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Twelve lectures covering:

ä Introduction to modelling: what is it, why is

it useful?

ä Simulation techniques: random number

generation, analysis of results from

simulation and measurements;

ä Operational analysis: performance bounds,

balanced systems;

ä Queueing theory: Markov chains,

single/multiple servers, bounded queues,

queueing networks.
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Recommended books

ä Jain, A.R. The Art of Computer Systems

Performance Analysis, Wiley, 1991

— Simulation, random number generation,

operational analysis, some basic queueing

theory, substantial sections on designing and

analysing experiments

ä Kleinrock, L. Queueing Systems — Volume

1: Theory, Wiley, 1975

— A classic on queueing theory, much more

emphasis on mathematical derivations
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Recommended books (2)

ä Leung, C. Quantitative Analysis of Computer

Systems, Wiley, 1988

— Operational analysis, basic queueing

theory, small section on simulation

ä Ross, S.M. Probability Models for Computer

Science, Academic Press, 2002

— Excellent coverage of most material (but

no Operational Analysis)
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Introduction

to

modelling
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Why model?

ä A manufacturer may have a range of

compatible systems with different

characteristics — which configuration would

be best for a particular application?

ä A system is performing poorly — what

should be done to improve it? Which

problems should be tackled first?

ä Fundamental design decisions may affect

performance of a system. A model can be

used as part of the design process to avoid

bad decisions and to help quantify a

cost/benefit analysis.
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A toy problem

system CPU time disk time total

A 4.6 4.0 8.6

B1 5.1 1.9 7.0

B2 3.1 1.9 5.0

ä A database running on Type A system is too

slow

ä Type B1 system available immediately, and a

type B2 system in the future

ä Which option is best:

• Stick with A?

• Change to B1 immediately?

• Wait and change to B2?

ä What factors affect the correct choice?
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How can modelling help?

Typical performance questions we might ask

include:

ä How long will a database request wait before

receiving CPU service?

ä What is the utilization of the resource (CPU,

disk, . . . )? (Utilization is the proportion of

time that the resource is busy.)

ä What is the distribution of the number of

requests queued at some time t? What is its

mean, standard deviation, . . .
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Techniques

Many different approaches:

ä Measurement — if the system already exists

then maybe it can be changed and the effects

observed and analysed

ä Simulation — construct a computer program

that emulates the system under study and

study that instead

ä Operational analysis — analysis based on

directly measured quantities and relationships

between them: makes few assumptions about

the system

ä Queueing theory — stochastic processes,

analytical models of queueing systems

Computer Systems Modelling, 2004/5 Slide 9



Techniques (2)

Choice of technique depends on . . .

ä Stage of development: can only measure an

existing system

ä Time available: measurements or simulations

can take a long time to complete. How easily

can different trade-offs be evaluated?

ä Resources: systems with which to

experiment, people with the relevant skills,

cost

ä Desired accuracy: how do the assumptions

made in analytic techniques effect the result?

Are appropriate parameters and workloads

used during experimental work?

ä Creditable: will people believe (act on) the

results?
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Little’s result

Begin with a simple derivation of Little’s Result

— a very general theorem relating the number of

jobs in a system with the time they spend there.

For example: A disk server takes, on

average, 10ms to satisfy an I/O

request. If the request rate is 100 per

second, then how many requests are

queued at the server?
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Little’s result (2)
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α(t) = number of arrivals in (0, t)

δ(t) = number of departures in (0, t)

N(t) = α(t)− δ(t) is the number in the system at t

The area γ(t) between the curves α(t) and δ(t)

represents the total time all customers have spent

in system in (0, t).
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Little’s result (3)

Let

λt = α(t)/t

Tt = γ(t)/α(t)

Nt = γ(t)/t .

ä λt — the average arrival rate during (0, t);

ä Tt — system time per customer averaged

over all customers in (0, t);

ä Nt — average number of customers in

system during (0, t).

Combining these:

Nt = λtTt .
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Little’s result (4)

Assume the following limits exist

λ = lim
t→∞

λt

T = lim
t→∞

Tt .

Then we have

N = λT .

That is, the average number in the system, N ,

equals the average arrival rate × average time in

system.

This is Little’s result. The proof makes no

assumptions about the way that arrivals or

departures are distributed, the queueing discipline

or how many servers service the queue.

First proved by Little in 1961.
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Applications of Little’s result

We can re-state this result for any boundary of

our queueing system.

Split T (average time in the system) into W

(average time spent waiting) and X (average

time spent being served).

Similarly, we can split N (average number in the

system) into Nq (average number in the queue)

and Ns (average number being served).

Applying Little’s result separately to the queue

and to the server:

Nq = λW

Ns = λX

Computer Systems Modelling, 2004/5 Slide 15



Probability theory refresher

We write the probability that an event occurs as:

P(event)

— e.g. P(X < 0.5): “the random variable X is

less than 0.5”

P(a, b) is the joint probability that both events a

and b occur

— e.g. P(X < 0.5, Y < 0.5): “both X and Y

are less than 0.5”

P(a | b) is the conditional probability that event a

occurs given that event b has occured.

— e.g. P(X < 0.5 |Y < 0.5) “X is less than 0.5

given that Y is less than 0.5”

P(a | b) :=
P(a, b)

P(b)
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Continuous distributions

We can describe the distribution of a continuous

random variable, X, in two ways using:

ä either the cumulative distribution function

(cdf), (or just the distribution function)

FX(x) := P(X ≤ x)

ä or the probability density function (pdf)

fX(x) :=
dFX(x)

dx
.

Note that

0 ≤ FX(x) =

∫ x

−∞
fX(y) dy

and that FX(x) increases with x up to the value

FX(∞) =

∫ ∞

−∞
fX(y) dy = 1.
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Expected value and moments

The expected value of X, written E(X), is given

by

E(X) :=

∫ ∞

−∞
xfX(x) dx .

Also called the average, mean or first moment of

the distribution and sometimes written as X.

The nth moment is defined as

E(Xn) :=

∫ ∞

−∞
xnfX(x) dx .

The nth central moment is defined as

E((X − E(X))n) :=

∫ ∞

−∞
(x− E(X))nfX(x) dx .
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Variance and standard deviation

The 2nd central moment, σ2
X , is known as the

variance,

σ2
X := E((X − E(X))2) = E(X2)− (E(X))2

which may also be written as Var(X).

From this, we define the standard deviation by

σX :=
√
σ2
X

and the coefficient of variation by

CX :=
σX
E(X)

.

Numerically larger values of CX signify “more

variable” data. For example, a coefficient of

variation of 5 might be considered large, while 0.2

might be considered small.
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Uniform distribution U(a, b)

Given the two parameters a and b (a < b) the

random variable X has the uniform

distribution U(a, b) defined by the cdf

FX(x) =





0 if x < a

x− a
b− a if a ≤ x < b

1 if x ≥ b

so that the pdf is

fX(x) =





1

b− a if a ≤ x ≤ b

0 otherwise .

Exercise: show that the mean of X is 1
2 (a+ b)

and the variance is 1
12 (b− a)2. What is its

coefficient of variation?
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Exponential distribution Exp(λ)

Given a scale parameter, λ > 0, the (positive)

random variable X has the exponential

distribution Exp(λ) defined by the pdf and cdf

fX(x) =




λ e−λx if x > 0

0 otherwise

FX(x) =





1− e−λx if x > 0

0 otherwise
.

Exercise: show that the mean of X is 1
λ and the

variance is 1
λ2 .

Hence for this distribution the mean and standard

deviation are equal and so

CX =
σX
E(X)

= 1 .
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Memoryless property

The exponential distribution is the only

continuous distribution with the Memoryless

Property, namely, that

P(X > t+ s |X > t) = P(X > s)

Intuitively, it may be used to model the

distribution of inter-event times in which the time

until the next event does not depend on the time

that has already elapsed.

If the inter-event times are independent

identically distributed random variables with the

Exp(λ) distribution then λ is viewed as the mean

event rate.
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Gamma distribution, Γ(n, λ)

A random variable, X, with pdf

fX(x) =




λe−λx (λx)n−1

(n−1)! if x > 0

0 otherwise

where n = 1, 2, . . . and λ > 0 has a Gamma

distribution with parameters (n, λ). The cdf is

can computed from

FX(x) =

∫ x

0

fX(y) dy .

The mean and variance of X can be shown to

be n/λ and n/λ2, respectively.

It can be shown that the sum of n independent

Exp(λ) random variables has a Gamma Γ(n, λ)

distribution — see more on this latter.
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Normal distribution N(µ, σ2)

A random variable, X, has a normal distribution

if its pdf is given by

fX(x) =
1√
2πσ

e−(x−µ)2/2σ2

where µ is any real number and σ > 0. Recall

that the mean of X is µ and the variance is σ2.

Thus the standardized random variable

Z =
X − µ
σ

has a normal distribution with mean 0 and

variance 1. The cdf of Z is usually written

FZ(x) = Φ(x) .

Notice that then

FX(x) = Φ

(
x− µ
σ

)
.
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Central Limit Theorem (CLT)

Suppose that X1, X2, . . . is a sequence of

independent, identically distributed random

variables (with finite mean µ and finite

variance σ2) then the CLT says that

lim
n→∞

P
(
X1 +X2 + · · ·+Xn − nµ√

nσ
< x

)
= Φ(x) .

Notice that the mean and standard deviation

of (X1 +X2 + · · ·+Xn) are nµ and
√
nσ,

respectively.

Furthermore, notice that the individual random

variables X1, X2, . . . are not assumed to have

normal distributions.
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Discrete distributions

The previous examples have concerned continuous

random variables whose distributions have been

defined by their cdf or, equivalently, their pdf.

Similar definitions apply to the case of discrete

random variables, X, taking values xi (i ∈ I),

where the distribution is specified by the

probability distribution function (pdf)

0 ≤ P(X = xi) ≤ 1 ∀i ∈ I

and where
∑

i∈I
P(X = xi) = 1 .
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Expected value and variance

The expected value of X is

E(X) :=
∑

i∈I
xiP(X = xi) .

Similarly, for the other moments, where the

integration for continuous random variables

becomes a summation over the set of possible

values.

So, for example, we have that

E(X2) =
∑

i∈I
x2
iP(X = xi)

and

Var(X) = E(X2)− (E(X))2

just as with continuous random variables.
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Bernoulli(p) distribution

The random variable X has a Bernoulli

distribution if it takes two values X = 0 or X = 1

with probabilities

P(X = x) =




p if x = 1

1− p if x = 0

We say that p = P(X = 1) is the probability of

success (0 ≤ p ≤ 1).

The mean and variance of X are p and p(1− p),

respectively.
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Binomial(n, p) distribution

The (random) number of successes in a fixed

length sequence of independent Bernoulli trials

has a distribution known as the Binomial

distribution. The pdf is given by

P(X = x) =

(
n

x

)
px(1− p)n−x x = 0, 1, . . . , n

where p is the probability of success of an

individual Bernoulli trial and n is the fixed

number of trials. Thus the parameters

satisfy 0 ≤ p ≤ 1 and n = 1, 2, 3, . . ..

The mean and variance of X are np and

np(1− p), respectively.

Note that P(X = x) is the product of the

number of ways that x successes can occur in n

trials and the probability that exactly that pattern

of successes and failures occurs.
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Poisson(λ) distribution

The random variable X has a Poisson distribution

if it takes values 0, 1, 2, . . . with probabilities

P(X = i) = e−λ
λi

i!
i = 0, 1, 2, . . .

where λ > 0 is a scale parameter.

Exercise: show that both the mean and variance

of X are equal to λ.

The Poisson(λ) distribution is a good

approximation to a Binomial(n, p) distribution

when the number of trials, n, is large and the

probability of success, p, is small (and where we

take λ = np).
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Geometric(p) distribution

Given a sequence of independent Bernoulli trials,

each with probability of success p how long do we

wait till the first successful trial?

The number of trials, X, up to and including the

first successful trial has a distribution called the

Geometric distribution given by

P(X = n) = p(1− p)n−1 n = 1, 2, . . . .

The mean of X is given by 1/p and the variance

by (1− p)/p2.
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The Poisson process

Consider a process of events occuring at random

points of time and let N(t) be the number of

events that occur in the interval [0, t]. A Poisson

process at rate λ (λ > 0) is defined by the

following conditions:

ä N(0) = 0;

ä The Nos of events in disjoint time intervals

are independent and the distribution of the

No of events in a interval depends only on its

length (and not its location);

ä

P(N(h) = i) =





1− λh+ o(h) i = 0

λh+ o(h) i = 1

o(h) otherwise .

A quantity g(h) = o(h) if limh→0 g(h)/h = 0.
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The Poisson process (2)

Consider the No of events, N(t), occuring in an

interval of length t. Divide the interval into n

nonoverlapping subintervals each of

length h = t/n.

A subinterval contains a single event with

probability approximately λ(t/n) and so it follows

that the number of such subintervals is

approximately a Binomial random variable with

parameters n and p = λt/n.

Letting n→∞, shows that N(t),

the number of events in [0, t], is a

Poisson random variable with

parameter λt.
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The Poisson process (3)

Given a Poisson process of rate λ let X1 be the

time of the first event and for n > 1 let Xn

denote the time between the (n− 1)st and nth

events.

The sequence X1, X2, . . . gives us the sequence

of inter-arrival times between events in a Poisson

process.
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The Poisson process (4)

To determine the distribution of X1 note that

P(X1 > t) = P(N(t) = 0) = e−λt

since N(t) is a Poisson random variable with

parameter λt. Thus, X1 has an Exp(λ)

distribution.

Now consider, X2 then

P(X2 > t |X1 = s) = P(0 events in (s, s+ t] |X1 = s)

= P(0 events in (s, s+ t])

= e−λt .

The inter-arrival times X1, X2, . . .

are independent, identically

distributed random variables with

distribution Exp (λ).
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Time for first n events

Let Sn =
∑n
i=1Xi be the (random) time for the

first n events in a Poisson process. Then

P(Sn ≤ t) = P(N(t) ≥ n)

=

∞∑

j=n

e−λt
(λt)j

j!

So, the pdf of Sn is given by differentiating

fSn(t) =

∞∑

j=n

jλe−λt
(λt)j−1

j!
−
∞∑

j=n

λe−λt
(λt)j

j!

=
∞∑

j=n

λe−λt
(λt)j−1

(j − 1)!
−
∞∑

j=n

λe−λt
(λt)j

j!

= λe−λt
(λt)n−1

(n− 1)!
.

Thus, Sn =
∑n
j=1Xi has a Gamma Γ(n, λ)

distribution.
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Non-homogeneous

Poisson processes

The Poisson process has a constant rate of

events, λ, but we can relax this assumption to use

a time-dependent rate function λ(t) to produce a

non-homogeneous Poisson process as follows.

ä N(0) = 0;

ä The No of events in disjoint time intervals

are independent;

ä

P(exactly i events occur in (t, t+ h])

=





1− λ(t)h+ o(h) i = 0

λ(t)h+ o(h) i = 1

o(h) otherwise .
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Simulation

techniques
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Introduction

The main building block of a simulation study is

a source of random variables.

We will begin by looking at the generation of

sources of U(0, 1) continuous random variables

and then show how this leads to the generation of

random variables with arbitrary distributions,

both continuous and discrete.
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Random number generation

It is important not to generate random numbers

with an ad hoc method — complex algorithms do

not necessarily generate random outputs.

Some operating systems include support for

generating random numbers based on (e.g.) key

strokes or network inter-arrival times — however,

these mechanisms are not usually suited to

generating large volumes of random data.

How can we algorithmically generate a long

random sequence?

The answer is that the sequence is not random,

but appears random as far as can be determined

from statistical tests. The sequence is termed

pseudo-random.
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Random number generation (2)

Important requirements include

ä The algorithm should be fast;

ä The storage requirements should be low;

ä The random sequence should only repeat

after a very long period;

ä The sequence generated should possess two

important statistical properties: uniformity

and independence.

For ease of implementation and speed, most

random number generators use integer

representation over an interval m

Given a value in this range, a desired value in the

range (0, 1) can be obtained by dividing by m
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Multiplicative congruential method

A popular method, known as the multiplicative

congruential method, starts with a seed

value, X0, and then recursively constructs the

successive values Xn by the equation

Xn = (aXn−1) modulo m

where a and m are positive integers. The

values Xn lie in the range 0, 1, 2, . . . ,m− 1.

The sequence of values Xn has period at most m

and so we should wish to choose a and m such

that the period remains large whatever the seed

value X0.

A common choice is m = 231 − 1

and a = 75 = 16, 807.

Computer Systems Modelling, 2004/5 Slide 42



Mixed congruential method

An extension to the multiplicative congruential

method is the mixed congruential method which

includes an additive term to the recursion

Xn = (aXn−1 + c) modulo m

We will not investigate such methods further

here. Instead we will assume that we have an

efficiently generated supply of random numbers

distributed as independent U(0, 1) random

variables.
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Random variable generation

We now have a sequence of pseudo-random

uniform variables. How do we generate variables

from other distributions?

We will find that with a suitable transformation

random behaviour can be programmed so that the

resulting random variables appear to have been

drawn from any desired probability distribution.
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Discrete distributions

Suppose we are given a distribution pi
with 0 ≤ pi ≤ 1 for i ∈ I = {0, 1, . . .} and

with
∑
i∈I pi = 1 and wish to generate a discrete

random variable whose probability distribution

function is

P(X = xi) = pi ∀i ∈ I .

This may be done by generating a

(pseudo-)random variable U with

distribution U(0, 1) and setting

X =





x0 if U < p0

x1 if p0 ≤ U < p0 + p1

x2 if p0 + p1 ≤ U < p0 + p1 + p2

...

xi if
∑i−1
j=0 pj ≤ U <

∑i
j=0 pj

...
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The inverse transform method

For now since U is U(0, 1)

P(X = xi) = P



i−1∑

j=0

pj ≤ U <

i∑

j=0

pj


 = pi

If we write F (xk) =
∑k
i=0 pi then the process of

generating X is given by

ä Generate a random number U

ä If U < F (x0) set X = x0 and stop

ä If U < F (x1) set X = x1 and stop

ä
...

If the xi are ordered so that x0 < x1 < · · · then

this is equivalent to choosing X = xi

if F (xi−1) ≤ U < F (xi) and for this reason the

method is known as the inverse transform

method.
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Geometric random variables

Here

pi = P(X = i) = p(1− p)i−1 i = 1, 2, . . .

and so

i−1∑

j=1

pj = 1− P(X > i− 1)

= 1− (1− p)i−1 .

Thus, we can use the inverse transform method

by setting X to the value of i such that

1− (1− p)i−1 ≤ U < 1− (1− p)i .

A little algebra shows that we can write this as

X =

⌊
log(U)

log(1− p)

⌋
+ 1 .
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Poisson random variables

Here we have for λ > 0

pi = P(X = i) = e−λ
λi

i!
i = 0, 1, . . . .

Hence, it follows that

pi+1 =
λ

i+ 1
pi i = 0, 1, . . .

and an algorithm to generate a Poisson(λ)

random variable is as follows.

1 Generate a random number U

2 Set i = 0, p = e−λ, F = p

3 If U < F , set X = i and stop

4 Set p = λp/(i+ 1), F = F + p, i = i+ 1

5 Go to step 3

Clearly, similar algorithms can be formulated for

other discrete distributions.
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Generating

continuous random variables

Let U be a random variable with

distribution U(0, 1) then

X = F−1
X (U)

is a random variable with cdf FX(x).

Proof:

P(X ≤ x) = P(F−1
X (U) ≤ x)

= P(FX(F−1
X (U)) ≤ FX(x))

= P(U ≤ FX(x))

= FX(x) .

So, the inverse transform method for continuous

random variables with cdf FX(x)

generates X = F−1
X (U) where U is U(0, 1).
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Uniform distribution (a, b)

Consider the uniform random variable on the

interval (a, b) with distribution function (ie, cdf)

FX(x) = (x− a)/(b− a)

for x in the interval (a, b).

Given a pseudo-random uniform value U in the

interval (0, 1) we set

X = F−1
X (U)

and so

U = FX(X) = (X − a)/(b− a)

so that

X = (b− a)U + a .

Computer Systems Modelling, 2004/5 Slide 50



Exponential distribution

For the exponential distribution with parameter λ

we have

FX(x) =





1− e−λx if x > 0

0 otherwise

and so given U , a pseudo-random variable with

distribution U(0, 1), we set

X = F−1
X (U) .

Thus

U = FX(X) = 1− e−λX

so that

X = − 1

λ
log(1− U) .

Note that both U and 1− U are distributed

as U(0, 1) so we might as well set

X = − 1

λ
log(U) .
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Alternative method

for Poisson random variables

Recall that for a Poisson process of rate λ, the

number of events in [0, 1], N(1), is Poisson(λ).

Moreover, the inter-arrival times of events Xi are

independent Exp(λ). Hence,

N(1) = max

{
n :

n∑

i=1

Xi ≤ 1

}
.

Thus N = N(1) is a Poisson(λ) random variable

where putting Xi = − log(Ui)/λ

N = max

{
n :

n∑

i=1

− 1

λ
logUi ≤ 1

}

= max {n : log(U1U2 · · ·Un) ≥ −λ}
= max

{
n : U1U2 · · ·Un ≥ e−λ

}

= min
{
n : U1U2 · · ·Un < e−λ

}
− 1
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Simulating a Poisson process

Consider the problem of generating the first n

event times of a Poisson process of rate λ. One

way is to generate U1, U2, . . . , Un random

numbers each from a U(0, 1) distribution and

then set Xi = − 1
λ log(Ui). Then the first n event

times are
∑j
i=1Xi for j = 1, 2, . . . , n.

To generate the first T time units we could

proceed as above and stop when the sum first

exceeds T . Algorithmically,

1 Set t = 0, I = 0

2 Generate a random number U

3 Set t = t− 1
λ log(U). If t > T stop

4 Set I = I + 1, S(I) = t

5 Go to step 2

will build the sequence of event times in S(·).
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A simple queueing system

arrivals-

queue server(s)
���departures-

We characterise queueing systems by:

ä Arrival process

A(t) = P( inter-arrival time ≤ t)
ä Service process B(x) = P( service time ≤ x)

ä Storage capacity available for waiting

customers

ä The number of servers/customers available

ä The different classes of arriving customers

(big jobs, small jobs,. . . )

ä Queueing discipline used: FIFO, FCFS,

LCFS, priority, . . .

ä Defections, balking, bribing, . . .
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Queueing systems notation

The Kendall notation describes a single queueing

system using the notation A/B/m/k/l where:

ä A is the inter-arrival time distribution of

customers

ä B is the service time distribution

ä m is the number of parallel servers

ä k is the limit on the customers in this system

ä l is the population size

If the population size or the limit on the queue

length are not specified then they are assumed to

be infinite.
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Queueing notation (2)

ä M – exponential distribution (ie, memoryless)

ä Er – r-stage Erlangian distribution

ä D – Deterministic

ä G – General

Examples:

ä M/M/1: exponential inter-arrival,

exponential service, single server

ä M/Er/1: exponential inter-arrival, r-stage

Erlang service, single server

ä M/G/1: exponential inter-arrival, general

service time, single server

ä M/M/K/K: exponential inter-arrival,

exponential service, K servers and at most K

customers present
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Queueing networks

1 2 3
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More generally, consider systems comprising

multiple inter-connected service centres, forming

a queueing network. Consider:

ä the properties of each node

— e.g. using Kendall notation

ä the way in which jobs move between the

nodes

— e.g. the links between nodes and the ways

jobs move between them

ä the workload being analyzed

— e.g. disk-server workload comprises a

20 : 1 mix of small/large requests
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Queueing networks (2)

We can classify queueing networks as either

ä closed networks in which a fixed set of jobs

circulate between nodes, but no new jobs are

introduced and no jobs leave the system

— e.g. a computer system with a fixed

number of terminals attached to it.

ä open networks in which jobs may enter and

leave the system

— e.g. the network on the previous slide:

jobs arrive at 1 or 5 and leave from 1 or 3.

Open networks may be further classified as

feed-forward if a single job visits each node at

most once.
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Simulation

Simulation allows arbitrarily complex systems to

be evaluated

ä Able to capture the dynamic behaviour of

systems

ä Captures the dynamics of complex systems

by imitation

ä Tracks the evolution of the system over time

ä Examples include communication network

design, road traffic modelling, studying

chemical reactions, fluid flow, etc.
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Simulation (2)

Execution of a simulation model consists of a

series of state space changes.

Consider simulation as a ‘set of equations’

describing evolution in time of system under

study.

The ‘equations’ are ‘solved’ by following their

evolution in time.

We always follow the dynamic evolution of the

system, even if we only want a mean value —

therefore, as well as techniques for implementing

simulators, it is necessary to know how to analyse

their results — more later.

Simulation is of particular use when we are

studying systems that are not in steady state.

Computer Systems Modelling, 2004/5 Slide 60



Types of simulation

ä Discrete state/event simulation in which the

state of the system is described by discrete

variables

— e.g. the number of jobs at different stages

on a production line

ä Continuous state/event simulation in which

the state is described by continuous variables

— e.g. the quantities of various chemical

reagents in a vat

A similar distinction may be drawn between

discrete time and continous time simulations

depending on whether the system state is defined

at all times.

— e.g. a simulation of the number of students

attending these lectures would be discrete time.
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Types of simulation (2)

We will be concerned with discrete event

simulation because it applies most naturally to

computer systems in which state variables are

generally discrete, e.g.

ä the state of jobs in the system;

ä the number of jobs of different kinds;

ä the number or availability of devices.
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Pros and cons

The principal advantage of simulation is its

extreme generality. However, . . .

ä The design, coding and debugging of a

simulation program is often time consuming

and difficult to understand — it may even

approach that of implementing the system

and measuring it directly!

ä Generality can lead to complexity which can

obscure understanding of the model — fine

details may be irrelevant if the simulated

workload is already a poor approximation.

ä Execution of the simulation can be

computationally expensive.

ä Statistical analysis of the output can be

problematic — e.g. how long to run the

simulation before averaging the results?
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Events

Each event contains a time stamp identifying

‘when it occurs’ and denotes some change in the

state of the system to be simulated e.g. ‘packet

arrived’

Events are ordered in time in an event list

Initialize the clock to 0

Initialize the event list

WHILE termination criterion is not met

remove a smallest tuple (t,m) from the event list

update the clock to t

simulate the effect of transmitting m at time t

It is crucial that the simulator always selects the

event with the earliest time stamp

Frequently most of the simulation time is spent

maintaining the chronological order of the event

list.
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Simulation variables

As we have seen, discrete event simulations

involve both events and variables and where we

continually keep track of variables as they change

during a simulation.

In general, there are three types of variables.

ä Time variable, t, to record the passage of

time during the simulation;

ä Counter variables which keep count of the

number of times that certain events have

occurred by time t;

ä System state variables which define the state

of the system at time t.

As simulation events occur we change these

variables and gather any output of interest.
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Physical systems

Concerned with the problem of representing

so-called ‘physical systems’

A physical system consists of one or more

physical processes

Each physical process operates independently,

aside from interaction via messages (events)

All state changes are summarized in the event

exchanges

Note the similarity with object-oriented styles of

programming in which objects communicate

solely by method invocations. Older

object-oriented languages tended to refer to these

as message-send operations.
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Example

- �
��

B
BB

B
BB

�
��

-

-

-

-

CW1

CW2

incoming cars
waiting queue

attendant
cars leaving-

An automatic car wash which is able to service

one car at a time — is it viable to install a second

car wash?

Model: attendant (att), car washes, (cw1, cw2),

entrance (source) and exit (sink).

ä The inter-arrival time of cars that need to be

washed is randomly distributed

ä If both car washes are busy, an arriving car

joins the queue

ä When a car wash becomes idle then the car

at the head of the queue is sent to it.
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Example (2)

Events:

ä source→att: car arrives in the system

ä att→cw: car sent from the queue to the car

wash

ä cw→att: car wash becomes idle

ä cw→sink: car departs the system

Note how the departure of a car is modelled by

two events: one representing the car leaving the

system and the other that signals to the

attendant that the car wash is now idle.

Given that it takes cw1 8 minutes and cw2 10

minutes to wash a car, a possible sequence of

events is . . .
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Sequence of events

message event time sender receiver content

1 - 0 cw1 att idle

2 - 0 cw2 att idle

3 1 6 source att car 1

4 2 6 att cw1 car 1

5 3 11 source att car 2

6 4 11 att cw2 car 2

7 5 12 source att car 3

8 6 14 cw1 sink car 1

9 - 14 cw1 att idle

10 7 14 att cw1 car 3

11 8 17 source att car 4

12 9 19 source att car 5

13 10 21 cw2 sink car 2

14 - 21 cw2 att idle
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Modelling stochastic systems

To represent the stochastic nature of the systems

being modelled, simulation requires the use of

random variables.

An input to the simulation may have a stochastic

distribution e.g. arrivals at a queue.

Simulation model needs to sample random

variables from the given distribution to

“re-create” the input process.

Random variables can be generated for a wide

range of theoretical and empirical distributions.

This process requires only a sequence of

independent random variables with a uniform

distribution!
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Simulating a

single server queue

As a more detailed example consider the

simulation of a single server queue to which

customers arrive according to a (homogeneous)

Poisson process of rate λ.

On arrival a customer either enters service

immediately (if the server is free) or waits in a

queue of customers (if the server is busy). When

a customer departs the server the customer who

has been waiting longest (FIFO discipline) enters

service or, if the queue is empty, the server

remains idle until the next customer arrives.

The times taken to serve each customer are

independent, identically distributed random

variables with probability distribution function G.
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Simulating a

single server queue (2)

Let T be a fixed time beyond which customers

are nolonger allowed to enter the system.

Beyond time T the server continues to serve all

remaining customers until the system is empty.

We could use the simulation to estimate

ä the average time a customer spends in the

system;

ä the average time beyond T that the last

customer departs.
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Simulating a

single server queue (3)

Variable Description

Time t

Counter NA, the No of arrivals

ND, the No of departures

System state n, the No of customers

The event list will consist of two elements:tA, tD,

the times of the next arrival and next departure,

respectively. If there is no customer in service

then put tD =∞.

We will output A(i) and D(i) the times of arrival

and departure of customer i together with Tf the

time past T that the last customer departs the

system.
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Simulating a

single server queue (4)

Within the simulation we use the random

variable Ts as the time of the next arrival after

time s and Y as a random service time chosen

from the given distribution G.

The initialization of the variables is as follows.

ä Set t = NA = ND = 0;

ä Set n = 0;

ä Generate T0 and set tA = T0 and tD =∞.

The simulation advances event by event updating

the variables according to one of the following

cases.
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Simulating a

single server queue (5)

Case I: tA ≤ tD, tA ≤ T

ä Reset t = tA, NA = NA + 1, n = n+ 1;

ä Generate Tt, reset tA = Tt;

ä If n = 1, generate Y and reset tD = t+ Y ;

ä Collect output data A(NA) = t.

Case II: tD ≤ tA, tD ≤ T

ä Reset t = tD, n = n− 1, ND = ND + 1;

ä If n = 0 reset tD =∞ else generate Y and

reset tD = t+ Y ;

ä Collect output data D(ND) = t.
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Simulating a

single server queue (6)

Case III: min(tA, tD) > T , n > 0

ä Reset t = tD, n = n− 1, ND = ND + 1;

ä If n > 0 generate Y and reset tD = t+ Y ;

ä Collect output data D(ND) = t.

Case IV: min(tA, tD) > T , n = 0

ä Collect output data Tf = max(t− T, 0).

ä Stop.

Each simulation run will produce the

quantities D(i)−A(i) giving the amounts of

time that customers spent in the system and the

value Tf .

We then use the numerical average value of these

quantities as our estimates.
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Simulation performance measures

As the simulation itself is stochastic, so too are

the observed outputs.

It is critical to realize that a simulation can only

yield estimates for performance measures.

There will always be some statistical error in the

estimates.

We can attempt to reduce the error by

ä running the simulation for longer until

sufficient samples have been taken;

ä running the same simulation with a different

pseudo-random number sequence, and

combining the results from multiple runs. We

will say more on this later.
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Utilization

The utilization is the proportion of time that a

server is busy.

An estimate can therefore be obtained by taking

the sum of the busy times of the server and

dividing by T , the simulation length.

In the case of a k-server, the busy times can be

estimated together and divided by kT .

There are two obvious ways to aggregate the

busy times:

ä Sample the system and observe whether

servers are busy or idle

ä When the server becomes busy the time is

saved, and when it becomes idle again the

difference in the two times is the busy period.
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Throughput, queue length

A simple count is kept of the number of

customers receiving service. The throughput is

this value divided by the total time.

There are at least two ways to estimate queue

length:

ä estimate the queue length distribution, then

use that to obtain the mean;

ä view the queue length as a function of time:

the mean queue length is 1/T times the

integral of this function.
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Queue length

ä Each time the queue length changes the time

ti+1 is stored;

ä subtract previous recorded time ti from

current time;

ä multiply by previous queue length ni.

Sum these areas to give mean queue length, N ,

(averaged over M observations) by

N =
1

T

M∑

i=1

ni(ti+1 − ti)
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Queueing time

Two obvious ways to obtain queueing time

ä observe the queueing times and take their

average;

ä simply use Little’s law.
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Statistical analysis of results

Suppose that X1, X2, . . . , Xn are independent,

identically distributed random variables and let µ

and σ2 be their common mean and variance,

respectively.

Hence,

µ = E(Xi)

and

σ2 = Var(Xi) = E((Xi − E(Xi))
2) .

Given a sample of values of the random

variables X1, X2, . . . , Xn how might we estimate

the values of the parameters µ and σ2 and how

does the sample size, n, affect the accuracy of

our estimates?
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Sample mean

The quantity

X :=
1

n

n∑

i=1

Xi

is called the sample mean. Note that the sample

mean is another random variable with mean

E(X) = E

(
n∑

i=1

Xi

n

)

=

n∑

i=1

E(Xi)

n

=
nµ

n
= µ .
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Sample mean (2)

The variance of X, which we can then think of as

the mean squared error, is given by

E((X − µ)2) = Var(X)

= Var

(
n∑

i=1

Xi

n

)

=
1

n2

n∑

i=1

Var(Xi)

=
σ2

n
.

Thus, X can be used to estimate µ from the

sample. It is a good estimator of µ when σ/
√
n is

small.
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Sample variance

Call the random variable

S2 :=

∑n
i=1(Xi −X)2

n− 1

the sample variance.

It is possible to show that

E(S2) = σ2

and so S is a suitable estimator for the true

standard deviation σ.

It is important to have an estimator for σ since we

have seen that the accuracy of our estimator (X)

for the true mean µ depends on this variance.
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Confidence intervals

We can use the Central Limit Theorem to see

that for large sample sizes, n, the random variable

(X − µ)

σ/
√
n

=
√
n

(X − µ)

σ

is approximately distributed N(0, 1).

Additionally, we may not know the true

variance σ2 but instead need to estimate it by S2

so that
√
n

(X − µ)

S

is approximately distributed N(0, 1).
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Confidence intervals (2)

Write zα for the value such that P(Z > zα) = α

where Z is a standard normal random

variable N(0, 1) then it follows that

P
(
−zα/2 < Z < zα/2

)
= 1− α

and so by the CLT

P
(
−zα/2 <

√
n

(X − µ)

S
< zα/2

)
≈ 1− α

or, equivalently,

P
(
X − zα/2

S√
n
< µ < X + zα/2

S√
n

)
≈ 1−α .

The interval X ± zα/2S/
√
n is an

(approximate) 100(1− α) percent

confidence interval for µ.
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Student’s t-distribution

If it is known that the common distribution of the

variables Xi is also Normal then

√
n

(X − µ)

S

has (exactly) a distribution called the Student’s

t-distribution with n− 1 degrees of freedom.

Thus, an alternative confidence interval for µ is

to take tα in place of zα where tα is defined

analogously as

P(T > tα) = α

where T is a random variable with the Student

t-distribution with n− 1 degrees of freedom.
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Stopping rules

How do we know when a system has been run

‘long enough’ for performance measures to be

accurate?

We can repeat the simulation several times with

different random seed values to obtain many

samples. These multiple runs are called

replications.

Having repeated the experiment n times, we can

construct a confidence interval on our measure L,

say.

Although large numbers of replications reduce the

variance, each replication requires re-stabilizing

the simulation.

Can we avoid this?

We may be able to use a single, long run, and

break up our samples into n blocks, each of these

can form a sample Li.
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Stopping rules (2)

What could go wrong with this?

Correlation between successive blocks could mean

that we have biased samples.

If the block size is large then the correlation

should be small.

Explicit techniques exist to estimate the

correlation and obtain the block size.

The simulation can be stopped once the estimate

of L becomes stable. For example, once the

confidence interval around L becomes sufficiently

narrow.
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Stopping rules (3)

Suppose we wish to run the simulation until

our 100(1− α) confidence interval for the true

mean value is of at most of width `, say.

We can guarantee this by means of the following

algorithm

ä Generate at least 100 data values;

ä Repeatedly, generate additional data values,

stopping when the number of values

generated, n, is such that 2zα/2S/
√
n < `

The initial 100 data values is for illustration, a

suitable value will depend on the precise

simulation experiment under consideration.

The intention is to suppress the effects of the

initial transient phase.
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Goodness of fit tests

How might we validate our simulation model?

One area of concern is the assumption of various

probabilistic distributions in the model. For

example, how sure are we in the use of a Poisson

distribution for the numbers of events in a given

interval or the choice of the distribution G for the

service times of customers in a queue.

Statistical procedures have been developed to

help with these questions. The hypothesis of a

particular distribution can be tested by observing

the system and then asking whether the

assumption of a particular distribution is

‘consistent’ with the data. Such procedures are

known as statistical goodness of fit tests.
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Chi-Squared test for discrete data

Suppose we have n independent random

variables Y1, Y2, . . . , Yn and we wish to test the

null hypothesis that they have the distribution

P(Yj = i) = pi i = 1, 2, . . . , k .

If we let Ni be the number of Yj equal to i then

we expect under the null hypothesis that

E(Ni) = npi i = 1, 2, . . . , k .

Thus we should consider rejecting the null

hypothesis when

T :=

k∑

i=1

(Ni − npi)2

npi

is large. How large is too large?
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Chi-Squared test (2)

It can be shown that under the null hypothesis

and when n is large that the distribution of T is

approximately a chi-squared random variable

with k − 1 degrees of freedom.

Thus, we can assess the value of

P(T > t)

where t is the observed value of T from standard

tables of the chi-squared distribution.

Typically, we would reject the null hypothesis

when

P(T > t)

has a value less than 0.05 or, more conservatively,

as low as 0.01. Otherwise, we say that the

observed data appears consistent with the null

hypothesis.
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Kolmogorov-Smirnov test

for continuous data

Suppose now that we wish to test whether n

independent random variables Y1, Y2, . . . , Yn arise

from a common continuous distribution F (x).

First we observe the n random variables and

construct the empirical ditribution defined by

Fe(x) :=
No of i such that Yi ≤ x

n
.

This will measure the proportion of observed

values less than or equal to x and so should be

‘close’ to the function F (x) under the null

hypothesis.
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Kolmogorov-Smirnov test

for continuous data (2)

Consequently, we would expect the quantity

D = max
x
|Fe(x)− F (x)|

to be small and we should reject the null

hypothesis if D is too large.

The quantity D is called the

Kolomogorov-Smirnov test statistic.

The distribution will depend on the sample size n

and has been tabulated.
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Other tests for randomness

Various statistical tests are available.

Runs tests, which examine the arrangement of

numbers in a sequence (a run) to test the

hypothesis of independence.

These tests frequently check for the number of

“up runs”, the number of “down runs”, and the

runs above and below the mean.

Autocorrelation tests check the correlation

structure of the sequence of observations.
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Variance reduction techniques

So far we have used the sample mean, X, as our

estimator for µ, the mean value of our

distribution. We know that

E(X) = µ and Var(X) =
σ2

n

where n is the sample size.

Might we be able to find an alternative estimator

for µ which has smaller variance?

Such variance reduction techniques can

sometimes produce significant speed-ups in the

simulation.
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Antithetic variables

Suppose that X1 and X2 are two identically

distributed random variables with common

mean E(X1) = E(X2) = µ. Then

Var

(
X1 +X2

2

)
=

1

4
(Var(X1) + Var(X2) + 2Cov(X1, X2)) .

Hence, we would get a reduced variance by

using (X1 +X2)/2 when X1 and X2 are

negatively correlated.

Recall that in the inverse transform method we

generate (pseudo) random numbers by first

generating pseudo random numbers U1, U2, . . .

with a U(0, 1) distribution. But then the

numbers 1− U1, 1− U2, . . . are also random

numbers with a U(0, 1) distribution and these

two series of numbers are negatively correlated.
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Antithetic variables (2)

It often happens in practice that dividing the

simulation runs into two groups and using 1− U
for the second group in place of U in the first

group yields two random variables X1 and X2

which are negatively correlated.

In this case we say that X1 and X2 are antithetic

variables.
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Example

Consider a queueing system and let Di be the

delay in the queue of the ith customer and

suppose we wish to estimate

E(D1 +D2 + · · ·+Dn)

the sum of the delays of the first n customers.

We should expect to require a collection of 2n

random variables Uj (one for each arrival and

departure event per customer).

Repeating the simulation using the 2n random

numbers given by 1− Uj will then give an

improved estimator compared to using a ‘fresh’

set of 2n random numbers.
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Control variates

Suppose we run a simulation and gather from the

output a random variable X for estimating µ

with E(X) = µ.

Now, suppose that we also gather another

random variable, Y , from the same output with a

known mean value E(Y ) = µY .

Hence, for any number c

Z = X + c(Y − µY )

is also an estimator for µ since clearly E(Z) = µ.

What is the best choice of c?
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Control variates (2)

Note that

Var(Z) = Var(X + c(Y − µY )) = Var(X + cY )

= Var(X) + c2Var(Y ) + 2cCov(X,Y )

and so, using calculus, the variance is minimized

by taking c = c∗ where

c∗ = −Cov(X,Y )

Var(Y )

and then

Var(X+ c∗(Y −µY )) = Var(X)− (Cov(X,Y ))2

Var(Y )
.

The variable, Y , is called the control variate

for X.
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Example

Suppose we are simulating a queueing system and

we are interested in estimating the total time

spent in the system by all customers arriving

before time t. If Wi is the amount of time spent

in the system by the ith customer then we wish

to estimate µ = E(X) where

X =

N(t)∑

i=1

Wi

where N(t) is the number of arrivals by time t.
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Example (2)

If the service time of the ith customer is Si then

Y =

N(t)∑

i=1

Si

can act as a control variate and we have from

known quantities that

E(Y ) = µY = E(S)E(N(t)) .

Note that in order to compute the optimal

choice c∗ for c we would have to estimate the

variance Var(Y) and covariance Cov(X,Y ) from

the simulated data.
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Operational

analysis
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Operational Analysis

Based on the idea of observation rather than a

probabilistic description of system behaviour.

It is also concerned with quantities ‘directly

related’ to these observed quantities.

Operational analysis makes very weak

assumptions about the system being modelled

— unlike simulation which requires detailed

system knowledge, or the techniques from

queuing theory (in the next section) which

depend extensively on the probability distributions

involved

We begin by examining some fundamental

quantities and operational laws.
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Operational analysis (2)

We examine a system for some time recording the

customer arrivals and departures, and define the

quantities of interest:

ä T , the length of time we observe the system

ä A, the number of arrivals observed

ä C, the number of departures (or completions

of service) observed

ä W , the job-time product: the sum of the

durations of all customers over the

observation period

If the system is a single resource, then we can

also measure:

ä B, the time for which the resource was busy.
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Operational analysis (3)

From these we can define the following quantities:

ä Arrival rate, λ := A
T

— the mean number of

arrivals per unit time

ä Throughput, X := C
T .

— the mean number of

departures per unit time

ä Mean number of customers, N := W
T

— the job-time product

in terms of N and T

ä Mean residence time, R := W
C

— the job-time product

in terms of R and C
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Operational analysis (4)

For a single resource, we can also define:

ä Utilization, U := B
T

— the proportion of the time

that the resource is busy

ä Average service requirement, S := B
C

— the mean time that the

resource spends for each departure
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The utilization law

Our first “law” is just an algebraic identity

U :=
B

T
=
C

T

B

C
= XS

This is termed the utilization law.

For example, if the throughput (X) is 5

departures/sec and the service demand (S) is 0.1

sec/departure then the utilization (U) is 50%.
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Little’s law

Similarly, we can derive the familiar

Little’s Law

N :=
W

T
=
C

T

W

C
= XR

For example, if the throughput (X) is 5

customers/sec and the mean residence time is 1

sec then the average number in the system is 5.

ä Very weak assumptions about the system

ä Applicable to a wide range of systems

ä Can be applied recursively to subsystems and

to individual resources

— but take care that mutually-consistent

values are used for X and R; in particular,

whether they apply to the queue, the server

or the entire system
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An example

Observe system for T = 10 sec

4 customers spend 10 s in the system

One customer spends 5 s in the system

Then we have W = 4× 10 + 1× 5 = 45 s.

If also A = C = 5 then

X = C/T = 5/10 = 0.5 customers per second

λ = 5/10 = 0.5 customers per second

N = 45/10 = 4.5 customers

R = 45/5 = 9.0 s per customer
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A simple interactive system

Terminals

CPU

Disks

Central
Subsystem

Fixed number, M , of users logged on.

Customer is at the terminal whilst thinking.

The think time, Z, is the average time a user

spends between receiving a prompt and

responding.

A customer not thinking is somewhere inside the

central subsystem.
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Simple interactive system (2)

We can use Little’s Law to relate some observable

quantities in the central subsystem:

ä N is the number of customers in the central

subsystem 0 ≤ N ≤M

ä X is the rate at which customers complete in

the central subsystem

ä R is the average time a customer spends in

the central subsystem (intuitively equivalent

to “response time”)

If we observe that system throughput is 0.5

interactions per second and we find on average

7.5 users in the subsystem then

R =
N

X
=

7.5

0.5
= 15 s

from Little’s Law.
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Simple interactive system (3)

We can also apply Little’s law to the entire

system.

This is a closed system so the number of

customers is fixed as M .

We can split the time spent during an interaction

into the response time (R) and the think time

(Z). The residence time is R+ Z.

We consequently derive the interactive system

version of Little’s Law:

M = X(R+ Z)
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Simple interactive system (4)

With 10 users logged on, 5 s average think time

and an average response time of 15 s,

X =
M

R+ Z
=

10

15 + 5
= 0.5 interactions/sec

Under heavy load (M large or Z small)

U ≈ 1

Using the Utilization Law the throughput X ≈ 1
S

and hence

R =
M

X
− Z ≈MS − Z

Thus the response time grows

approximately linearly with the

number of users M .
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Visit counts and forced flow

We now extend our notation to allow the

modelling of multiple devices. Use subscripts

i = 1, 2, . . . ,K to identify each device, e.g. Xi is

the throughput at device i. Assume that the

service required by a customer is an inherent

property of the customer not of the state of the

system.

A visit count for a device is the number of

completions at that device for every completion

from the system

Vi :=
Ci
C

Where Ci is the number of completions at device

i. Recall that in a feed-forward queueing network,

0 ≤ Vi ≤ 1 because each customer visits a given

device at most once.
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The forced flow law

Since X = C
T , we have that

Xi =
Ci
T

=
Ci
C

C

T
= ViX

the Forced Flow Law.

For example, if the throughput from the entire

system is 20 customers per second and each

customer visits a given device 3 times then the

throughput of that device must be 60

completions per second.

If devices are load independent, then define the

service demand a customer makes on a device i by

Di := ViSi

— be careful to distinguish the service

requirement (Si) and the service demand (Di)
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Queue lengths at a server

Applying the utilization law at each device:

Ui = XiSi = (XVi)Si = X(ViSi) = XDi

Similarly, applying Little’s law at each device:

Ni = XiRi .

Ri is the residence time at device i and can be

decomposed into the time spent queuing and the

time spent in service, approximated by R∗i :

R∗i = NiSi + Si

= R∗iXiSi + Si

= R∗iUi + Si .
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Queue lengths at a server (2)

Hence

R∗i =
Si

1− Ui
.

So that

Ni = XiR
∗
i

=
XiSi

1− Ui
=

Ui
1− Ui

.

Observe that

ä Ni is zero when Ui is zero;

ä Ni grows rapidly without bound as Ui

approaches one.

Computer Systems Modelling, 2004/5 Slide 121



Bottleneck analysis

A bottleneck in a system is a hindrance to

movement or progress.

Given the forced flow assumption, at high loads

system performance is determined by the device

with the highest utilization: the bottleneck.

The ratio of the completion rates of any two

devices is
Xi

Xj
=
ViX

VjX
=
Vi
Vj
.

Since Ui = XiSi, we have a similar property for

utilizations

Ui
Uj

=
XiSi
XjSj

=
ViSi
VjSj

.
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Bottleneck analysis (2)

A system is load independent if

ä Vi are intrinsic properties of customers,

ä Si are independent of the queue length at i.

In such cases, the throughput and utilization

ratios are the same for all loads.

This can be used to determine asymptotes for X

and R.

In general, Ui ≤ 1 and Xi ≤ 1
Si

.

A device i becomes saturated as Ui → 1

Thus, as Ui → 1, we have that Xi → 1
Si

: device

i is working as fast as it can and consequently

serves one customer every Si units of time.
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Bottleneck analysis (3)

We use the subscript b to denote a device capable

of saturating.

Since the utilization ratios are fixed, the device i

with the largest ViSi product will be the first to

achieve 100% utilization as N increases:

VbSb = max{V1S1, ..., VKSK}

so the bottleneck is determined by both the

device and workload (the Vi and Si) properties.
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Maximum throughput

1/V S

Load, N

System Throughput, X

bb

By the forced flow law

X =
Xb

Vb

So, as Ub → 1 and Xb → 1/Sb

Xmax =
Xb

Vb
→ 1

VbSb
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Maximum throughput (2)

1

1/R

1/V S

Load, N

System Throughput, X

min

bb

The total per-customer service required is

Rmin =
K∑

i=1

ViSi

⇒ X ≤ N

Rmin

Rmin denotes the smallest possible value of mean

response time, occurring when N = 1.
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Maximum throughput (3)

N*1

1/R

1/V S

Load, N

System Throughput, X

min

bb

If k ≤ K jobs always avoid each other then

X =
k

Rmin
≤ 1

VbSb

k ≤ Rmin

VbSb
=

∑K
i=1 ViSi
VbSb

= N∗, say

So, beyond N∗ queueing is certain.
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Maximum throughput (4)

N*1

1/R

1/V S

Load, N

System Throughput, X

min

bb

ä It stays below 1/(VbSb) because, at that

point, a bottleneck will be operating at

maximum utilization;

ä It stays below the straight line X = N/Rmin

because the throughput is limited by the

number of customers in service.
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Interactive response time

ä X throughput;

ä M terminals;

ä Average think time Z;

ä Recall the interactive system version of

Little’s law:

R =
M

X
− Z .

By considering a bottleneck device b:

X ≤ 1

VbSb
⇒ R ≥MVbSb − Z
⇒ R ≥MViSi − Z ∀i ∈ {1 . . .K}
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Interactive response time (2)

1

R

Terminals, M

Response Time, R

min

M b

MV S - Zb b

The response time asymptote meets the

horizontal axis at

Mb =
Z

VbSb

It intersects the minimum response time Rmin at

M∗b (say) where

M∗b VbSb − Z = Rmin .
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Interactive response time (3)

1

R

Terminals, M

Response Time, R

min

M Mb i

MV S - Zb b

MV S - Zi i

Thus

M∗b =
Rmin + Z

VbSb
= N∗ +Mb

When there are more than M∗b terminals,

queueing is certain to exist.
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Summary

ä The largest of the products ViSi determines

the bottleneck b.

ä The sum of these products determines the

smallest possible response time Rmin.

ä Queueing cannot be avoided when N exceeds

N∗ =
Rmin

VbSb

ä Queueing cannot be avoided in an interactive

system when the number of logged-on

terminals exceeds

M∗b = N∗ +
Z

VbSb
.
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Example: interactive system

Terminals

CPU

Disks

Central
Subsystem

Suppose that Z = 20 s.

No. device Si (s) Vi Di = ViSi

1 CPU 0.05 20 1.00

2 disk 0.08 11 0.88

3 fast disk 0.04 8 0.32

Rmin 2.20

Question: Is a 8 second response time feasible

with 30 users logged on? If not, what changes are

required?
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Example: interactive system (2)

1 Terminals, M

Response Time, R
MV S - Z

MV S - Z

1 1

2 2
CPU

disc

fast disc

20 22 62.5

MV S - Z3 3

M 3M 2M1

Rmin = 2.2s

V1S1 = 1s (bottleneck)

V2S2 = 0.88s

V3S3 = 0.32s

⇒ Rmin =

3∑

i=1

ViSi = 2.2s

For M = 30, the response time asymptote

requires R ≥ 30× 1− 20 = 10 s.

So the answer is no.
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Example: interactive system (3)

To make a 8 second response time feasible, we

need to speed up the CPU, so that the new

service time obeys the condition

MV1S
′
1 − Z ≤ 8

or

S′1 ≤
20 + 8

30× 20
= .047 s

which is a 7% speed up in the CPU.

Then V1S
′
1 = 0.93 is still the largest product so

the CPU is still the bottleneck.
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Example: interactive system (4)

Question: Is a 10s response time feasible when 50

users are logged on? If not, how much CPU

speedup is required?

If S1 → 0, the disk will become bottleneck

R ≥MV2S2 − Z

For M = 50, this is

R ≥ 50× 0.88− 20 = 24 s

so a 10s response time is not feasible with

M = 50 and no amount of CPU speedup is

capable of achieving it.
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Balanced system bounds

Balanced system bounds provide tighter bounds

at mid-range loads than bottleneck analysis

A system is balanced if for any load the

utilizations of all devices are equal.

Balanced systems exhibit the following important

property

Ui(N) =
N

N +K − 1
.

So the system throughput is given by

X(N) =
Ui
Di

=
N

N +K − 1
× 1

Di
.
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Balanced system bounds (2)

For example,

N = 1 K = 2 U1 = U2 = 1
2

N = 1 K = 100 U1 = . . . = U100 = 1
100

N = 100 K = 2 U1 = U2 = 100
101

N = 2 K = 2 U1 = U2 = 2
3

We observe the system to determine

ä Dmax — maximum demand at any device;

ä Dmin — minimum device demand;

ä Dav — average demand at each device;

ä D = Dtot — total demand across all devices.

So, we have Dav = D/K.
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Balanced system bounds (3)

Consider imaginary balanced systems related to

our system

pess1: balanced system with K devices each

with a demand of Dmax;

opt1: balanced system with K devices each with

a demand of Dmin.

The throughput of system pess1 is

N

N +K − 1
× 1

Dmax
.

The throughput of system opt1 is

N

N +K − 1
× 1

Dmin
.
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Balanced system bounds (4)

So for the system being modelled we have

N

N +K − 1
× 1

Dmax
≤ X(N) ≤ N

N +K − 1
× 1

Dmin
.

Since N = XR we have,

(N +K − 1)Dmax ≥ R(N) ≥ (N +K − 1)Dmin .

This will give tighter bounds on the mid-range

performance than the bottleneck bounds.
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Balanced system bounds (5)

1

1/R

1/V S

Load, N

System Throughput, X

min

bb

N
D+(N-1)DavN/D

We can do even better by considering the best

performance that the system can achieve which

occurs when the load is spread out evenly among

all the devices.

opt2: Dav at each of the K devices

X(N) =
N

N +K − 1
× 1

Dav
=

N

D + (N − 1)Dav
.
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Balanced system bounds (6)

1

1/R

1/V S

Load, N

System Throughput, X

min

bb

N
D+(N-1)Dmax

N/D

Now, what is the worst system subject to the

constraints that D and Dmax remain fixed?

Answer: place Dmax at as many devices as

possible and 0 at the rest

pess2: Dmax at each of the D
Dmax

devices

X(N) =
N

N +K − 1
× 1

Dmax
=

N

D + (N − 1)Dmax
.
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Balanced system bounds (7)

1/R min

N/D N
D+(N-1)D av

N
D+(N-1)D max

System Throughput, X(N)

b1/V S b

Load, N1

N

D + (N − 1)Dmax
≤ X(N) ≤ N

D + (N − 1)Dav

D + (N − 1)Dmax ≥ R(N) ≥ D + (N − 1)Dav
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Balanced system bounds (8)

As N →∞,

N

D + (N − 1)Dmax
→ 1

Dmax

Note that at high loads the bottleneck bounds

are the limiting high bound.

The asymptotic bottleneck bound

1

Dmax

and the optimistic balanced bound intersect at

N† where

1

Dmax
=

N†

D + (N † − 1)Dav
.

So that

N† =
D −Dav

Dmax −Dav
.

Computer Systems Modelling, 2004/5 Slide 144



Queueing

theory
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Markov processes

A Markov process is a family of random variables

X(t) indexed by a time parameter t in which

ä X(t) denotes the state at time t

ä The next state depends only on the current

state

We are concerned with the particular case of

Markov processes in which the state space is

discrete, termed Markov chains

If we denote successive states as x1, x2,. . . then

the Markov property says that

P(Xn+1 = xn+1|X1 = x1, . . . , Xn = xn) =

P(Xn+1 = xn+1|Xn = xn)

Computer Systems Modelling, 2004/5 Slide 146



Other types of stochastic process

A Markov process is a particular kind of

stochastic process

ä Birth death process (BDP): a Markov process

in which transitions occur only between

neighbouring states

ä Random Walks: refer to Probability IA notes

ä Renewal Process: X(t) counts state

transitions in (0, t)
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Birth death processes

A birth death process is a special case of a

continuous-time Markov chain in which we allow

transitions only between neighbouring states.

The state space is the set of non-negative

integers and we allow only a single birth or death

per transition. Thus given Xn = i

Xn+1 =




i+ 1 birth (or arrival)

i− 1 death (or departure)
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State space diagram

We use λi to represent the birth rate in state i,

and µi to represent the death rate in state i.

���0
� �-λ0


 	�
µ1

���1
� �-λ1


 	�
µ2

���2
�-λ2


 �
µ3

...
�-λi−1

	�
µi

���i
� �-λi


 	�
µi+1

���i+1

�-λi+1


�
µi+2

...
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Time dependent solution of BDP

We denote by Pi(t) the probability of being in

state i at time t.

The probability of a birth in an interval ∆t when

the system starts in state i is assumed to be

λi∆t+ o(∆t).

The probability of a death in ∆t when the system

starts in state i is µi∆t+ o(∆t).

The probability of more than one event in ∆t is

o(∆t).

[Recall: o(∆t) denotes a quantity which becomes

negligible when compared with ∆t as ∆t→ 0.]

To solve for Pi(t) we write a set of difference

equations called the Chapman Kolmogorov

equations.
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Chapman Kolmogorov equations

For i ≥ 1:

Pi(t+ ∆t) = Pi(t)(1− λi∆t)(1− µi∆t)
+ Pi+1(t)(µi+1∆t)(1− λi+1∆t)

+ Pi−1(t)(λi−1∆t)(1− µi−1∆t)

+ o(∆t) .

For i = 0:

P0(t+ ∆t) =P0(t)(1− λ0∆t)

+ P1(t)(µ1∆t)(1− λ1∆t)

+ o(∆t) .
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Chapman Kolmogorov (2)

We derive differential-difference equations from

these by dividing through by ∆t and taking the

limit as ∆t→ 0 to get for i ≥ 1

dPi(t)

dt
= −(λi + µi)Pi(t)

+ µi+1Pi+1(t)

+ λi−1Pi−1(t)

and for i = 0

dP0(t)

dt
= −λ0P0(t) + µ1P1(t) .

The time dependent solution is difficult for many

systems of interest, so we will study the

stationary solution.
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Stationary solution

We are interested in the long term probabilities

after the system has reached an equilibrium.

These probabilities are independent of the initial

conditions.

System reaches equilibrium if, for all i,

lim
t→∞

Pi(t) = pi exists .
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Stationary solution (2)

The quantities pi solve the Chapman Kolmogorov

equations with dPi(t)/dt = 0 so that

0 = −(λi + µi)pi + µi+1pi+1 + λi−1pi−1

0 = −λ0p0 + µ1p1 .

Rewriting gives

pi+1 =
λi + µi
µi+1

pi −
λi−1

µi+1
pi−1 (i ≥ 1)

p1 =
λ0

µ1
p0 .
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Stochastic balance

Under steady-state conditions we require total

flow into a state to equal total flow out of a state.

The total flow is the product of the steady state

probabilities and the flow rates.

We enter state i at rate pi−1λi−1 + pi+1µi+1.

We exit state i at rate piλi + piµi.

The equation

pi−1λi−1 + pi+1µi+1 = piλi + piµi (i ≥ 1)

equates the flow into and out of state i.

This is called the global balance equation.
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Stochastic balance (2)

The two equations

piλi = pi+1µi+1 (i ≥ 0)

describing flow from state i to state i+ 1, and

piµi = pi−1λi−1 (i ≥ 1)

describing flow from state i to state i− 1 are the

detailed balance equations.

Rewriting gives

pi+1 =
λi
µi+1

pi

which gives us the product solution

pk = p0

k−1∏

i=0

λi
µi+1

for k ≥ 1

for pk (k ≥ 1) in terms of p0.
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Stochastic balance (3)

Since the sum of state probabilities is unity,

p0 +

∞∑

k=1

pk = 1

p0 +

∞∑

k=1

p0

k−1∏

i=0

λi
µi+1

= 1

p0

[
1 +

∞∑

k=1

k−1∏

i=0

λi
µi+1

]
= 1

so that

p0 =

[
1 +

∞∑

k=1

k−1∏

i=0

λi
µi+1

]−1

pk = p0

k−1∏

i=0

λi
µi+1

which are known as the general flow balance

equations.
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The M/M/1 queue

The BDP maps well onto our domain of study —

queueing systems.

Births represent arrivals to queue, deaths

represent departures as customers finish service.

The M/M/1 queue is an infinite customer

system, with infinite waiting room, and a state

independent service rate.

This means that λi = λ and µi = µ for all i and

we can solve the balance equations as

pk = p0

k−1∏

i=0

λ

µ

= p0

(
λ

µ

)k
.
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The M/M/1 queue (2)

Writing ρ =
λ

µ

p0 =
1

1 +
∑∞
k=1 ρ

k

=
1

1 + ρ
∑∞
k=0 ρ

k

=
1

1 + ρ
(

1
1−ρ

)

= 1− ρ

Consequently, the number in the system is

geometrically distributed

pk = (1− ρ)ρk, k = 0, 1, 2, . . .

If ρ > 1, that is, if λ > µ the system will not

reach equilibrium.
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The M/M/1 queue (3)

What is the average number of customers, E(N),

in the system?

E(N) =

∞∑

k=0

kpk

=

∞∑

k=0

k(1− ρ)ρk

= (1− ρ)ρ
∂

∂ρ

( ∞∑

k=0

ρk

)

= (1− ρ)ρ
∂

∂ρ

(
1

1− ρ

)

=
ρ

1− ρ .
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The M/M/1 queue (4)

An arriving customer will find, on average E(N)

in the system, and will spend a time, say E(T ), in

the system. During E(T ) there will be, on

average λE(T ) arrivals, leaving E(N) customers

in the queue. Thus

E(N) = λE(T )

which is Little’s result restated. In our case

E(T ) =
E(N)

λ
=

ρ

λ(1− ρ)

=
1

µ(1− ρ)
=

1

µ− λ

which is the M/M/1 average response time.

Note that

ä 1
µ is the average service time;

ä ρ is the utilization.
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Performance at high load

At high utilizations ρ approaches one and the

response time and queue lengths are unbounded.

Expected number in the system

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0
5

10
15

20
25

30
35

Exercise: what happens to the variance as ρ→ 1?
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Response time

Consider the effect on response time by increasing

the utilization by a constant load of 0.1.

utilization (ρ) response time (E(T ))

old new % ↑ old new % ↑
0.1 0.2 100.0 1.11 1

µ 1.25 1
µ 13

0.5 0.6 20.0 2 1
µ 2.5 1

µ 25

0.8 0.9 12.5 5 1
µ 10 1

µ 100

Predicting response times is very difficult at high

loads.

Running systems at maximum utilization may

please the providers, but it doesn’t please the

users.
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Busy period of

a single server system

Viewed from the server’s perspective activity

alternates between busy and idle periods. If

customers arrive according to a Poisson process

at rate λ then the idle periods have the Exp(λ)

distribution.

We have seen that the equilibrium probability

that the server is idle, p0, is given by 1− ρ so

that over a long period of time T the server is

idle for a total duration of T (1− ρ) on average

and that this corresponds on average

to Tλ(1− ρ) distinct idle periods.
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Busy period of

a single server system (2)

Thus there are on average Tλ(1− ρ) distinct

busy periods taking a total time of Tρ and so the

mean length of a single busy period is

Tρ

Tλ(1− ρ)
=

ρ

λ(1− ρ)
.

Each customer requires a service time of µ−1 on

average so the mean number of customers served

during a busy period is

1

1− ρ .
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M/M/1 — an example

H.R Cutt barber shop, no appointment needed!

Customers served FCFS.

On Saturday mornings he is very busy and is

considering hiring a helper.

Measures the (Poisson) arrival rate of customers

to be 5 per hour.

Customers are prepared to wait, and he spends on

average 10 min per cut.

What are the average number of customers in the

shop, the average number of customers waiting?

What percentage of time can a customer receive

a cut without waiting?

He has 4 seats in his waiting room. What is the

probability that an arriving customer will find no

seat and have to stand?
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M/M/1 example solution

The average number of customers in the shop:

λ = 5 per hour, µ = 6 per hour So

ρ = 5/6, and hence E(N) = 5 .

Since the average number of customers in service

is ρ, the utilization, the average number of

customers waiting is

E(Nq) = E(N)− ρ = 4
1

6
.

How likely is the barber to be idle?

p0 = 1− ρ =
1

6
.

How often is no seat free?

P(no seat) = P(N ≥ 5)

= ρ5

≈ 0.402
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M/M/m — m servers

This is just like the M/M/1 system, except that

there are m servers.

For all k, λk = λ, but now the service rate is a

function of the number of customers in the

system

µk =




kµ if 0 < k ≤ m
mµ if k ≥ m

For an equilibrium distribution to exist we require

that λ
mµ < 1.
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M/M/1/K — finite capacity

The system can hold up to K customers.

Now for k ≥ K, λk = 0 and for k > K, pk = 0.

Using the equations from the M/M/1 queueing

system, but limiting the summation, and again

writing ρ = λ
µ ,

pk = p0ρ
k for k ≤ K

p0 =
1

1 +
∑K
k=1 ρ

k
=

1

1 + ρ−ρK+1

1−ρ

=
1− ρ

1− ρK+1

Note that p0 is greater than in the M/M/1 case.

For this system with a finite state space an

equilibrium distribution always exists whatever

the arrival and departure rates.
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M/M/1//N — finite population

Single server, unbounded queue capacity and a

population of N customers. We solve this system

by modifying the λk to model the arrival rate.

Instead of having an arrival rate for the

population as a whole, we assign an arrival rate

to each customer, say λ.

If there are no customers in the system, then all

of them are eligible to be born, so that

λ0 = Nλ .

As we have more customers in the system, we

have less eligible to be born. So that,

λk = (N − k)λ, for 0 ≤ k ≤ N .

With a single server the service rate is constant

µk = µ, for k ≥ 1 .
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M/M/m/m — m server loss system

An application of this system is to model a link in

a telephone network.

Such a link contains m circuits each of which

carries a single call.

Suppose that calls arrive at the link according to

a Poisson process of rate λ.

If there is a free circuit the call is connected and

holds the circuit for an exponentially distributed

length of time, with mean 1
µ .

At the end of this holding period the call

terminates and the circuit is freed.

If there are no free circuits then the call is lost.
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M/M/m/m
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 	�
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λk =




λ k < m

0 k ≥ m
µk = kµ for 1 ≤ k ≤ m

The flow balance equations give for k ≤ m

pk = p0

k−1∏

i=0

λi
µi+1

= p0

k−1∏

i=0

λ

(i+ 1)µ

= p0

(
λ

µ

)k
1

k!
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M/M/m/m (2)

Solving for p0 gives

m∑

k=0

pk = p0

m∑

k=0

(
λ

µ

)k
1

k!
= 1

⇒ p0 =

[
m∑

k=0

(
λ

µ

)k
1

k!

]−1

The probability that an arriving call finds all

circuits occupied, pm, is called the loss probability

for the telephone link. Thus,

pm = p0

(
λ

µ

)m
1

m!

=

(
λ

µ

)m
1

m!

[
m∑

k=0

(
λ

µ

)k
1

k!

]−1

This expression for the loss probability is known

as Erlang’s formula.
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BDM extensions

First we relax our constraints on the arrival

process distribution.

We want to model systems in which the

coefficient of variation of the interarrival time is

less than one.

Consider a system in which a birth occurs in two

stages.

�
�

�
�����2λ ����2λ- -

Each stage has an exponentially distributed

residence time.
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BDM extensions (2)

If the desired birth rate is λ, then let each stage

have a rate 2λ.

The average time to get through the combined

birth process will be

E(τ) =
1

2λ
+

1

2λ
=

1

λ
.

Since each stage has exponentially distributed

residence times, the variance of each stage is

σ2
single =

1

(2λ)2
.

The two stages are independent, so the variance

of τ , the time to get through both stages is

σ2
τ =

1

(2λ)2
+

1

(2λ)2
=

1

2λ2
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BDM extensions (3)

So the coefficient of variation is

Cτ =

√
1

2λ2

1
λ

=
1√
2
.

In general, if we use r stages each with rate rλ

we get an average time through all stages of 1
λ

and a coefficient of variation of 1√
r

.

The distribution that describes this r-stage

process is the Erlangian distribution, denoted Er.
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Example, M/E2/1

Allow the state of the process to represent the

number of stages remaining to be served.

An arrival increases the number of stages

remaining to be served by 2 and occurs at rate λ.

A departure from a stage reduces the number of

stages to be served by 1 and occurs at rate 2µ.
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Parallel Servers

Combining stages in series reduces the coefficient

of variation.

If, instead, we combine them in parallel with a

probability αi of choosing the ith parallel stage

we get a service distribution with coefficient of

variation larger than 1.

'
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nµ1

nµ2
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The coefficient of variation is given (see

Kleinrock) by

Cτ =
2
∑r
i=1

αi
µ2
i(∑r

i=1
αi
µi

)2 − 1 ≥ 1 .
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Queueing Networks

We have seen the solution of several queueing

systems of interest.

In general we want to solve a system of such

queues representing a real world performance

problem e.g. a distributed computing system.

We represent the system under study as a

network of connected queues.

Customers move (instantaneously) between

service centres where they receive service.

1 2 3

45

-� -� -
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Model definition

ä customers: typically these represent programs

or data packets etc

ä service centres: the resources in the system

e.g. disks, CPU, transmission links

ä service time distributions: may vary

according to customer type and visit

ä load dependence: multi-processor systems

have load dependent service rates

ä waiting lines and scheduling: may have

limited capacity and various scheduling

algorithms

ä customer types: multiple customer classes

may exist
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Open Queueing Networks

Customers arrive as a Poisson stream at node i at

rate γi.

Customers may leave the network on completion

of service.

Assume we have N nodes, each a single server

queue with infinite waiting room.

Each server i has exponential service time with

mean 1/µi.

A customer completing at node i moves to node

j with probability qij for (i, j = 1, 2, . . . , N).

Note that
N∑

j=1

qij ≤ 1 .
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Open Queueing Networks (2)

A job leaves the network from node i with

probability

qi0 = 1−
N∑

j=1

qij .

The probabilities qij are called the routing

probabilities.

Written as an N ×N matrix this is called the

routing matrix Q = (qij).

An open network with parameters γi, µi and Q is

called a Jackson network.

The system state is (k1, k2, . . . , kN ), where ki is

the number of jobs present at node i.
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Steady state solution

Let λj be the average number of arrivals to node

j per unit time.

On average the departure count per unit time is

therefore λj .

A fraction qji go to node i.

The rate of traffic from node j to node i is thus

λjqji.
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Traffic equations

Adding together all contributions,

λi = γi +
N∑

j=1

λjqji i = 1, 2, . . . , N .

These are known as the traffic equations.

A necessary and sufficient condition for the

existence of an equilibrium distribution is that

ρi :=
λi
µi

< 1

where λi is the solution of the traffic equations.
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Jackson’s Theorem

Let p(k1, k2, . . . , kN ) be the equilibrium

distribution. Jackson’s Theorem states that

p(k1, k2, . . . , kN ) = p1(k1)p2(k2) · · · pN (kN )

where pi(ki) is the equilibrium distribution that

there are ki jobs in an M/M/1 queue with traffic

intensity ρi.

Jackson’s theorem has some important

implications.

ä The numbers of jobs at the various nodes are

independent.

ä Node i behaves as if subjected to a Poisson

stream with rate λi.

Jackson’s theorem may be generalized to the case

where node i has ni servers and so the nodes

behave as independent M/M/ni queues.
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Closed Queueing Networks

Frequently used to model systems at high load or

where a limited, constant number of jobs is

admitted to service.

No external arrivals or departures.

Now the routing probabilities satisfy

N∑

j=1

qij = 1 , i = 1, 2, . . . , N

The number of jobs in the system is always a

constant, denoted by K.

The states of the system, described by the

vector (k1, k2, . . . , kN ), thus satisfy the

constraint,
N∑

i=1

ki = K .
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Closed Queueing Networks (2)

The state space, S, is then finite. The number of

states is (
K +N − 1

N − 1

)

The traffic equations become

λi =

N∑

j=1

λjqji , i = 1, 2, . . . , N .

With a finite state space there always exists an

equilibrium distribution.

Analogous to Jackson’s theorem for the open

network case it may be shown that

p(k1, k2, . . . , kN ) =
1

G
r1(k1)r2(k2) · · · rN (kN )

where ri(ki) is the probability that there are ki

jobs in an M/M/1 queue with traffic intensity

given by a solution to the traffic equations.
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Open vs closed networks

The normalization constant G has to be

determined by

G =
∑

s∈S
r1(k1)r2(k2) · · · rN (kN )

obtained by summing over all

states s = (k1, k2, . . . , kn) in the state space S.

With closed networks need to compute the

normalization constant G — a computationally

hard problem.

The constraint
∑N
i=1 ki = K means that the

numbers of jobs in the various queues are no

longer independent.

For instance, consider the extreme case where

all K jobs are at one node.
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Derivation of the size of S

We require to show that

p(K,N) :=

(
K +N − 1

N − 1

)

is the number of (ordered) partitions of a positive

integer K into N integer summands

K =

N∑

i=1

ki .

Proof: consider K +N − 1 boxes aligned in a

row and select N − 1 of these boxes (without

replacement) which can be done in p(K,N)

ways. Place a “/” symbol in each of the boxes

and a “1” in each of the other boxes. The boxes

now represent an (ordered) partition of K into N

groups of “1” which when added together give

the ki summands.
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Aside: application to

balanced systems

Recall that in a balanced system with N jobs

and K devices the common utilization at each

device is given by

Ui(N) =
N

N +K − 1
for i = 1, . . . ,K .
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Aside: application to

balanced systems (2)

But using the function p(K,N) we can see that,

by symmetry, the utilization is given by

Ui(N) = 1− p(N,K − 1)

p(N,K)

= 1−
(
N+K−2
K−2

)
(
N+K−1
K−1

)

= 1− (N +K − 2)!

(K − 2)!N !

N !(K − 1)!

(N +K − 1)!

= 1− K − 1

N +K − 1

=
N

N +K − 1
.
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The M/G/1 queue

It is usually easier to justify the memoryless

property for arrivals than for service times.

For arrivals, we can appeal to asymptotic results

on the merging of large numbers of independent

streams to help justify the memoryless property

for arrivals.

For service times, it is easy to think of examples

where the service times have a quite different

distribution to the exponential. For example, the

service times might be constant corresponding to

certain packet lengths in a communication

network.

This leads to an interest in the M/G/1 queue

with general service times given by

CDF B(x) = P(service time ≤ x).
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(Lack of) Markov property

With general service times we no longer find

that X(t), the number of customers in the

system at time t, has the Markov property.

This follows since the future evolution of X(t)

now depends not just on the number present but

on the remaining service time of the customer (if

any) currently in service.

Recall, that in the ·/M/· case the remaining

service time always has the same memoryless

distribution whenever we observe the queue.
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Embedded Markov Chain

It would be possible to formulate a model for

the M/G/1 queue using a state variable with two

components (n, x) where n is the number present

and x is the remaining service time, if any, of the

customer in service. This augmented model does

have the Markov property and can be analyzed

directly.

Instead, it is possible to pick out a discrete set of

times where the Markov property holds and build

a model on this discrete time Markov Chain.

Such a set of times is given by ti (i = 1, 2, . . .)

where ti is the time of the ith departure from the

queue. There is no remaining service time to

worry us at these time instants.

Thus, X(ti), i = 1, 2, . . . is a Markov Chain

embedded in the stochastic process X(t).
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Performance measures

The determination of a full description of

the M/G/1 model is possible but difficult.

Instead, we shall look at some steady state

performance measures.

Let 1/µ be the mean service time of a customer

in the M/G/1 queue, obtained from the CDF of

the service time distribution B(·), say. Then the

mean queueing time, E(Tq), of a customer before

it receives service is given by

E(Tq) = E(Nq)
1

µ
+ ρE(R)

where E(Nq) is the average number of customers

waiting in the queue at the time of arrival, E(R)

is the average remaining service time of the

customer, if any, in service and ρ = λ/µ, the

traffic intensity, gives the utilization of the server.
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Remaining service time, R

A result from renewal theory is

that E(R) = µE(S2)/2.

Notice that this involves the 2nd moment, E(S2)

of the service time S.

For the exponential case, E(S2) = 2/µ2 so

that E(R) = 1/µ as might be intuitively expected

(recall the Memoryless property).
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Performance measures (2)

From Little’s law,

E(Nq) = λE(Tq)

and so

E(Tq) = λE(Tq)
1

µ
+ ρE(R)

=
ρE(R)

(1− ρ)

=
ρµE(S2)

2(1− ρ)

=
λE(S2)

2(1− ρ)
.
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Performance measures (3)

Let CS be the coefficient of variation of the

service time distribution then

C2
S =

E(S2)

(E(S))2
− 1

where E(S) = 1/µ so

E(S2) =
(1 + C2

S)

µ2

Hence,

E(Tq) =
λ(1 + C2

S)

µ22(1− ρ)

=
ρ(1 + C2

S)

2µ(1− ρ)
.
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Pollaczek-Khintchine formula

Consider now the total time, E(T ), for a

customer to on average pass through the system

given by their waiting time in the queue and their

own service time.

Thus,

E(T ) = E(Tq) +
1

µ
=

1

µ

(
1 +

ρ(1 + C2
S)

2(1− ρ)

)
.

Using Little’s law for the entire system we can

now find, E(N), the mean number of customers

in an M/G/1 queueing system by

E(N) = λE(T )

= ρ+
ρ2(1 + C2

S)

2(1− ρ)

This is known as the Pollaczek-Khintchine (P-K)

formula.
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P-K formula

The Pollaczek-Khintchine formula tells us that

the mean number of customers is determined not

only by the mean interarrival and mean service

times but also by the coefficient of variation of

the service time distribution, CS .

There are several cases.

ä CS = 0: this is the case of constant service

times. For example, in ATM networks where

the cells (that is, the packets) are of fixed

length (53 bytes).

ä CS < 1: this is the case where the variability

is less than in the case of exponential service

times, thus the M/M/1 model will be

conservative in its performance estimates.
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P-K formula (2)

ä CS ≈ 1: this is where the M/M/1 model

works best and many systems correspond to

this model. For example, batch jobs on a

mainframe.

ä CS > 1: this is the case where the M/G/1

model is required. An example, is the

observed packet lengths in Internet traffic.

The distribution of packet sizes (and hence

service times) is often found to be bimodal

with many small packets and many longer

packets of length determined by the MTU.
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