
Introduction to Functional Programming
Lent 2005

Suggested Exercises 3

1. Sequences
De�ne a function that takes a sequence (a lazy list) of integers, and produces a
sequence containing the sums of adjacent pairs. So, the list [x1, x2, x3, x4, . . .]
would be mapped to [x1 + x2, x3 + x4, . . .].

2. Lazier Lists
The following datatype provides an alternative implementation of lazy lists
to the one given in the lectures. It avoids the unnecessary computation of
the �rst element, when it is not required.

datatype 'a seq = Nil

| Cons of unit -> 'a * 'a seq;

Modify the functions head, tail, from, and get to work with this datatype.

Repeat Question 1 for this datatype.

3. Searching
Suppose there are three missionaries and three cannibals who need to cross to
the far side of a river using a single boat that can carry one or two people at
a time. Both groups will cooperate and can paddle back and forth freely, but
old habits will lead the cannibals to eat the missionaries if the missionaries
are ever outnumbered on either side of the river.

datatype side = Near | Far

type state = side * int * int

An instance of state, e.g., (side, missionaries, cannibals), tells where the
boat is and how many people from each group remain on the near side at the
moment represented by that state. The number from each group already on
the far shore is implied. Each time the state changes, side should alternate
and one or two people should move with the boat to the opposite shore.

Write a function that takes an initial state such as (Near,3,3) as its argu-
ment and returns the shortest complete list of states to safely move everyone
to the far side, i.e., to the state (Far,0,0).

1


