose work-pile size
is larger than hAt at the beginning of t ime-step t, and let
P~ = P - P~+. We get:

E[eontrib(p,t)] = ~ c p + P[balance(p,x,t)]L~'~Le,'
+ ~ z e p z P[balance(p, x, t)] n*'*~ Le't

(3)
Note, tha t the summation over P~+ contains only positive

summands, whereas the summation over P~- contains only
non-positive summands. Consequently, we can use Lemma
3.3 (for each summation separately) to get:

Lz, t - -Lp, t E[contrib(p,t)] < ~ & + P [s e l e e t (p , x , t)] 2
+ 2~ E ~ p j P[select(p, x, t)] L~,,~Lp,,

(4)
We now bound each sum separately from above. We

star t with the positive summands. By using Lemma 3.1 we
get:

ExeP~- P[seleet(p, x, t)] Lx"~ Lr't =

286

E ~ e p 2 . (l _ (l _ t~ ~-~-y)(1- t~ ~_~_y))~_~_~_~2i =
Lp, t L~, t

By multiplying and re-arranging we get:

L~,t
= E 2(ntt--1) Lp,t

x e P~ r

p Lp,t
2 (n - 1) L~,t

xePa +

#2 1 1
+ E 2 (n : ~) 2 (~ . t Lp,t)"

We now bound A, - B and C:

A = ~ 2(~-1)L~,~ ~ c P 2 - L = ' t < - - 2 (n - -1)Lp , t ExeP L~,t

= t~ nAt ---- ~n
2 (n - - 1) a A t 2a(n-- 1) < 1.

B is positive and so - B is bound by 0 from above. As
for C: #2 #2

C< 2(n_1)2(1+1+. . .+1~,<_/ <--
-- -- n "

IP2-1

Combining the upper bounds for A, -B and C we get:

- Lp,t < 2. (5) E P[balance(p, x, t)] L~,t 2 -

xe Pa +

Now, we bound the negative summands. First, note that
IPa+l _< a n- and so IP~I _> n(l - 2)"

Again, by multiplying and re-arranging summands we
get the same A, -B and C components, and we bound them

from above. A and C can be bounded by 1 and ~- respee-
n

tively, in exactly the same way it was done for the positive
summands; as for B:

Lp,t _ # s A t 1
B - - E 2(n p--1) L=,t 2 ~ - - - i) E (6) L~,t

zEP~- zEP~-
• I

Noting that the average work-pile length for processes in
Pj is not more than At~ and using Lemma 3.2 we get:

S _> _ _ n (1 - ~-)
At

By substituting this upper bound for S in Equation 6 we
get:

B_> (2(---(-(-(-(-(-(-(-(~_ 1) " ' # s A t ~(n(1 ~)) _ > _ 1 # (1 ~ - ~) s = e (s) .

Combining the upper bounds on A, B and C, we get:

Lx,t Lp,t E P[balance(p,x, t)]
2

xEPZ
- a (s) . (7)

Finally, substituting the upper bounds of Equations 5
and 7 in Equation 4 concludes the proof of the theorem.

Q.E.D.
We now consider the effect of symmetric probabilistic

balancing, when balancing attempts are performed at a cer-
tain frequency. We define the balancing quantum as the time
duration of each time-step. If the balancing quantum is A,

1 we say that the balancing frequency is ~.
We say that a load-balancing algorithm with balancing

quantum A is locally-bounding, if there is a constant s , in-
dependent of the number of processes, such that for any
execution the following is guaranteed:

Vp, t : E[Lp,t] < sA t .

We also say that the work-queues system is s-locally
bounded at time t, if the following inequalities hold during
at time t:

Vp : Lp,t < sA t .

As noted earlier, the difference between Lp,t and Lp,t+A
comes from two sources: from the effect of a balancing op-
eration that may or may not take place at that time-step
(and its contribution is denoted by contrib[p, t]), and from
work-items that are generated
and/or consumed by p in its application execution during
that time-step.

We denote by A~ a time-quantum small enough, such
that the application execution (balancing operations notwith-
standing) does not change the length of any work-pile by
more than u items.

The following theorem proves that symmetric probabilis-
tic balancing with frequency 1 for any integer u, is a lo-
cally bounding scheme.

T h e o r e m 3.5 Assume symmetric probabilistic balancing is
employed with balancing-frequency 1 ~ , then there is a con-
stant su , not depending on the number of processes or the
application, such that if the system starts s~-locally bounded
- then the following inequalities hold:

Vp, t : E[Lp,t] < swAt.
P r o o f According to Theorem 3.4, there is a constant c,
not depending on the number of processes, such that:

(/3 > 1) A (Lp, t >/3 . At) ~ E[contrib(p, t)] < -c/3. (8)

2.~ is the constant we are seeking. We show that s~ = - U

Note, that if L(p, t) > omAt at the beginning of an execution
quantum, then E[contrib(p, t)] < -2u .

During a A~ time-quantum of execution, Lp,t can grow
by at most u items. During that period, the system average
can decrease by at most u items, so during this period (Lp, t -
At) can grow by at most 2u items. Q.E.D.

C o r o l l a r y 3.6 Assume symmetric probabilistic balancing
is employed with balancing-frequency ~,1 then there is a
constant su , not depending on the number of processes or
the application, such that if the system starts imbalanced and
runs long enough - it eventually becomes s~-locally bounded

3.3 StealHalf probabilistic balancing analysis
The scheme described in [12] is symmetric in the sense that
a balancing operation between two processes p, q can take
place if either one of them initiates it. This is not the case

287

for the StealHalf algorithm since it only allows stealing items
and does N O T support insertion of items• In other words,
if at time t, Lp,t < Lq,t, then only p can initiate a balancing
operation at that time with q, and not vice-versa. In the
following we prove that asymmetric probabilistic balancing
also possesses the nice property of being locally bounding.

The following lemma states that P(select(p,q, t)) a n d
P(balance(p,q, t) differ only by a constant factor also for
asymmetric probabilistic balancing•

L e m m a 3.7 For every time step t, and for every two pro-
cesses p and q such that Lp,t <: Lq, t it holds that:

1 P(se~ect(p,q,t)) < P(balance(p,q,t)) < P(selee~(p,q,t)).
2e 2

The proof is almost identical to the proof of Lemma 3.3.
Next, Theorem 3.8, corresponding to Theorem 3.4, is

derived for the asymmetric case.

T h e o r e m 3.8 Let Lp4 = olAf, v~ > 1, then it holds for
asymmetric probabilistic balancing that:

E[contrib(p, t)] = -~(o~).

Proof outline: Note, that Equation 4 holds also for asym-
metric balancing; however, unlike the symmetric case, where
we have to consider balancing initiation by all possible process-
pairs which include p - for asymmetric balancing, when we
consider balancing operations at time t that affect p, we only
have to consider the following event s :

1. se~ect(p,x,t), for x E P 2

2. seleel(x,p, t) , for x E P~-

The proof's structure is similar to the proof of Theorem
3.5 (the corresponding theorem for the symmetric case).

Based on Theorem 3.8, the following theorem, corre-
sponding to Theorem 3.5, is proven for the asymmetric case.
The proof is almost identical.

T h e o r e m 3.9 Assume asymmetric probabilistic balancing
is employed with balancing-frequency 1 ~ , then there is a
constant a , , not depending on the number of processes or
the application, such that if the system starts at-locally
bounded - then the following inequalities hold:

Vp, t : E[Lp,t] < c~uAt.

The following theorem states that the StealHalf algo-
r i thm maintains the following invariant for all processes p
at all times: at least one eighth the number of items in p's
deque can be stolen atomically.

T h e o r e m 3.10 Under StealHalf load balancing (for all poli-
cies) the following holds:

Vp, t : Len(steaIRange(p, t)) > Len(deq(p, t))
8

The proof proceeds by enumerating the statements which
potentially modify either Len(deq)) or Len(stealRange))
and showing that the invariant is maintained after each o n e
of them is executed. It is rather technical and for lack of
space is not provided here; still, let us explain an interesting
scenario that is encountered in the course of the proof, that
of consecutive successful steals from the same process.

Before first steal
d ~ °

stea~ U --~ ."

im ~ 31

63

~o, A , T

z>--i i
p r e ~ a l R a n g e ~2__ 12

A f t e r f i r s t s t e a l

t IRag d kq~ eo
s~ ne

first : 32
steal : 41

bot
~ 94

95

prevStealRange :

second

A f t e r s e c o n d s t e a l

d ~..~ e
stealRange : 0

~ 30

~ 45

hot :

prevSt~lRarlge :

Figure 8: A scenario of 2 consecutive steals. In the first
steal-operation, 14 items are stolen (out of the 32 items
which can be stolen atomically). In the second steal, all
of the 16 items in the stealRange are stolen. A x /s ign in
the prevStealRange box indicates that it 's equal to the steal-
Range; an X sign indicates it is different from the stealRange

Figure 3.3 shows a scenario where two consecutive steal-
operations are performed on process p's deque, while in the
meantime p is not performing any operation on its deque.
Initially, p's stealRange contains 32 items, but the first thief
only steals 14 of them (which is what it needs to balance with
p). When the thief looks at bot, it equals 95, but before the
steM's CAS operation completes, it may change within the
range [64..127]. To make sure that after the steal stealRange
would not contain more than half the remaining items, the
thief sets the new length of stealRange to be one eighth of

128 ~_ 16. the maximal possible value of bot plus 1, namely -g-
In the second steal shown at Figure Figure 3.3, the thief

steals all of the 16 items in the stealRange, and again sets
the new length of stealRange to contain ~s 2-s = 16 items.
This is correct, since this time prevStealRange differs from
stealRange, and so the local process p cannot change bot
without performing a CAS.

Remember that Theorem 3.9 above assumes synchrony,
in the sense that processing proceeds in time-steps, and all
p r o c e s s e s perform balancing-initiation in the beginning of
every time-step. Additionally, it assumes that up to half
the items of any process can be stolen atomically.

Contrary to this, the StealHalf algorithm's setting is en-
tirely asynchronous, and though the balancing frequency of
every process is guaranteed, processes perform their balancing-
initiation operations in separate times; additionally, the Steal-
Half algorithm can only guarantee that at least one eighth
of a process' items can be stolen atomically. The modifica-
tions required in the above proof to prove that StealHalf is
a locally bounding scheme are straightforward. They are not
brought here for lack of space, but are to appear in the full
paper.

4 Correctness

In the full paper we prove the following theorem which shows
that our algorithm has the same non-blocking property as
that of Arora et al: the collective progress of processes in
accessing the extended-deque structures is guaranteed.

T h e o r e m 4.1 The StealHalf algorithm on a collection of
extended-deques, with operations pushBottom, popBottom,
and tryToSteal, is non-blocking.

288

We note that both algorithms are not fault tolerant in the
sense tha t process failures, though non-blocking, can cause
the loss of items.

In [13], Shavit and Touitou formally define the semantics
of a pool da ta structure. A pool is an unordered queue,
a concurrent da ta structure tha t allows each processor to
perform sequences of push a pop operations with the usual
semantics. In the full paper we provide the proofs of the key
lemmata necessary to prove the following theorem:

T h e o r e m 4 .2
extended-deques,
and try ToSteal,
structure.

The SteaIHalf algorithm on a collection of
with operations pushBottom, popBottom,

is a correct implementation of a pool data

We define the complexity of our algorithm in terms of the
total number of synchronization operations necessary by an-
alyzing it for monotonic sequences of pushBot tom and pop-
Bottom operations. We do so since one cannot make claims
in situations where the execution pa t te rn of the underly-
ing application causes thrashing back and forth on a single
deque entry. For a given deque, a monotonic sequence is one
in which all operations are either pushBottom or popBottom
but not both, with a possible interleaving of tryToSteal op-
erations. We prove the following:

T h e o r e m 4.3 For any monotonic sequence of length k by
process p during which m successful steal attempts are per-
formed on p's extended deque, p performs at most O(log(k)+
m) CAS operations on the extended deque.

5 Acknowledgments

We would like to thank Dave Detlefs, Maurice Herlihy, Vic-
tor Luchangco, and Mark Moir for their helpful comments on
earlier drafts of our algorithm. Though he denies it and has
managed to conveniently lose all evidence, we believe Dave
Detlefs came up with a steal-half algorithm very similar to
ours in the context of his work on Sun's Parallel Garbage
Collection [5].

References

[1] ACAR, U. A., BLELLOCH, G. E., AND BLUMOFE, R. D.
The da ta locality of work stealing. In ACM Symposium
on Parallel Algorithms and Architectures (2000), pp. 1-
12.

[2] ARORA, N. S., BLUMOFE, R. D., AND PLAXTON, C. G.
Thread scheduling for mul t iprogrammed multiproces-
sors. Theory of Computing Systems 34, 2 (2001), 115-
144.

[3] BERENBRINK, P., FRIEDETZKY, T., AND GOLDBERG,
L. A. The natural work-stealing algorithm is stable.
In Proceedings of the 42th IEEE Symposium on Foun-
dations of Computer Science (FOCS) (2001), pp. 178-
187.

[4] BLUMOFE, R., AND LEISERSON, C. Scheduling multi-
threaded computat ions by work stealing. In Proceed-
ings of the 35th Annual Symposium on Foundations of
Computer Science, Santa Fe, New Mexico. (November
1994), pp. 356-368.

[5] FLOOD, C., DETLEFS, D., SHAVIT, N., AND ZHANG,
C. Parallel garbage collection for shared memory mul-
tiprocessors. In Usenix Java Virtual Machine Research
and Technology Symposium (JVM '01) (Monterey, CA,
Apr. 2001).

[6] HERLIHY, M. Wait-free synchronization. ACM Trans-
actions On Programming Languages and Systems 13, 1
(Jan. 1991), 123-149.

[7] LEISERSON, AND PLAAT. Programming parallel appli-
cations in cilk. SINEWS: SIAM News 31 (1998).

[8] LULING, R., AND MONIEN, B. A dynamic distr ibuted
load balancing algorithm with provable good perfor-
mance. In ACM Symposium on Parallel Algorithms and
Architectures (1993), pp. 164-172.

[9] MITZENMACHER, M. Analysis of load stealing models
based on differential equations. In A CM Symposium on
Parallel Algorithms and Architectures (1998), pp. 212-
221.

[10] MITZENMACHER, M. The power of two choices in ran-
domized load balancing. IEEE Transactions on Parallel
and Distributed Systems 12, 10 (2001), 1094-1104.

[11] MoIa , M. Practical implementations of non-blocking
synchronization primitives. In Proceedings of the 16th
Annual ACM Symposium on Principles of Distributed
Computing (August 1997), pp. 219-228.

[12] RUDOLPH, L., SLIVKIN-ALLALOUF, M., AND UPFAL,
E. A simple load balancing scheme for task allocation
in parallel machines. In A CM Symposium on Parallel
Algorithms and Architectures (1991), pp. 237-245.

[13] SHAVIT, N., AND TOUITOU, D. Elimination trees and
the construction of pools and stacks. Theory of Com-
puting Systems, 30 (1997), 645-670.

289

