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Signals

→ flow of information

→ measured quantity that varies with time (or position)

→ electrical signal received from a transducer
(microphone, thermometer, accelerometer, antenna, etc.)

→ electrical signal that controls a process

Continuous-time signals: voltage, current, temperature, speed, . . .

Discrete-time signals: daily minimum/maximum temperature,
lap intervals in races, sampled continuous signals, . . .

Electronics can only deal easily with time-dependent signals, therefore spatial signals, such as
images, are typically first converted into a time signal with a scanning process (TV, fax, etc.).
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Signal processing
Signals may have to be transformed in order to

→ amplify or filter out embedded information

→ detect patterns

→ prepare the signal to survive a transmission channel

→ prevent interference with other signals sharing a medium

→ undo distortions contributed by a transmission channel

→ compensate for sensor deficiencies

→ find information encoded in a different domain

To do so, we also need

→ methods to measure, characterise, model and simulate trans-
mission channels

→ mathematical tools that split common channels and transfor-
mations into easily manipulated building blocks
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Analog electronics

Passive networks (resistors, capacities,
inductivities, crystals, SAW filters),
non-linear elements (diodes, . . . ),
(roughly) linear operational amplifiers

Advantages:� passive networks are highly linear
over a very large dynamic range
and large bandwidths� analog signal-processing circuits
require little or no power� analog circuits cause little addi-
tional interference
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Digital signal processing
Analog/digital and digital/analog converter, CPU, DSP, ASIC, FPGA.

Advantages:

→ noise is easy to control after initial quantization

→ highly linear (within limited dynamic range)

→ complex algorithms fit into a single chip

→ flexibility, parameters can easily be varied in software

→ digital processing is insensitive to component tolerances, aging,
environmental conditions, electromagnetic interference

But:

→ discrete time processing artifacts (aliasing)

→ can require significantly more power (battery, cooling)

→ digital clock and switching cause interference
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Typical DSP applications

→ communication systems
modulation/demodulation, channel
equalization, echo cancellation

→ consumer electronics
perceptual coding of audio and video
on DVDs, speech synthesis, speech
recognition

→ music
synthetic instruments, audio effects,
noise reduction

→ medical diagnostics
magnetic-resonance and ultrasonic
imaging, computer tomography,
ECG, EEG, MEG, AED, audiology

→ geophysics
seismology, oil exploration

→ astronomy
VLBI, speckle interferometry

→ experimental physics
sensor-data evaluation

→ aviation
radar, radio navigation

→ security
steganography, digital watermarking,
biometric identification, surveillance
systems, signals intelligence, elec-
tronic warfare

→ engineering
control systems, feature extraction
for pattern recognition
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Syllabus
Signals and systems. Discrete sequences and systems, their types and properties. Linear time-
invariant systems, convolution. Harmonic phasors are the eigen functions of linear time-invariant
systems. Review of complex arithmetic.

MATLAB. Use of MATLAB on PWF machines to perform numerical experiments and visualise
the results in homework exercises.

Fourier transform. Harmonic phasors as orthogonal base functions. Forms of the Fourier trans-
form, convolution theorem, Dirac’s delta function, impulse combs in the time and frequency
domain.

Discrete sequences and spectra. Periodic sampling of continuous signals, periodic signals, alias-
ing, sampling and reconstruction of low-pass and band-pass signals, spectral inversion.

Discrete Fourier transform. Continuous versus discrete Fourier transform, symmetry, linearity,
review of the FFT, real-valued FFT.

Spectral estimation. Leakage and scalloping phenomena, windowing, zero padding.

Finite and infinite impulse-response filters. Properties of filters, implementation forms, window-
based FIR design, use of frequency-inversion to obtain high-pass filters, use of modulation to
obtain band-pass filters, FFT-based convolution, polynomial representation, z-transform, zeros
and poles, use of analog IIR design techniques (Butterworth, Chebyshev I/II, elliptic filters).

Random sequences and noise. Random variables, stationary processes, autocorrelation, cross-
correlation, deterministic crosscorrelation sequences, filtered random sequences, white noise, av-
eraging, noise reduction filters, exponential averaging, periodic averaging.

(If time permits, we may also briefly visit of some modulation techniques.)
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Objectives
By the end of the course, you should

→ be able to apply basic properties of time-invariant linear systems

→ understand sampling, aliasing, convolution, filtering, the pitfalls
of spectral estimation

→ be able to explain the above in time and frequency domain
representations

→ be competent to use filter-design software

→ be able to visualise and discuss digital filters in the z-domain

→ be able to use the FFT for convolution, deconvolution, filtering

→ be able to implement, apply and evaluate simple DSP applica-
tions in MATLAB
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Textbooks

→ R.G. Lyons: Understanding digital signal processing. Prentice-
Hall, 2004. (£45)

→ A.V. Oppenheim, R.W. Schafer: Discrete-time signal process-

ing. 2nd ed., Prentice-Hall, 1999. (£47)

→ J. Stein: Digital signal processing – a computer science per-

spective. Wiley, 2000. (£74)

→ S.W. Smith: Digital signal processing – a practical guide for

engineers and scientists. Newness, 2003. (£40)

→ K. Steiglitz: A digital signal processing primer – with appli-

cations to digital audio and computer music. Addison-Wesley,
1996. (£40)

→ Sanjit K. Mitra: Digital signal processing – a computer-based

approach. McGraw-Hill, 2002. (£38)
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Sequences and systems
A discrete sequence {xn} is a sequence of numbers

. . . , x−2, x−1, x0, x1, x2, . . .

where xn denotes the n-th number in the sequence (n ∈ Z). A discrete
sequence maps integer numbers onto real (or complex) numbers.
The notation is not well standardized. Some authors write x[n] instead of xn, others x(n).

Where a discrete sequence {xn} samples a continuous function x(t) as

xn = x(ts · n) = x(n/fs),

we call ts the sampling period and fs = 1/ts the sampling frequency.

A discrete system T receives as input a sequence {xn} and transforms
it into an output sequence {yn} = T{xn}:

. . . , x2, x1, x0, x−1, . . . . . . , y2, y1, y0, y−1, . . .
discrete

system T
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Properties of sequences
A sequence {xn} is

absolutely summable ⇔
∞
∑

n=−∞
|xn| < ∞

square summable ⇔
∞
∑

n=−∞
|xn|2 < ∞

periodic ⇔ ∃k > 0 : ∀n ∈ Z : xn = xn+k

A square-summable sequence is also called an energy signal, and

∞
∑

n=−∞

|xn|2

its energy. This terminology reflects that if U is a voltage supplied to a load resistor
R, then P = UI = U2/R is the power consumed.

So even where we drop physical units (e.g., volts) for simplicity in sequence calcu-
lations, it is still customary to refer to the squared values of a sequence as power

and to its sum or integral over time as energy.
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A non-square-summable sequence is a power signal if its average power

lim
k→∞

1

1 + 2k

k
∑

n=−k

|xn|2

exists.

Special sequences

Unit-step sequence:

un =

{

0, n < 0
1, n ≥ 0

Impulse sequence:

δn =

{

1, n = 0
0, n 6= 0

= un − un−1
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Types of discrete systems
A causal system cannot look into the future:

yn = f(xn, xn−1, xn−2, . . .)

A memory-less system depends only on the current input value:

yn = f(xn)

A delay system shifts a sequence in time:

yn = xn−d

T is a time-invariant system if for any d

{yn} = T{xn} ⇐⇒ {yn−d} = T{xn−d}.

T is a linear system if for any pair of sequences {xn} and {x′
n}

T{a · xn + b · x′
n} = a · T{xn} + b · T{x′

n}.
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Examples:
The accumulator system

yn =
n
∑

k=−∞
xk

is a causal, linear, time-invariant system with memory, as are the back-

ward difference system

yn = xn − xn−1,

the M-point moving average system

yn =
1

M

M−1
∑

k=0

xn−k =
xn−M+1 + · · · + xn−1 + xn

M

and the exponential averaging system

yn = α · xn + (1 − α) · yn−1 = α

∞
∑

k=0

(1 − α)k · xn−k.
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Examples for time-invariant non-linear memory-less systems are

yn = x2
n, yn = log2 xn, yn = max{min{⌊256xn⌋, 255}, 0},

examples for linear but not time-invariant systems are

yn =

{

xn, n ≥ 0
0, n < 0

= xn · un

yn = x⌊n/4⌋

yn = xn · ℜ(eωjn)

and examples for linear time-invariant non-causal system are

yn =
1

2
(xn−1 + xn+1)

yn =
9
∑

k=−9

xn+k ·
sin(πkω)

πkω
· [0.5 + 0.5 · cos(πk/10)]

15

Constant-coefficient difference equations
Of particular practical interest are causal linear time-invariant systems
of the form

yn = b0 · xn −
N
∑

k=1

ak · yn−k z−1

z−1

z−1

ynxn b0

yn−1

yn−2

yn−3

−a1

−a2

−a3

Block diagram representation
of sequence operations:

z−1

xn

xn

xn

x′
n

xn−1

axna

xn + x′
n

Delay:

Addition:

Multiplication
by constant:

The ak and bm are
constant coefficients.
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or

yn =
M
∑

m=0

bm · xn−m

z−1 z−1 z−1
xn

yn

b0 b1 b2 b3

xn−1 xn−2 xn−3

or the combination of both:

N
∑

k=0

ak · yn−k =
M
∑

m=0

bm · xn−m

z−1

z−1

z−1z−1

z−1

z−1

b0

yn−1

yn−2

yn−3

xn a−1
0

b1

b2

b3

xn−1

xn−2

xn−3

−a1

−a2

−a3

yn

The MATLAB function filter is an efficient implementation of the last variant.
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Convolution

All linear time-invariant (LTI) systems can be represented in the form

yn =
∞
∑

k=−∞
ak · xn−k

where {ak} is a suitably chosen sequence of coefficients.

This operation over sequences is called convolution and defined as

{pn} ∗ {qn} = {rn} ⇐⇒ ∀n ∈ Z : rn =
∞
∑

k=−∞
pk · qn−k.

If {yn} = {an} ∗ {xn} is a representation of an LTI system T , with
{yn} = T{xn}, then we call the sequence {an} the impulse response

of T , because {an} = T{δn}.
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Convolution examples

A B C D

E F A∗ B A∗ C

C∗ A A∗ E D∗ E A∗ F
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Properties of convolution
For arbitrary sequences {pn}, {qn}, {rn} and scalars a, b:

→ Convolution is associative

({pn} ∗ {qn}) ∗ {rn} = {pn} ∗ ({qn} ∗ {rn})

→ Convolution is commutative

{pn} ∗ {qn} = {qn} ∗ {pn}

→ Convolution is linear

{pn} ∗ {a · qn + b · rn} = a · ({pn} ∗ {qn}) + b · ({pn} ∗ {rn})

→ The impulse sequence (slide 12) is neutral under convolution

{pn} ∗ {δn} = {δn} ∗ {pn} = {pn}

→ Sequence shifting is equivalent to convolving with a shifted
impulse

{pn−d} = {pn} ∗ {δn−d}
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Can all LTI systems be represented by convolution?
Any sequence {xn} can be decomposed into a weighted sum of shifted
impulse sequences:

{xn} =
∞
∑

k=−∞
xk · {δn−k}

Let’s see what happens if we apply a linear(∗) time-invariant(∗∗) system
T to such a decomposed sequence:

T{xn} = T

( ∞
∑

k=−∞
xk · {δn−k}

)

(∗)
=

∞
∑

k=−∞
xk · T{δn−k}

(∗∗)
=

∞
∑

k=−∞
xk · {δn−k} ∗ T{δn} =

( ∞
∑

k=−∞
xk · {δn−k}

)

∗ T{δn}

= {xn} ∗ T{δn} q.e.d.

⇒ The impulse response T{δn} fully characterizes an LTI system.
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Exercise 1 What type of discrete system (linear/non-linear, time-invariant/
non-time-invariant, causal/non-causal, causal, memory-less, etc.) is:

(a) yn = |xn|

(b) yn = −xn−1 + 2xn − xn+1

(c) yn =
8
∏

i=0

xn−i

(d) yn = 1
2(x2n + x2n+1)

(e) yn =
3xn−1 + xn−2

xn−3

(f) yn = xn · en/14

(g) yn = xn · un

(h) yn =
∞
∑

i=−∞
xi · δi−n+2

Exercise 2

Prove that convolution is (a) commutative and (b) associative.
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Exercise 3 A finite-length sequence is non-zero only at a finite number of
positions. If m and n are the first and last non-zero positions, respectively,
then we call n−m+1 the length of that sequence. What maximum length
can the result of convolving two sequences of length k and l have?

Exercise 4 The length-3 sequence a0 = −3, a1 = 2, a2 = 1 is convolved
with a second sequence {bn} of length 5.

(a) Write down this linear operation as a matrix multiplication involving a
matrix A, a vector ~b ∈ R

5, and a result vector ~c.

(b) Use MATLAB to multiply your matrix by the vector ~b = (1, 0, 0, 2, 2)
and compare the result with that of using the conv function.

(c) Use the MATLAB facilities for solving systems of linear equations to
undo the above convolution step.

Exercise 5 (a) Find a pair of sequences {an} and {bn}, where either
contains at least three different values and where the convolution {an}∗{bn}
results in an all-zero sequence.

(b) Does every LTI system T have an inverse LTI system T−1 such that
{xn} = T−1T{xn} for all sequences {xn}? Why?
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Direct form I and II implementations

z−1

z−1

z−1 z−1

z−1

z−1

b0

b1

b2

b3

a−1
0

−a1

−a2

−a3

xn−1

xn−2

xn−3

xn

yn−3

yn−2

yn−1

yn

=

z−1

z−1

z−1

a−1
0

−a1

−a2

−a3

xn

b3

b0

b1

b2

yn

The block diagram representation of the constant-coefficient difference
equation on slide 17 is called the direct form I implementation. The
number of delay elements can be halved by using the commutativity
of convolution to swap the two feedback loops, leading to the direct

form II implementation of the same LTI system.
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Convolution: optics example
If a projective lens is out of focus, the blurred image is equal to the
original image convolved with the aperture shape (e.g., a filled circle):

∗ =

Point-spread function h (disk, r = as
2f

):

h(x, y) =

 1
r2π

, x2 + y2 ≤ r2

0, x2 + y2 > r2

Original image I, blurred image B = I ∗ h, i.e.

B(x, y) =

ZZ

I(x−x′, y−y′) ·h(x′, y′) ·dx′dy′

a

f

image plane

s

focal plane
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Convolution: electronics example

R

Uin C Uout

 

Uin

Uout

t 0
0

ω (= 2πf)

U
o
u
t

1/R C

Uin

Uin√
2

Any passive network (R, L, C) convolves its input voltage Uin with an
impulse response function h, leading to Uout = Uin ∗ h, that is

Uout(t) =

∫ ∞

−∞
Uin(t − τ) · h(τ) · dτ

In this example:

Uin − Uout

R
= C · dUout

dt
, h(t) =

{

1
RC

· e −t
RC , t ≥ 0

0, t < 0
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Why are sine waves useful?
1) Adding together sine waves of equal frequency, but arbitrary ampli-
tude and phase, results in another sine wave of the same frequency:

A1 · sin(ωt + ϕ1) + A2 · sin(ωt + ϕ2) = A · sin(ωt + ϕ)

with

A =
√

A2
1 + A2

2 + 2A1A2 cos(ϕ2 − ϕ1)

tan ϕ =
A1 sin ϕ1 + A2 sin ϕ2

A1 cos ϕ1 + A2 cos ϕ2

ωt

A2
A

A1

ϕ2

ϕ
ϕ1

A1 · sin(ϕ1)

A2 · sin(ϕ2)

A2 · cos(ϕ2)

A1 · cos(ϕ1)

Also

A · sin(ωt + ϕ) =

a · sin(ωt) + b · cos(ωt)

with A =
√

a2 + b2 and tan ϕ = b
a
.
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Note: Convolution of a discrete sequence {xn} with another sequence
{yn} is nothing but adding together scaled and delayed copies of {xn}.
(Think of {yn} as decomposition into a sum of impulses.)

If {xn} is a sampled sine wave of frequency f , so is {xn} ∗ {yn}!
=⇒ Sine-wave sequences form a family of discrete sequences
that is closed under convolution with arbitrary sequences.

The same applies for continuous sine waves and convolution.

2) Sine waves are orthogonal to each other:

∫ ∞

−∞
sin(ω1t + ϕ1) · sin(ω2t + ϕ2) dt = 0

⇐⇒ ω1 6= ω2 ∨ ϕ1 − ϕ2 = (2k + 1)π (k ∈ Z)

They can be used to form an orthogonal function basis for a transform.
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Why are exponential functions useful?
Adding together two exponential functions with the same base z, but
different scale factor and offset, results in another exponential function
with the same base:

A1 · zt+ϕ1 + A2 · zt+ϕ2 = A1 · zt · zϕ1 + A2 · zt · zϕ2

= (A1 · zϕ1 + A2 · zϕ2) · zt = A · zt

Likewise, if we convolve a sequence {xn} of values

. . . , z−3, z−2, z−1, 1, z, z2, z3, . . .

xn = zn with an arbitrary sequence {hn}, we get {yn} = {zn} ∗ {hn},

yn =
∞
∑

k=−∞
xn−k ·hk =

∞
∑

k=−∞
zn−k ·hk = zn ·

∞
∑

k=−∞
z−k ·hk = zn ·H(z)

where H(z) is independent of n.
Exponential sequences are closed under convolution with
arbitrary sequences. The same applies in the continuous case.
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Why are complex numbers so useful?
1) They give us all n solutions (“roots”) of equations involving poly-
nomials up to degree n (the

√
−1 = j story).

2) They form the “great unifying theory” that combines sine functions
and exponential functions:

cos(ωt) =
1

2

(

e jωt + e− jωt
)

sin(ωt) =
1

2j

(

e jωt − e− jωt
)

or

cos(ωt + ϕ) =
1

2

(

e jωt+ϕ + e− jωt−ϕ
)

or

cos(ωn + ϕ) = ℜ{e jωn+ϕ} = ℜ{(e jω)n · e jϕ}
sin(ωn + ϕ) = ℑ{e jωn+ϕ} = ℑ{(e jω)n · e jϕ}
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We can now represent sine waves as projections of a rotating complex
vector. This allows us to represent sine-wave sequences as exponential
sequences with basis e jω.

A phase shift in such a sequence corresponds to a rotation of a complex
vector.

3) Complex multiplication allows us to modify the amplitude and phase
of a complex rotating vector using a single operation and value.

Rotation of a 2D vector in (x, y)-form is notationally slightly messy,
but fortunately j2 = −1 does exactly what is required here:

(

x3

y3

)

=

(

x2 −y2

y2 x2

)

·
(

x1

y1

)

=

(

x1x2 − y1y2

x1y2 + x2y1

)

z1 = x1 + jy1, z2 = x2 + jy2

z1 · z2 = x1x2 − y1y2 + j(x1y2 + x2y1)

(x2, y2)

(x1, y1)

(x3, y3)

(−y2, x2)
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Complex phasors
Amplitude and phase are two distinct characteristics of a sine function
that are inconvenient to keep separate notationally.

Complex functions (and discrete sequences) of the form

A · e jωt+ϕ = A · [cos(ωt + ϕ) + j · sin(ωt + ϕ)]

(where j2 = −1) are able to represent both amplitude and phase in
one single algebraic object.

Thanks to complex multiplication, we can also incorporate in one single
factor both a multiplicative change of amplitude and an additive change
of phase of such a function. This makes discrete sequences of the form

xn = e jωn

eigensequences with respect to an LTI system T , because for each ω,
there is a complex number (eigenvalue) H(ω) such that

T{xn} = H(ω) · {xn}
In the notation of slide 29, where the argument of H is the base, we would write H(e jω).
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Recall: Fourier transform
The Fourier integral transform and its inverse are defined as

F{g(t)}(ω) = G(ω) = α

∫ ∞

−∞
g(t) · e∓ jωt dt

F−1{G(ω)}(t) = g(t) = β

∫ ∞

−∞
G(ω) · e± jωt dω

where α and β are constants chosen such that αβ = 1/(2π).
Many equivalent forms of the Fourier transform are used in the literature, and there is no strong
consensus on whether the forward transform uses e− jωt and the backwards transform e jωt, or
vice versa. Some authors set α = 1 and β = 1/(2π), to keep the convolution theorem free of a
constant prefactor; others use α = β = 1/

√
2π, in the interest of symmetry.

The substitution ω = 2πf leads to a form without prefactors:

F{h(t)}(f) = H(f) =

∫ ∞

−∞
h(t) · e∓2π jft dt

F−1{H(f)}(t) = h(t) =

∫ ∞

−∞
H(f)· e±2π jft df
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Another notation is in the continuous case

F{h(t)}(ω) = H(e jω) =

∫ ∞

−∞
h(t) · e− jωt dt

F−1{H(e jω)}(t) = h(t) =
1

2π

∫ ∞

−∞
H(e jω) · e jωt dω

and in the discrete-sequence case

F{hn}(ω) = H(e jω) =
∞
∑

n=−∞
hn · e− jωn

F−1{H(e jω)}(t) = hn =
1

2π

∫

π

−π

H(e jω) · e jωn dω

which treats the Fourier transform as a special case of the z-transform
(to be introduced shortly).
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Convolution theorem
Continuous form:

F{(f ∗ g)(t)} = F{f(t)} · F{g(t)}

F{f(t) · g(t)} = F{f(t)} ∗ F{g(t)}

Discrete form:

{xn} ∗ {yn} = {zn} ⇐⇒ X(e jω) · Y (e jω) = Z(e jω)

Convolution in the time domain is equivalent to (complex) scalar mul-
tiplication in the frequency domain.

Convolution in the frequency domain corresponds to scalar multiplica-
tion in the time domain.

Proof: z(r) =
R

s x(s)y(r − s)ds ⇐⇒
R

r z(r)e− jωrdr =
R

r

R

s x(s)y(r − s)e− jωrdsdr =
R

s x(s)
R

r y(r − s)e− jωrdrds =
R

s x(s)e− jωs
R

r y(r − s)e− jω(r−s)drds
t:=r−s

=
R

s x(s)e− jωs
R

t y(t)e− jωtdtds =
R

s x(s)e− jωsds ·
R

t y(t)e− jωtdt. (Same for
P

instead of
R

.)
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Dirac’s delta function
The continuous equivalent of the impulse sequence {δn} is known as
Dirac’s delta function δ(x). It is a generalized function, defined such
that

δ(x) =

{

0, x 6= 0
∞, x = 0

∫ ∞

−∞
δ(x) dx = 1

0 x

1

and can be thought of as the limit of function sequences such as

δ(x) = lim
n→∞

{

0, |x| ≥ 1/n
n/2, |x| < 1/n

or
δ(x) = lim

n→∞

n√
π

e−n2x2

The delta function is mathematically speaking not a function, but a distribution, that is an
expression that is only defined when integrated.
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Some properties of Dirac’s delta function:

∫ ∞

−∞
f(x)δ(x − a) dx = f(a)

∫ ∞

−∞
e±2π jftdf = δ(t)

1

2π

∫ ∞

−∞
e± jωtdω = δ(t)

Fourier transform:

F{δ(t)}(ω) =

∫ ∞

−∞
δ(t) · e− jωt dt = e0 = 1

F−1{1}(t) =
1

2π

∫ ∞

−∞
1 · e jωt dω = δ(t)

http://mathworld.wolfram.com/DeltaFunction.html
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Sine and cosine in the frequency domain

cos(2πft) =
1

2
e2π jft +

1

2
e−2π jft sin(2πft) =

1

2j
e2π jft − 1

2j
e−2π jft

−f f

−f

f

As any real-valued signal x(t) can be represented as a combination
of sine and cosine functions, the spectrum of any real-valued signal
will show the symmetry X(e jω) = [X(e− jω)]∗, where ∗ denotes the
complex conjugate (i.e., negated imaginary part).
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Sampling using a Dirac comb
The loss of information in the sampling process that converts a con-
tinuous function x(t) into a discrete sequence {xn} defined by

xn = x(ts · n) = x(n/fs)

can be modelled through multiplying x(t) by a comb of Dirac impulses

s(t) =
∞
∑

n=−∞
δ(t − ts · n)

to obtain the sampled function

x̂(t) = x(t) · s(t)

The function x̂(t) now contains exactly the same information as the
discrete sequence {xn}, but is still in a form that can be analysed using
the Fourier transform on continuous functions.
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The Fourier transform of a Dirac comb

s(t) =
∞
∑

n=−∞
δ(t − ts · n)

is another Dirac comb

S(f) = F
{ ∞
∑

n=−∞
δ(t − tsn)

}

(f) =

∞
∫

−∞

∞
∑

n=−∞
δ(t − tsn) e2π jftdt =

1

ts

∞
∑

n=−∞
δ

(

f − n

ts

)

.

ts

s(t) S(f)

fs−2ts −ts 2ts −2fs −fs 2fs0 0 ft
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Sampling, aliasing and Nyquist limit

0

i⋅ f
s
± f

f

A wave cos(2πtf) sampled at frequency fs cannot be distinguished
from cos(2πt(kfs ± f)) for any k ∈ Z. Therefore, ensure |f | < fs/2.
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Frequency-domain view of sampling

ffs−2fs −fs 0 2fs ffs−2fs −fs 0 2fs

f−fs 0f0 fs

Without anti-aliasing filter With anti-aliasing filter

X(f)

X̂(f)

X(f)

X̂(f)
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Reconstruction of a continuous
band-limited waveform

The ideal anti-aliasing filter for eliminating any frequency content above
fs/2 before sampling with a frequency of fs has the Fourier transform

H(f) =

{

1 if −fs

2
< f ≤ fs

2

0 otherwise
.

This leads, after an inverse Fourier transform, to the impulse response

h(t) =
sin πtfs

πtfs

.

The original band-limited signal can be reconstructed by convolving
this with the sampled signal x̂(t), which eliminates the periodicity of
the frequency domain introduced by the sampling process:

x(t) = h(t) ∗ x̂(t)

Note that sampling h(t) gives the impulse function: h(t) · s(t) = δ(t).
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Bandpass sampling
Sampled signals can be reconstructed as long as their doublesided band-
width (counting both the positive and negative frequency range) does
not exceed the sampling frequency. The anti-aliasing filter used can
also be a band-pass filter instead of a low-pass filter.

A suitably bandlimited signal x(t) with center frequency fc sampled at
frequency fs can be reconstructed by convolution with

h(t) =
sin πtfs

πtfs

· cos(2πtfc).

f0 f0

X̂(f)X(f) anti-aliasing filter reconstruction filter

−fc fc −2fs −fs fs 2fs
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Exercise 6� Generate a one second long Gaussian noise sequence {rn} (using
MATLAB function randn) with a sampling rate of 300 Hz.� Use the fir1(50, 45/150) function to design a finite impulse re-
sponse low-pass filter with a cut-off frequency of 45 Hz. Use the
filtfilt function in order to apply that filter to the generated noise
signal, resulting in the filtered noise signal {xn}.� Then sample {xn} at 100 Hz by setting all but every third sample
value to zero, resulting in sequence {yn}.� Generate another lowpass filter with a cut-off frequency of 50 Hz and
apply it to {yn}, in order to interpolate the reconstructed filtered
noise signal {zn}. Multiply the result by three, to compensate the
energy lost during sampling.� Plot {xn}, {yn}, and {zn}. Finally compare {xn} and {zn}.

Why should the first filter have a lower cut-off frequency than the second?
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Spectrum of a periodic signal
A signal x(t) that is periodic with frequency fp can be factored into a
single period ẋ(t) convolved with an impulse comb p(t). This corre-
sponds in the frequency domain to the multiplication of the spectrum
of the single period with a comb of impulses spaced fp apart.

=

x(t)

t t t

= ∗

·

X(f)

f f f

p(t)ẋ(t)

Ẋ(f) P (f)

. . . . . . . . . . . .

. . .. . .

−1/fp 1/fp0 −1/fp 1/fp0

0 fp−fp 0 fp−fp
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Spectrum of a sampled signal

A signal x(t) that is sampled with frequency fs has a spectrum that is
periodic with a period of fs.

x(t)

t t t

X(f)

f f f

0 0

0

=
. . .. . .. . . . . .

−1/fs 1/fs1/fs0−1/fs

s(t)

·

∗ =

−fs fs 0 fs−fs

. . . . . .. . .. . .

S(f)

x̂(t)

X̂(f)

48



Continuous vs discrete Fourier transform� Sampling a continuous signal makes its spectrum periodic� A periodic signal has a sampled spectrum

We sample a signal x(t) with fs, getting x̂(t). We take n consecutive
samples of x̂(t) and repeat these periodically, getting a new signal ẍ(t)
with period n/fs. Its spectrum Ẍ(f) is sampled (i.e., has non-zero
value) at frequency intervals fs/n and repeats itself with a period fs.

Now both ẍ(t) and its spectrum Ẍ(f) are finite vectors of length n.

ft

. . .. . . . . . . . .

f−1
sf−1

s 0−n/fs n/fs 0 fsfs/n−fs/n−fs

ẍ(t) Ẍ(f)
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Properties of the Fourier transform

If
x(t) •−◦ X(f) and y(t) •−◦ Y (f)

are pairs of functions that are mapped onto each other by the Fourier
transform, then so are the following pairs.

Linearity:
ax(t) + by(t) •−◦ aX(f) + bY (f)

Time scaling:

x(at) •−◦ 1

|a| X

(

f

a

)

Frequency scaling:

1

|a| x

(

t

a

)

•−◦ X(af)

50



Time shifting:

x(t − ∆t) •−◦ X(f) · e−2π jf∆t

Frequency shifting:

x(t) · e2π j∆ft •−◦ X(f − ∆f)

Parseval’s theorem (total power):

∫ ∞

−∞
|x(t)|2dt =

∫ ∞

−∞
|X(f)|2df
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Fourier transform symmetries
We call a function x(t)

odd: x(−t) = −x(t)

even: x(−t) = x(t)

and ·∗ is the complex conjugate, such that (a + jb)∗ = (a − jb).

Then

x(t) is real ⇔ X(−f) = [X(f)]∗

x(t) is imaginary ⇔ X(−f) = −[X(f)]∗

x(t) is even ⇔ X(f) is even
x(t) is odd ⇔ X(f) is odd
x(t) is real and even ⇔ X(f) is real and even
x(t) is real and odd ⇔ X(f) is imaginary and odd
x(t) is imaginary and even ⇔ X(f) is imaginary and even
x(t) is imaginary and odd ⇔ X(f) is real and odd
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Discrete Fourier Transform (DFT)

Xk =
n−1
∑

i=0

xi · e−2π j ik
n xk =

1

n
·

n−1
∑

i=0

Xi · e2π j ik
n

The n-point DFT multiplies a vector with an n × n matrix

Fn =





















1 1 1 1 · · · 1

1 e−2π j 1
n e−2π j 2

n e−2π j 3
n · · · e−2π j n−1

n

1 e−2π j 2
n e−2π j 4

n e−2π j 6
n · · · e−2π j

2(n−1)
n

1 e−2π j 3
n e−2π j 6

n e−2π j 9
n · · · e−2π j

3(n−1)
n

...
...

...
...

. . .
...

1 e−2π j n−1
n e−2π j

2(n−1)
n e−2π j

3(n−1)
n · · · e−2π j

(n−1)(n−1)
n





















Fn ·















x0

x1

x2

...
xn−1















=















X0

X1

X2

...
Xn−1















,
1

n
· F ∗

n
·















X0

X1

X2

...
Xn−1















=















x0

x1

x2

...
xn−1














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Discrete Fourier Transform visualized
























































·





























x0

x1

x2

x3

x4

x5

x6

x7





























=





























X0

X1

X2

X3

X4

X5

X6

X7





























The n-point DFT of a signal {xi} sampled at frequency fs contains in
the elements X0 to Xn/2 of the resulting frequency-domain vector the
frequency components 0, fs/n, 2fs/n, 3fs/n, . . . , fs/2, and contains
in Xn−1 downto Xn/2 the corresponding negative frequencies. Note
that for a real-valued input vector, both X0 and Xn/2 will be real, too.
Why is there no phase information recovered at fs/2?
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Fast Fourier Transform (FFT)

(

Fn{xi}n−1
i=0

)

k
=

n−1
∑

i=0

xi · e2π j ik
n

=

n
2
−1
∑

i=0

x2i · e2π j ik
n/2 + e2π j k

n

n
2
−1
∑

i=0

x2i+1 · e2π j ik
n/2

=















(

Fn
2
{x2i}

n
2
−1

i=0

)

k
+ e2π j k

n ·
(

Fn
2
{x2i+1}

n
2
−1

i=0

)

k
, k < n

2

(

Fn
2
{x2i}

n
2
−1

i=0

)

k−n
2

+ e2π j k
n ·
(

Fn
2
{x2i+1}

n
2
−1

i=0

)

k−n
2

, k ≥ n
2

The DFT over n-element vectors can be reduced to two DFTs over
n/2-element vectors plus n multiplications and n additions, leading to
log2 n rounds and n log2 n additions and multiplications overall, com-
pared to n2 for the equivalent matrix multiplication.
A high-performance FFT implementation in C with many processor-specific optimizations and
support for non-power-of-2 sizes is available at http://www.fftw.org/.
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Efficient real-valued FFT
The symmetry properties of the Fourier transform applied to the discrete
Fourier transform {Xi}n−1

i=0 = Fn{xi}n−1
i=0 have the form

∀i : xi = ℜ(xi) ⇐⇒ ∀i : Xn−i = X∗
i

∀i : xi = j · ℑ(xi) ⇐⇒ ∀i : Xn−i = −X∗
i

These two symmetries, combined with the linearity of the DFT, allows us
to calculate two real-valued n-point DFTs

{X ′
i}n−1

i=0 = Fn{x′
i}n−1

i=0 {X ′′
i }n−1

i=0 = Fn{x′′
i }n−1

i=0

simultaneously in a single complex-valued n-point DFT, by composing its
input as

xi = x′
i + j · x′′

i

and decomposing its output as

X ′
i =

1

2
(Xi + X∗

n−i) X ′′
i =

1

2
(Xi − X∗

n−i)

To optimize the calculation of a single real-valued FFT, use this trick to calculate the two half-size
real-value FFTs that occur in the first round.
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Fast complex multiplication

Calculating the product of two complex numbers as

(a + jb) · (c + jd) = (ac − bd) + j(ad + bc)

involves four (real-valued) multiplications and two additions.

The alternative calculation

(a + jb) · (c + jd) = (α − β) + j(α + γ) with
α = a(c + d)
β = d(a + b)
γ = c(b − a)

provides the same result with three multiplications and five additions.

The latter may perform faster on CPUs where multiplications take three
or more times longer than additions.
This trick is most helpful on simpler microcontrollers. Specialized signal-processing CPUs (DSPs)
feature 1-clock-cycle multipliers. High-end desktop processors use pipelined multipliers that stall
where operations depend on each other.
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FFT-based convolution
Calculating the convolution of two finite sequences {xi}m−1

i=0 and {yi}n−1
i=0

of lengths m and n via

zi =

min{m−1,i}
∑

j=max{0,i−(n−1)}
xj · yi−j, 0 ≤ i < m + n − 1

takes mn multiplications.

Can we apply the FFT and the convolution theorem to calculate the
convolution faster, in just O(m log m + n log n) multiplications?

{zi} = F−1 (F{xi} · F{yi})

There is obviously no problem if this condition is fulfilled:

{xi} and {yi} are periodic, with equal period lengths

In this case, the fact that the DFT interprets its input as a single period
of a periodic signal will do exactly what is needed, and the FFT and
inverse FFT can be applied directly as above.
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In the general case, measures have to be taken to prevent a wrap-over:

A B F−1[F(A)⋅F(B)]

A’ B’ F−1[F(A’)⋅F(B’)]

Both sequences are padded with zero values to a length of at least m+n−1.

This ensures that the start and end of the resulting sequence to not overlap.
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Zero padding is typically applied to extend the length of both sequences
to the next larger power of two (2⌈log2(m+n−1)⌉), to facilitate use of the
FFT.

With a causal sequence, simply append the padding zeros at the end.
With a non-causal sequence, values with a negative index number are
wrapped around the DFT block boundaries and appear at the right
end. In this case, zero-padding is applied in the center of the block,
between the last and first element of the sequence.

Thanks to the periodic nature of the DFT, zero padding at both ends
has the same effect as padding only at one end.

If both sequences can be loaded entirely into RAM, the FFT can be
applied to them in one step. However, one of the sequences might
be too large for that. It could also be a realtime waveform (e.g.,
a telephone signal) that must not be delayed until the end of the
transmission. In such cases, the sequence has to be split into shorter
blocks that are separately convolved and then added together with a
suitable overlap.
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Each block is zero-padded at both ends and then convolved as before:

= = =

∗ ∗ ∗

The regions originally added as zero padding are, after convolution, aligned
to overlap with the unpadded ends of their respective neighbour blocks.
The overlapping parts of the blocks are then added together.
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Deconvolution
A signal u(t) was distored by convolution with a known impulse re-
sponse h(t) (e.g., through a transmission channel or a sensor problem).
The “smeared” result s(t) was recorded.

Can we undo the damage and restore (or at least estimate) u(t)?

∗ =

∗ =
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The convolution theorem turns the problem into one of multiplication:

s(t) =

∫

u(t − τ) · h(τ) · dτ

s = u ∗ h

F{s} = F{u} · F{h}

F{u} = F{s}/F{h}

u = F−1{F{s}/F{h}}
In practice, we also record some noise n(t) (quantization, etc.):

c(t) = s(t) + n(t) =

∫

u(t − τ) · h(τ) · dτ + n(t)

Problem – At frequencies f where F{h}(f) approaches zero, the
noise will be amplified (potentially enormously) during deconvolution:

ũ = F−1{F{c}/F{h}} = u + F−1{F{n}/F{h}}
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Typical workarounds:

→ Modify the Fourier transform of the impulse response, such that
|F{h}(f)| > ǫ for some experimentally chosen threshold ǫ.

→ If estimates of the signal spectrum |F{s}(f)| and the noise
spectrum |F{n}(f)| can be obtained, then we can apply the
“Wiener filter” (“optimal filter”)

W (f) =
|F{s}(f)|2

|F{s}(f)|2 + |F{n}(f)|2
before deconvolution:

ũ = F−1{W · F{c}/F{h}}

Exercise 7 Use MATLAB to deconvolve the blurred stars from slide 25.
The files stars-blurred.png with the blurred-stars image and stars-psf.png with the impulse
response (point-spread function) are available on the course-material web page. You may find the
MATLAB functions imread, double, imagesc, circshift, fft2, ifft2 of use. Try different ways
to control the noise (see above) and distortions near the margins (windowing). [The MATLAB
image processing toolbox provides ready-made “professional” functions deconvwnr, deconvreg,
deconvlucy, edgetaper, for such tasks. Do not use these, except perhaps to compare their
outputs with the results of your own attempts.]
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Spectral estimation
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We introduced the DFT as a special case of the continuous Fourier
transform, where the input is sampled and periodic.

If the input is sampled, but not periodic, the DFT can still be used
to calculate an approximation of the Fourier transform of the original
continuous signal. However, there are two effects to consider. They
are particularly visible when analysing pure sine waves.

Sine waves whose frequency is a multiple of the base frequency (fs/n)
of the DFT are identical to their periodic extension beyond the size
of the DFT. They are therefore represented exactly by a single sharp
peak in the DFT. All their energy falls into one single frequency “bin”
in the DFT result.

Sine waves with other frequencies that do not match exactly one of
the output frequency bins of the DFT are still represented by a peak
at the output bin that represents the nearest integer multiple of the
DFT’s base frequency. However, such a peak is distorted in two ways:

→ Its amplitude is lower (down to 63.7%)

→ Much signal energy has “leaked” to other frequencies.
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The leakage of energy to other frequency bins not only blurs the estimated spec-
trum. The peak amplitude also changes significantly as the frequency of a tone
changes from that associated with one output bin to the next, a phenomenon
known as scalloping. In the above graphic, an input sine wave gradually changes
from the frequency of bin 15 to that of bin 16 (only positive frequencies shown).
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Windowing
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The reason for the leakage and scalloping losses is easy to visualize with the
help of the convolution theorem:

The operation of cutting a sequence with the size of the DFT input vector
out of a longer original signal (the one whose continuous Fourier spectrum
we try to estimate) is equivalent to multiplying this signal with a rectangular
function. This destroys all information and continuity outside the “window”
that is fed into the DFT.

Multiplication with a rectangular window of length T in the time domain is
equivalent to convolution with sin(πfT )/(πfT ) in the frequency domain.

The subsequent interpretation of this window as a periodic sequence by
the DFT leads to sampling of this convolution result (sampling meaning
multiplication with a Dirac comb whose impulses are spaced fs/n apart).

Where the window length was an exact multiple of the original signal pe-
riod, sampling of the sin(πfT )/(πfT ) leads to a single Dirac pulse, and the
windowing causes no distortion. In all other cases, the effects of the con-
volution become visible in the frequency domain as leakage and scalloping
losses.
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Some better window functions
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Rectanguar window
Triangular window
Hanning window
Hamming window

All these functions are 0 outside the interval [0,1].
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Numerous alternatives to the rectangular window have been proposed
that reduce leakage and scalloping in spectral estimation. These are
vectors multiplied element-wise with the input vector before applying
the DFT to it. They all force the signal amplitude smoothly down to
zero at the edge of the window, thereby avoiding the introduction of
sharp jumps in the signal when it is extended periodically by the DFT.

Three examples of such window vectors {wi}n−1
i=0 are:

Triangular window (Bartlett window):

wi = 1 −
∣

∣

∣

∣

1 − i

n/2

∣

∣

∣

∣

Hanning window (raised-cosine window, Hann window):

wi = 0.5 − 0.5 × cos

(

2π
i

n − 1

)

Hamming window:

wi = 0.54 − 0.46 × cos

(

2π
i

n − 1

)
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Zero padding increases DFT resolution
The two figures below show two spectra of the 16-element sequence

si = cos(2π · 3i/16) + cos(2π · 4i/16), i ∈ {0, . . . , 15}.

The left plot shows the DFT of the windowed sequence

xi = si · wi, i ∈ {0, . . . , 15}

and the right plot shows the DFT of the zero-padded windowed sequence

x′
i =

{

si · wi, i ∈ {0, . . . , 15}
0, i ∈ {16, . . . , 63}

where wi = 0.54 − 0.46 × cos (2πi/15) is the Hamming window.
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Applying the discrete Fourier transform to an n-element long real-
valued sequence leads to a spectrum consisting of only n/2+1 discrete
frequencies.

Since the resulting spectrum has already been distorted by multiplying
the (hypothetically longer) signal with a windowing function that limits
its length to n non-zero values and forces the waveform smoothly down
to zero at the window boundaries, appending further zeros outside the
window will not distort the signal further.

The frequency resolution of the DFT is the sampling frequency divided
by the block size of the DFT. Zero padding can therefore be used to
increase the frequency resolution of the DFT.

Note that zero padding does not add any additional information to the
signal. The spectrum has already been “low-pass filtered” by being
convolved with the spectrum of the windowing function. Zero padding
in the time domain merely samples this spectrum blurred by the win-
dowing step at a higher resolution, thereby making it easier to visually
distinguish spectral lines and to locate their peak more precisely.
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Frequency inversion
In order to turn the spectrum X(f) of a real-valued signal xi sampled at fs

into an inverted spectrum X ′(f) = X(fs/2 − f), we merely have to shift
the periodic spectrum by fs/2:

= ∗

0 0f f f

X(f)

−fs fs 0−fs fs

X ′(f)

fs
2

− fs
2

. . . . . .. . .. . .

This can be accomplished by multiplying the sampled sequence xi with yi =
cos πfst = cos πi, which is nothing but multiplication with the sequence

. . . , 1,−1, 1,−1, 1,−1, 1,−1, . . .

So in order to design a discrete high-pass filter that attenuates all frequencies
f outside the range fc < |f | < fs/2, we merely have to design a low-pass
filter that attenuates all frequencies outside the range −fc < f < fc, and
then multiply every second value of its impulse response with −1.
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Window-based design of FIR filters
Recall that the ideal continuous low-pass filter with cut-off frequency
fc has the frequency characteristic

H(f) =

{

1 if −fc < f ≤ fc

0 otherwise

and the impulse response

h(t) =
sin 2πtfc

2πtfc

.

Sampling this impulse response with the sampling frequency fs of the
signal to be processed will lead to a periodic frequency characteristic,
that matches the periodic spectrum of the sampled signal.

There are two problems though:

→ the impulse response is infinitely long

→ this filter is not causal, that is h(t) 6= 0 for t < 0
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Solutions:

→ Make the impulse response finite by multiplying the sampled
h(t) with a windowing function

→ Make the impulse response causal by adding a delay of half the
window size

The impulse response of an n-th order low-pass filter is then chosen as

hi =
sin[2π(i − n/2)fc/fs]

2π(i − n/2)fc/fs

· wi

where {wi} is a windowing sequence, such as the Hamming window

wi = 0.54 − 0.46 × cos (2πi/n)

with wi = 0 for i < 0 and i > n.
Note that for fc = fs/4, we have hi = 0 for all even values of i. Therefore, this special case
requires only half the number of multiplications during the convolution. Such “half-band” FIR
filters are used, for example, as anti-aliasing filters wherever a sampling rate needs to be halved.
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FIR lowpass filter design example
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We truncate the ideal, infinitely-long impulse response by multiplication
with a window sequence. In the frequency domain, this will convolve
the rectangular frequency response of the ideal low-pass filter with the
frequency characteristic of the window. The width of the main lobe
determines the width of the transition band, and the side lobes cause
ripples in the passband and stopband.

To design a passband filter that attenuates all frequencies f outside
the range fl < f < fh, we first design a low-pass filter with a cut-off
frequency (fh − fl)/2 and multiply its impulse response with a sine
wave of frequency (fh + fl)/2, before applying the usual windowing:

hi =
sin[π(i − n/2)(fh − fl)/fs]

π(i − n/2)(fh − fl)/fs

· sin[π(fh + fl)] · wi

= ∗

0 0f f ffhfl

H(f)

fh+fl
2

−fh −fl − fh−fl
2

fh−fl
2

− fh+fl
2
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Exercise 8 Explain the difference between the DFT, FFT, and FFTW.

Exercise 9 Push-button telephones use a combination of two sine tones
to signal, which button is currently being pressed:

1209 Hz 1336 Hz 1477 Hz 1633 Hz

697 Hz 1 2 3 A

770 Hz 4 5 6 B

852 Hz 7 8 9 C

941 Hz * 0 # D

(a) You receive a digital telephone signal with a sampling frequency of
8 kHz. You cut a 256-sample window out of this sequence, multiply it with a
windowing function and apply a 256-point DFT. What are the indices where
the resulting vector (X0, X1, . . . , X255) will show the highest amplitude if
button 9 was pushed at the time of the recording?

(b) Use MATLAB to determine, which button sequence was typed in the
touch tones recorded in the file touchtone.wav on the course-material web
page.
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Polynomial representation of sequences

We can represent sequences {xn} as polynomials:

X(v) =
∞
∑

n=−∞
xnv

n

Example of polynomial multiplication:

(1 + 2v + 3v2) · (2 + 1v)

2 + 4v + 6v2

+ 1v + 2v2 + 3v3

= 2 + 5v + 8v2 + 3v3

Compare this with the convolution of two sequences (in MATLAB):

conv([1 2 3], [2 1]) equals [2 5 8 3]
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Convolution of sequences is equivalent to polynomial multiplication:

{hn} ∗ {xn} = {yn} ⇒ yn =
∞
∑

k=−∞
hk · xn−k

↓ ↓

H(v) · X(v) =

( ∞
∑

n=−∞
hnv

n

)

·
( ∞
∑

n=−∞
xnv

n

)

=
∞
∑

n=−∞

∞
∑

k=−∞
hk · xn−k · vn

Note how the Fourier transform of a sequence can be accessed easily
from its polynomial form:

X(e− jω) =
∞
∑

n=−∞
xne

− jωn
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Example of polynomial division:

1

1 − av
= 1 + av + a2v2 + a3v3 + · · · =

∞
∑

n=0

anvn

1 + av + a2v2 + · · ·
1 − av 1

1 − av
av
av − a2v2

a2v2

a2v2 − a3v3

· · ·

Rational functions (quotients of two polynomials) can provide a con-
venient closed-form representations for infinitely-long exponential se-
quences, in particular the impulse responses of IIR filters.
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The z-transform
The z-transform of a sequence {xn} is defined as:

X(z) =
∞
∑

n=−∞
xnz

−n

Note that is differs only in the sign of the exponent from the polynomial representation discussed
on the preceeding slides.

Recall that the above X(z) is exactly the factor with which an expo-
nential sequence {zn} is multiplied, if it is convolved with {xn}:

{zn} ∗ {xn} = {yn}

⇒ yn =
∞
∑

k=−∞
zn−kxk = zn ·

∞
∑

k=−∞
z−kxk = zn · X(z)
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The z-transform defines for each sequence a continuous complex-valued
surface over the complex plane C. For finite sequences, its value is al-
ways defined across the entire complex plane.

For infinite sequences, it can be shown that the z-transform converges
only for the region

lim
n→∞

∣

∣

∣

∣

xn+1

xn

∣

∣

∣

∣

< |z| < lim
n→−∞

∣

∣

∣

∣

xn+1

xn

∣

∣

∣

∣

The z-transform identifies a sequence unambiguously only in conjunction with a given region of

convergence. In other words, there exist different sequences, that have the same expression as
their z-transform, but that converge for different amplitudes of z.

The z-transform is a generalization of the Fourier transform, which it
contains on the complex unit circle (|z| = 1):

F{xn}(ω) = X(e jω) =
∞
∑

n=−∞
xne

− jωn
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The z-transform of the impulse
response {hn} of the causal LTI
system defined by

N
∑

k=0

ak · yn−k =
M
∑

m=0

bm · xn−m

with {yn} = {hn} ∗ {xn} is the
rational function

z−1

z−1

z−1 z−1

z−1

z−1

b0

b1

a−1
0

−a1

xn−1

xn

yn−1

yn

· · ·
· · ·

· · ·
· · ·

yn−k

−akbm

xn−m

H(z) =
b0 + b1z

−1 + b2z
−2 + · · · + bmz−m

a0 + a1z−1 + a2z−2 + · · · + akz−k

which can also be written as

H(z) =
zn
∑m

l=0 blz
m−l

zm
∑n

l=0 alzn−l

H(z) has m zeros and n poles at non-zero locations in the z plane,
plus n − m zeros (if n > m) or m − n poles (if m > n) at z = 0.
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This function can be converted into the form

H(z) =
b0

a0

·

m
∏

l=1

(1 − cl · z−1)

n
∏

l=1

(1 − dl · z−1)

=
b0

a0

· zn−m ·

m
∏

l=1

(z − cl)

n
∏

l=1

(z − dl)

where the cl are the non-zero positions of zeros (H(cl) = 0) and the dl

are the non-zero positions of the poles (i.e., z → dl ⇒ |H(z)| → ∞)
of H(z). Except for a constant factor, H(z) is entirely characterized
by the position of these zeros and poles.

As with the Fourier transform, convolution in the time domain corre-
sponds to complex multiplication in the z-domain:

{xn} •−◦ X(z), {yn} •−◦ Y (z) ⇒ {xn} ∗ {yn} •−◦ X(z) · Y (z)

Delaying a sequence by one corresponds in the z-domain to multipli-
cation with z−1:

{xn−∆n} •−◦ X(z) · z−∆n
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H(z) = z
z−0.7

= 1
1−0.7·z−1
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H(z) = z
z−1

= 1
1−z−1
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H(z) = z2

(z−0.9·e jπ/6)·(z−0.9·e− jπ/6)
= 1

1−1.8 cos(π/6)z−1+0.92·z−2
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H(z) = z2

(z−0.9·e jπ/2)·(z−0.9·e− jπ/2)
= 1

1−1.8 cos(π/2)z−1+0.92·z−2 = 1
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IIR Filter design techniques
The design of a filter starts with specifying the desired parameters:

→ The passband is the frequency range where we want to approx-
imate a gain of one.

→ The stopband is the frequency range where we want to approx-
imate a gain of zero.

→ The order of a filter is the number of poles it uses in the
z-domain, and equivalently the number of delay elements nec-
essary to implement it.

→ Both passband and stopband will in practice not have gains
of exactly one and zero, respectively, but may show several
deviations from these ideal values, and these ripples may have
a specified maximum quotient between the highest and lowest
gain.
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→ There will in practice not be an abrupt change of gain between
passband and stopband, but a transition band where the fre-
quency response will gradually change from its passband to its
stopband value.

The designer can then trade off conflicting goals such as a small tran-
sition band, a low order, a low ripple amplitude, or even an absence of
ripples.

Design techniques for making these tradeoffs for analog filters (involv-
ing capacitors, resistors, coils) can also be used to design digital IIR
filters:

Butterworth filters
Have no ripples, gain falls monotonically across the pass and transition
band. Within the passband, the gain drops slowly down to 1 −

√

1/2
(−3 dB). Outside the passband, it drops asymptotically by a factor 2N

per octave (N · 20 dB/decade).
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Chebyshev type I filters
Distribute the gain error uniformly throughout the passband (equirip-
ples) and drop off monotonically outside.

Chebyshev type II filters
Distribute the gain error uniformly throughout the stopband (equirip-
ples) and drop off monotonically in the passband.

Elliptic filters (Cauer filters)
Distribute the gain error as equiripples both in the passband and stop-
band. This type of filter is optimal in terms of the combination of the
passband-gain tolerance, stopband-gain tolerance, and transition-band
width that can be achieved at a given filter order.

All these filter design techniques are implemented in the MATLAB Signal Processing Toolbox in
the functions butter, cheby1, cheby2, and ellip, which output the coefficients an and bn of the
difference equation that describes the filter. These can be applied with filter to a sequence, or
can be visualized with zplane as poles/zeros in the z-domain, with impz as an impulse response,
and with freqz as an amplitude and phase spectrum. The commands sptool and fdatool

provide interactive GUIs to design digital filters.
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Butterworth filter design example
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Butterworth filter design example
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Chebyshev type I filter design example
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Chebyshev type II filter design example
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Elliptic filter design example
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Exercise 10 Draw the direct form II block diagrams of the causal infinite-
impulse response filters described by the following z-transforms and write
down a formula describing their time-domain impulse responses:

(a) H(z) =
1

1 − 1
2z−1

(b) H ′(z) =
1 − 1

44 z
−4

1 − 1
4z−1

(c) H ′′(z) =
1

2
+

1

4
z−1 +

1

2
z−2

Exercise 11 (a) Perform the polynomial division of the rational function
given in exercise 10 (a) until you have found the coefficient of z−5 in the
result.

(b) Perform the polynomial division of the rational function given in exercise
10 (b) until you have found the coefficient of z−10 in the result.

(c) Use its z-transform to show that the filter in exercise 10 (b) has actually
a finite impulse response and draw the corresponding block diagram.
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Exercise 12 Consider the system h : {xn} → {yn} with yn + yn−1 =
xn − xn−4.

(a) Draw the direct form I block diagram of a digital filter that realises h.

(b) What is the impulse response of h?

(c) What is the step response of h (i.e., h ∗ u)?

(d) Apply the z-transform to (the impulse response of) h to express it as a
rational function H(z).

(e) Can you eliminate a common factor from nominator and denominator?
What does this mean?

(f) For what values z ∈ C is H(z) = 0?

(g) How many poles does H have in the complex plane?

(h) Write H as a fraction using the position of its poles and zeros and draw
their location in relation to the complex unit circle.

(i) If h is applied to a sound file with a sampling frequency of 8000 Hz,
sine waves of what frequency will be eliminated and sine waves of what
frequency will be quadrupled in their amplitude?
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Random sequences and noise
A discrete random sequence {xn} is a sequence of numbers

. . . , x−2, x−1, x0, x1, x2, . . .

where each value xn is the outcome of a random variable xn in a
corresponding sequence of random variables

. . . ,x−2,x−1,x0,x1,x2, . . .

Such a collection of random variables is called a random process. Each
individual random variable xn is characterized by its probability distri-
bution function

Pxn(a) = Prob(xn ≤ a)

and the entire random process is characterized completely by all joint
probability distribution functions

Pxn1 ,...,xnk
(a1, . . . , ak) = Prob(xn1 ≤ a1 ∧ . . . ∧ xnk

≤ ak)

for all possible sets {xn1 , . . . ,xnk
}.
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Two random variables xn and xm are called independent if

Pxn,xm(a, b) = Pxn(a) · Pxm(b)

and a random process is called stationary if

Pxn1+l,...,xnk+l
(a1, . . . , ak) = Pxn1 ,...,xnk

(a1, . . . , ak)

for all l, in other words, if the probability distributions are time invari-
ant.

The derivative pxn(a) = P ′
xn

(a) is called the probability density func-

tion, and helps us to define quantities such as

→ the expected value E(xn) =
∫

apxn(a) da

→ the mean-square value (average power) E(|xn|2)
→ the variance Var(xn) = E [|xn−E(xn)|2] = E(|xn|2)−|E(xn)|2

→ the correlation Cor(xn,xm) = E(xn · x∗
m)

Remember that E(·) is linear, that is E(ax) = aE(x) and E(x + y) = E(x) + E(y). Also,
Var(ax) = a2Var(x) and, if x and y are independent, Var(x + y) = Var(x) + Var(y).
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A stationary random process {xn} can be characterized by its mean
value

mx = E(xn),

its variance
σ2

x = E(|xn − mx|2) = γxx(0)

(σx is also called standard deviation), its autocorrelation sequence

φxx(k) = E(xn+k · x∗
n)

and its autocovariance sequence

γxx(k) = E [(xn+k − mx) · (xn − mx)
∗] = φxx(k) − |mx|2

A stationary pair of random processes {xn} and {yn} can, in addition,
be characterized by its crosscorrelation sequence

φxy(k) = E(xn+k · y∗
n)

and its crosscovariance sequence

γxy(k) = E [(xn+k − mx) · (yn − my)
∗] = φxy(k) − mxm

∗
y
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Deterministic crosscorrelation sequence
For deterministic sequences {xn} and {yn}, the crosscorrelation sequence

is

cxy(k) =

∞
∑

i=−∞
xi+kyi.

After dividing through the overlapping length of the finite sequences involved, cxy(k) can be
used to estimate from a finite sample of a stationary random sequence the underlying φxy(k).
MATLAB’s xcorr function does that with option unbiased.

If {xn} is similar to {yn}, but lags l elements behind (xn ≈ yn−l), then
cxy(l) will be a peak in the crosscorrelation sequence. It is therefore widely
calculated to locate shifted versions of a known sequence in another one.

The crosscorrelation is a close cousin of the convolution, with just the second
input sequence mirrored:

{cxy(n)} = {xn} ∗ {y−n}
It can therefore be calculated equally easily via the Fourier transform:

Cxy(f) = X(f) · Y ∗(f)

Swapping the input sequences mirrors the output sequence: cxy(k) = cyx(−k)
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Equivalently, we define the autocorrelation sequence in the time-domain
as

cxx(k) =
∞
∑

i=−∞
xi+kxi.

which corresponds in the frequency domain to

Cxx(f) = X(f) · X∗(f) = |X(f)|2.

In other words, the Fourier transform Cxx(f) of the autocorrelation
sequence {cxx(n)} of a sequence {xn} is identical to the squared am-
plitudes of the Fourier transform or power spectrum of {xn}.
This suggests, that the Fourier transform of the autocorrelation se-
quence of a random process might be a suitable way for defining the
power spectrum of that random process.
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Filtered random sequences
Let {xn} be a random sequence from a stationary random process.
The output

yn =
∞
∑

k=−∞
hk · xn−k =

∞
∑

k=−∞
hn−k · xk

of an LTI applied to it will then be another random sequence, charac-
terized by

my = mx

∞
∑

k=−∞
hk

and

φyy(k) =
∞
∑

i=−∞
φxx(k−i)chh(i), where

φxx(k) = E(xn+k · x∗
n)

chh(k) =
∑∞

i=−∞ hi+khi.
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In other words:

{yn} = {hn} ∗ {xn} ⇒
{φyy(n)} = {chh(n)} ∗ {φxx(n)}

Φyy(f) = |H(f)|2 · Φxx(f)

Similarly:

{yn} = {hn} ∗ {xn} ⇒
{φxy(n)} = {hn} ∗ {φxx(n)}

Φxy(f) = H(f) · Φxx(f)

White noise
A random sequence {xn} is a white noise signal, if mx = 0 and

φxx(k) = σ2
xδk.

The power spectrum of a white noise signal is flat:

Φxx(f) = σ2
x.
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Application example:

Where an LTI {yn} = {hn} ∗ {xn} can be observed to operate on
white noise {xn} with φxx(k) = σ2

xδk, the crosscorrelation between
input and output will reveal the impulse response of the system:

φxy(n) = σ2
x · hn.
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Averaging and noise reduction
Often an original signal {xi} is only accessible with some added noise

{yi} = {xi} + {ni}

which turns a deterministic sequence into a random sequence. The
signal-to-noise ratio (SNR) of the received signal {yi} is the square root
of the power ratio of these components: SNRy =

√

E(|xi|2)/E(|ni|2).
As an SNR might also be given in terms of a power ratio, it is commonly expressed in decibels,
to avoid any confusion between power and voltage ratios: 10 dB · log10 E(|xi|2)/E(|ni|2) =

20 dB · log10

p

E(|xi|2)/E(|ni|2).

The simplest noise reduction technique is averaging. If we know that
the k signal values x1, . . . , xk are identical, and the noise average is
mn = 0, then we can calculate an average value

ȳ =
1

k

k
∑

i=1

yi

as an approximation for the true value x1 = · · · = xk.
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What noise level remains after averaging?
The k identical signal values x1, . . . , xk are characterized by mx = xi

(i = 1, . . . , k) and σ2
x = 0. The average signal power is E(|xi|2) = m2

x.

We assume that the k noise values n1, . . . , nk are statistically indepen-
dent and are the output of a stationary process with mean mn = 0
and variance σ2

n. The average noise power is E(|ni|2) = σ2
n.

The averaging result ȳ can be split up into a signal component x̄ and
a noise component n̄:

ȳ =
1

k

k
∑

i=1

yi =
1

k

k
∑

i=1

xi +
1

k

k
∑

i=1

ni = x̄ + n̄

The corresponding average power values are

E(|x̄|2) = E





∣

∣

∣

∣

∣

1

k

k
∑

i=1

xi

∣

∣

∣

∣

∣

2


 = E





∣

∣

∣

∣

∣

1

k

k
∑

i=1

mx

∣

∣

∣

∣

∣

2


 = m2
x
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and

E(|n̄|2) = Var(n̄) = Var

(

1

k

k
∑

i=1

ni

)

=
1

k2

k
∑

i=1

Var(ni) =
1

k
σ2

n.

We can now compare the signal-to-noise ratio of the original noisy
sequence

SNRy =

√

E(|xi|2)
E(|ni|2)

=
mx

σn

with that of the averaging result

SNRȳ =

√

E(|x̄|2)
E(|n̄|2) =

√
k · mx

σn

.

Averaging k samples of identical signal values with added independent
zero-mean noise values will increase the signal-to-noise ratio by the
factor

√
k.

Remember that adding identical values x1 and x2 will double their value and therefore quadruple
their power. On the other hand, adding independent zero-mean noise values n1 and n2 will – on
average – only double their power (= variance).
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Noise reduction filters
Added independent noise values with φnn(k) = σ2

nδk have a flat spec-
trum Φnn(f) = σ2

n, which is added in {yi} = {xi} + {ni} across the
spectrum of the noise-free signal {xi}.
Knowledge of the power spectrum X(f) of the original signal can help
to design a filter that attenuates much of the noise in {yi}, without
degrading the wanted signal {xi} too much. If {xi} changes very
slowly, most of its energy will be at low frequencies, and noise can be
reduced with a suitably chosen low-pass filter.

If there are no significant changes in {xi} during k consecutive samples,
then convolution with a k samples wide rectangular window will not
affect the wanted signal.

We have already seen that this will reduce the noise amplitude by a
factor

√
k, or equivalently the noise power by a factor of k.
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How does a general LTI filter

ȳi =
∞
∑

k=−∞
hk · yi−k =

∞
∑

k=−∞
hk · (xi−k + ni−k) = x̄i + n̄i

affect the signal-to-noise ratio SNRy =
√

E(|xi|2)/E(|ni|2)?
With mx ≈ xi, we get

E(|x̄i|2) = E





∣

∣

∣

∣

∣

∞
∑

k=−∞
hkxi−k

∣

∣

∣

∣

∣

2


 = m2
x

∣

∣

∣

∣

∣

∞
∑

k=−∞
hk

∣

∣

∣

∣

∣

2

and

E(|n̄i|2) = Var(n̄i) =

Var

( ∞
∑

k=−∞
hkni−k

)

=
∞
∑

k=−∞
h2

k · Var(ni−k) = σ2
n

∞
∑

k=−∞
h2

k

⇒ SNRȳi
/SNRyi

=
∣

∣

∑∞
k=−∞ hk

∣

∣ /
√

∑∞
k=−∞ h2

k
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Exponential averaging
A particularly easy to implement IIR low-
pass filter, with only one delay element,
is the exponential averaging filter

z−1

ȳi

α

1 − α

yi

ȳi−1

ȳi = (1 − α)yi + αȳi−1 = (1 − α)
∞
∑

k=0

αkyi−k, (0 ≤ α < 1).

When applied as a noise filter on a sequence {yi} = {xi} + {ni} with
σ2

x = 0, mn = 0, and mutually independent noise values {ni}, we get

σ2
ȳi

= (1 − α)2

∞
∑

k=0

α2kσ2
yi−k

= σ2
n(1 − α)2

∞
∑

k=0

α2k =

σ2
n(1 − α)2 · 1

1 − α2
= σ2

n · 1 − α

1 + α

and therefore SNRȳi
/SNRyi

=
mx

σȳi

/mx

σn

=

√

1 + α

1 − α
.
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DFT averaging

The above diagrams show different type of spectral estimates of a sequence
xi = sin(2π j × 8/64) + sin(2π j × 14.32/64) + ni with φnn(i) = 4δi.

Left is a single 64-element DFT of {xi} (with rectangular window). The
flat spectrum of white noise is only an expected value. In a single discrete
Fourier transform of such a sequence, the significant variance of the noise
spectrum becomes visible. It almost drowns the two peaks from sine waves.

After cutting {xi} into 1000 windows of 64 elements each, calculating their
DFT, and plotting the average of their absolute values, the centre figure
shows an approximation of the expected value of the amplitude spectrum,
with a flat noise floor. Taking the absolute value before averaging is called
incoherent averaging, as the phase information is thrown away.
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The rightmost figure was generated from the same set of 1000 windows,
but this time the complex values of the DFTs were averaged before the
absolute value was taken. This is called coherent averaging and, because
of the linearity of the DFT, identical to first averaging the 1000 windows
and then applying a single DFT and taking its absolute value. The windows
start 64 samples apart. Only periodic waveforms with a period that divides
64 are not averaged away. This periodic averaging step suppresses both the
noise and the second sine wave.

Periodic averaging
If a zero-mean signal {xi} has a periodic component with period p, the
periodic component can be isolated by periodic averaging :

x̄i = lim
k→∞

1

2k + 1

k
∑

n=−k

xi+pn

Periodic averaging corresponds in the time domain to convolution with a
Dirac comb

∑

n δi−pn. In the frequency domain, this means multiplication
with a Dirac comb that eliminates all frequencies but multiples of 1/p.
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Exercise 13 A tumble dryer measures the air humidity xi in the drum
twice per second, but the control software uses only a smoothed value
yi =

∑15
k=0 xi−k to decide when to stop the drying programme.

(a) Assuming that humidity fluctuations in a tumble dryer have compo-
nents that are periodic with the rotational frequency of the drum, for which
rotational speeds would the above smoothing filter suppress these periodic
components particularly well?

(b) It is the year 2020, and a cartel of semiconductor manufacturers recently
managed to double the cost of memory every 18 months. Your job is to
redesign products to eliminate unnecessary use of precious memory. Replace
the above data smoothing algorithm with one that requires the least amount
of memory possible, but that reduces the random fluctuations caused in the
measurements by tumbling clothes by exactly the same factor. You now
can assume that these fluctuations are not correlated between different
measurements xi.

(c) First predict the approximate shape of the frequency characteristic of
both the old and the new smoothing filter, then use MATLAB to plot it.
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Outlook
Further topics that we have not covered in this brief introductory tour
through DSP, but for the understanding of which you should now have
a good theoretical foundation:

→ multirate systems

→ orthogonal filterbanks and wavelets

→ effects of rounding errors

→ adaptive filters

→ DSP hardware architectures

→ modulation and symbol detection techniques

→ sound effects

→ audio-visual coding techniques

Your feedback on the course is very much appreciated:

http://www.cl.cam.ac.uk/cgi-bin/lr/login
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