Introduction to Functional Programming
Lent 2005
Suggested Exercises 2

1. Binary Trees

Write a function reverse which creates the mirror image of a binary tree.
That is, if T" is a binary tree, then reverse(7') is a binary tree in which, at
every node, left and right branches are interchanged.

Write a function totree of type >a list -> ’a tree which takes a sorted
list and creates a balanced binary tree with the same elements. Use a simple
binary tree (not a red-black tree); choose the order in which you insert the
elements to ensure that the tree is balanced.

2. Functional Queues

The functional queue implementation we discussed can be extended to sup-
port a double-ended queue, or deque, which allows reads and writes to both
ends of the queue. The invariant is updated to be symmetric in its treatment
of f and r: both are required to be non-empty whenever the deque contains
two or more elements. When one list becomes empty, we split the other list
in half and reverse one of the halves.

(a) Implement this version of deques, including cons, head, and tail, which
insert, inspect, and remove the front element, and snoc, last, and init,
which insert, inspect, and remove the rear element.

(b) Prove that each operation takes O(1) amortized run time using the po-
tential function ®(f,) = abs(|f|—|r|). The amortized cost of each operation
is the actual cost of that operation plus the change it causes in ®. For regular
queues, the potential function is ®(r) = |r|.

(Based on Exercise 5.1 from Purely Functional Data Structures)

3. Merge Sort
Write a generic version of mergesort, which takes a comparison function as
argument.

4. Minimum

Write a functional to compute the minimum value min!™;" f () of a function f.
Use the functional to express the two dimensional minimum minﬁglmin;‘;& 9(i,7)
of a function g of two arguments.

