Developing and Executing
Electronic Commerce Applications
with Occurrences

Alan Samuel Abrahams

Peterhouse
University of Cambridge

A dissertation submitted for the degree of
Doctor of Philosophy

September 2002

Abstract

To provide a more direct mapping of business process specifications to software
implementations, the next generation of enterprise workflow systems must move away from
a procedural execution style and towards an event-driven model that monitors and controls the
business process in accordance with a periodically changing set of stored business contracts,
intra-organizational policies, and legislative requirements.

It is the thesis of this dissertation that a crucial, and hitherto neglected, aspect of
electronic commerce application development techniques and tools is the analysis, modelling,
storage, and interrogation of the business occurrences and contractual provisions that drive workflow
applications. Extant systems for event monitoring, business rules, policy-based management,
contracting, and workflow execution do not directly represent, store, enact and enforce the
subtle and often-times conflicting contractual and regulatory provisions contained in
business requirements specifications. Explicit treatments of fundamental legal conceptions
such as obligations, permissions, and powers are absent from conventional software.
Furthermore, previous work in the event-, rule-, and policy-based execution styles overlooks
the early phases of system development: current approaches lack guidelines to allow analysts
to transform English-language specifications of contracts, policies, laws, and regulations into
a structured form suitable for direct input into an implementation environment, making
seamless transition through the system development life cycle a far distant dream.

In order to address these issues, this dissertation presents a novel occurrence-based
development approach and execution infrastructure. 'The main contribution of this thesis is a method
and infrastructure to create executable and queryable specifications for electronic commerce applications. A
persistent history of business occurrences and associated contractual implications is kept.
Multi-phase assistance for the systems development life cycle of business workflow
applications is provided: we propose an analysis method coupled with implementation
support in the form of a software environment, information model, algorithms, and
interfaces. Our method embeds fundamental legal conceptions and integrates diverse
theories from the philosophical literature on jurisprudence, deontic logic, knowledge
representation, speech acts, and event semantics. A powerful and generic database wrapper
service delivers the functionality required by businesses to store, query, execute, monitor,
enforce, and reason about the prescriptive and descriptive norms that govern the behaviour
of their software and human activity systems. As a complement to the run-time
infrastructure, specification-time facilities to detect and resolve inconsistencies between
subjective and possibly conflicting clauses are incorporated.

The theoretical concepts illustrated in this dissertation are implemented in a Java-based
prototype, EDEE, which provides active database functionality atop arbitrary passive
relational data stores. This thesis describes the architecture of the occurrence-based
Electronic-commerce Development and Execution Environment (EDEE), and presents
persuasive examples demonstrating structured analysis and implementation of realistic
English-language requirements specifications using our new mechanisms.

To my parents
who I love beyond words.
I hope you’ll accept these 58,904 as a start.

And to my dear departed gogo
May Kubheka

1930 - 2002

who, though technically lacking the legal authority, would daily
page me across the house at 35 Grosvenor Crescent, Durban
Nortth, with yells of “Dr Uh-luh ! ... Dt Uh-luh I,

A personality lesser known than Mandela and Tutu, but no less
influential. Her words remain always a forceful symbol of the
wisdom and spirit of a traditional South African Mother:
what is lacked in legal power, is more than recompensed
in motivational charge for the youth.

Those pages were for me; these are for you.

Hamba Kabhle, Mama...

ii

Preface

This dissertation is the result of my own work and includes nothing which is the
outcome of work done in collaboration except where specifically indicated in the
text. The pronouns ‘we’ and ‘our’ in the text, which have been used for stylistic
reasons, should be taken to refer to the singular author.

This dissertation is not substantially the same as any that I have submitted for a
degree or diploma or any other qualification at any other university.

No part of this dissertation has already been, or is being currently submitted for any
such degree, diploma or other qualification.

This dissertation does not exceed 60,000 words including tables and footnotes, but
excluding appendices, bibliography, and diagrams.

This dissertation is copyright ©2002 by Alan S. Abrahams.
All trademarks used in this dissertation are hereby acknowledged.

Conventions Used

® Code excerpts are shown in courier font.
® Sentences of predicate logic are shown in italic Times Roman.
® Data items are shown in Arial 8 point font.

® Unstructured textual user specifications, including excerpts from business
contracts, policies, and regulations, are shown in Arial 9 point font.

® At their first mention in the text, product and company names are shown in
bold.

® Internet addresses (Uniform Resource Locators) are shown in Arial Narrow font.

® Requirements for the research deliverable, which are identified in the Analysis of
Related Work (Chapter 2), are indicated boxed and in bold, and are numbered for
cross-reference:

Requirement 16 Asynchronous fulfilment of chosen obligations must be
supported as an enforcement style

In the chapters that describe the contributions of this work, greyed, right-
aligned sidebars map the particular solutions (performances) back to specific
requirements (obligations). This provides #raceability from identified requirements
to implemented solutions. For example:

]

In the EDEE architecture, components | Requirement 16 (pg 34):
consult the database and choose which | Asynchronous fulfilment of

. R chosen obligations must be
obligations to fulfil. S P

enforcement style

Acknowledgements

Heartfelt thanks are due to a number of people who made this possible.
To my family in South Africa, London, and Manchester for always thinking of me.

I would like to thank my supervisor, Jean Bacon and colleagues in the Opera group and
Computer Laboratory, for their support, encouragement, and critical insights during the
completion of this work. I enjoyed the warm hospitality of Professor Steve Kimbrough, and
the faculty and administrative staff of the Department of Operations and Information
Management at the University of Pennsylvania’s Wharton Business School, who graciously
hosted me for two months in Spring 2002. I also owe a great debt to the management and
staff of Dimension Data plc’s iCommerce Internet Services division, who allowed me to
spend three months at their Johannesburg head offices analysing user requirements
specifications during the Summer of 2000.

A number of people very kindly provided me with hard copies of publications,
feedback, pointers, and/or simply warm encouragement and welcoming. Thank you to
Krishnan Anand, José Carmo, Aspassia Daskalopulu, Theo Dimitrakos, John Dobson, Huw
Evans, Ben Grosof, Andrew Jones, Ron Lee, Tom Lee, David Makinson, Miriam Masullo,
Tom Maibaum, Roderick Munday, Filipé Santos, Marek Sergot, Lewis Tiffany, Marge Weiler,
DJ Wu, and Carina de Villiers. Mark Spiteri helpfully contributed the Microsoft Word template
used to format this document. Also, I appreciate the invaluable technical support assistance
provided by our local sys-admins, especially Ian Grant. Nathan Dimmock, Martyn
Johnson, Ian Pratt, and the friendly folk in the Systems Research Group kindly volunteered
hardware for the experiments.

I will be forever grateful to my friends and colleagues in Cambridge and Philadelphia for
their warmth and friendship during these three years away from home. To my dear friend
Biagio ‘Mamzer’ Mazzi, who promised to mention me in his thesis if I mentioned him in
mine; the utterance of the first half of this sentence renders the conditional obligation
unconditional. To Nathan Dimmock, David Eyers, Aras ‘Kimbo’ Kimis, Naila Mimouni,
Brian Shand, and my dad, who took the time to read and comment on the drafts. Dave is
credited with the beautiful typesetting of the two diagrams of query parse trees. To the
Opera tea crowd, and to Cala, Galya, Gerrit, Kerry, Liv, Marc, Mon, Nick, Orit, Pete, Ravi,
Steph, Ted, and Wojciech for their wonderful company during these three years.

Finally, I am grateful to the Cambridge Commonwealth Trust, Overseas Research
Students Scheme, and University of Cape Town for funding this research. I appreciate also
the financial support provided by the Cambridge Philosophical Society, the CaberNet
Network of Excellence in Distributed and Dependable Computing Systems, the University
of Glasgow, King’s College London, the University of Cambridge Computer Laboratory,
Microsoft Research Cambridge, and Peterhouse, which allowed me to travel to various
conferences, workshops, research visits, and invited talks during the course of my studies.

ix

Publications

Aspects of the work described in this dissertation feature in the following papers:

[AB2000] Abrahams AS and Bacon JM. Event-centric Business Rules in
E-commerce Applications. Workshop on Best Practices in Business Rule Design and
Implementation at the ACM Conference on Object-Oriented Programming, Systems,
Langnages, and Applications (OOPSL.A 2000). Minneapolis, MN. October 2000.

[AB2001a] Abrahams AS and Bacon JM. Event-centric Policy Specification for
E-commerce Applications. Policy 2001, Workshop on Policies for Distributed Systems
and Networks. Bristol, UK. January 2001.

[AB2001b] Abrahams AS and Bacon JM. Occurrence-centric Policy Specification
for E-commerce Applications. Workshop on Formal Modelling for Electronic Commerce
(FMEC 20017). Norway, Oslo. June 2001.

[AB2001c] Abrahams AS and Bacon JM. Representing and Enforcing Electronic
Commerce Contracts over a Wide Range of Platforms Using Occurrence Stores.
4th CaberNet Plenary Workshop. Pisa, Italy. October 2001.

[AB2001d] Abrahams AS and Bacon JM. Representing and Enforcing E-Commerce
Contracts Using Occurrences. Proceedings of the 4th International Conference on
Electronic Commerce Research (ICECR4). Edwin L. Cox School of Business,
Southern Methodist University. Dallas, TX. November 2001.

[AB2002a] Abrahams AS and Bacon JM. A Software Implementation of
Kimbrough’s Disquotation Theory for Representing and Enforcing Electronic
Commerce Contracts. Group Decision and Negotiations Journal. 11(6). Special Issue
on Formal Modelling in Electronic Commerce. INFORMS. pp. 1-38.
November 2002.

[AB2002b] Abrahams AS and Bacon JM. The Life and Times of Identified,
Situated, and Conlflicting Norms. Sixth International Workshop on Deontic Logic in
Computer Science (DEON'02). Imperial College, London, UK. May 2002.

[AEB2002a] Abrahams AS, Eyers DM, and Bacon JM. A Coverage Determination
Mechanism for Checking Business Contracts against Organizational Policies. 3"
VIDB Workshop on Technologies for E-Services (TES02). Hong Kong, China.
August 2002. Lecture Notes in Computer Science 2444. Springer-Verlag. Betlin,
Germany. pp. 97-106. 2002.

[AEB2002b] Abrahams AS, Eyers DM, and Bacon JM. Mechanical Consistency
Analysis for Business Contracts and Policies. Proceedings of the 5" International
Conference on Electronic Commerce Research (ICECRS5). Montreal, Canada. October
2002.

pel

Publications

[AEB2002c] Abrahams AS, Eyers DM, and Bacon JM. An asynchronous rule-based
approach for business process automation using obligations. Proceedings of the 3"
ACM SIGPLAN Workshop on Rule-Based Programming (RULE'02). Pittsburgh, PA.
October 2002.

[AK2002] Abrahams AS and Kimbrough SO. Treating Disjunctive Obligation and
Conjunctive Action in Event Semantics with Disquotation. Wharton Business
School Working Paper Series. University of Pennsylvania. Philadelphia, PA. 2002.

[DA99] De Villiers C and Abrahams AS. A Model for Addressing the Development
of Electronic Commerce Applications in Information Systems Courses.
International Academy for Information Management, 14th Annnal Conference (LAIM
1999). Charlotte, NC. December 10-12, 1999.7 Also published under the title ‘A
Model for Teaching the Development of Electronic Commerce Applications’ in
Journal of Informatics Education & Research. 2(1). pp. 1-8. Spring 2000.

This work was also presented at invited talks at:

The School of Informatics, University of Pretoria, South Africa
The Department of Computer Science, University of Glasgow, Scotland
The Department of Computer Science, Kings College London, England

The Department of Operations and Information Management, Wharton
Business School, University of Pennsylvania, USA; and

The Department of Information Systems, Faculty of Commerce, University of
Cape Town, South Africa

T Awarded Best Paper Overall of conference.

Xii

Contents

Preliminaries
ADSTLACE oottt 1
PIEface ...oviiiiiiii s v
Conventions USEd.......coviiiiiiiiiiiiiiiiiiiicisssesssss s sssaes Vil
ACKNOWIEAZEMENES ...ttt ix
PUDBIICAIONS ..t X1
Index of REqUITEMENLScuiieiiiiiiiiiiiiiiitcic s Xix
List of ADDIEVIAtIONScuiviiiiiiiiiiiiiiiici e Xx1
INAEX OFf FIGULES ...ttt xxiii
INAEX Of TADIES c.eviiiiiiccec e XXV
Chapter 1 Introduction.........eeeeeeeeeeiiiniiniinniinninniinincennens 1
1.1 Research Background.........ccoeciviciininicciiceceeeeeeeeeneeeennne 2
1.2 Application SCENATIOccuvviiiiiiiiiiiii s 5
1.3 Research Issues and MOtIVAtiON.........cccviiiiiiiiiiiniiicnes 8
1.4 Research Goals and Tasksccceuvieiiinniceniccccecceceeeenne 8
1.5 CONIDULIONS . 10
1.6 Dissertation OUhNEcccvivviiiiiiiniiiiiiiii e 11
Chapter 2 Analysis of Related Work.......ccoevvieinnneniniieeeiiiiinnnnnnns 13
2.1 EVENt SYSEMS ...ocuiiiiiiiiiiiniiiiii s 14
2.1.1 Expressiveness of event representation.......oiecereisieerersieensinnnns 16
2.1.2° Monitoring for recent, Non-persistent OCCULTENCEScvvurrrerrrrerrrrnunns 20
2.1.3 Focus on system administration, not business process automation ..23
2.2 Rule-based APProaches.......coevviiciiiniicieiniiciereeeseeeseee e 25
2.2.1 Appropriateness for event MONItOLING......cvvuevrvrerrireriireiriernieiieieeeans 28
2.2.2 Management and control of small, static rule sets.........ccocvviriirrinnes 28
2.2.3 Absence of native conflict deteCtion.......ccvuvveeueererieerrerieererrieerenenes 29
2.2.4 Priority-based conflict £eSOIUtION.c.ovviieevririeiicrririeeiriceereeereeaes 30
2.2.5 Synchronous invocation Styleccceeeeerennnininnnniniecececenenes 33
2.3 POlicy-based SYStEMS.....c.cuvuririririeiririiiiicccceeeeeeieretereseseset e 34
2.3.1 Event storage services and retrospective review are not inbuilt 37
232 StatiC tYPING ..cveveiiiiiiiiiiiiiicicccieieie st 38
2.3.3 Analysis phase of system development is under-supported............... 39
2.3.4 Absence of a commercial notion of obligationcccccevvvviicirinnes 41
2.3.5 Configurable conflict resolution is not provided........cccoeeerrrrerierrunnnee 45

xiii

Table of Contents

2.4 Business Process Modelling & ANIMation........ccccevvvviceevninineneininnnnneinenes 47
2.4.1 Process models show task dependencies, not legal relations.............. 49
2.4.2 Rigid communication and obligation creation protocols.................... 50
2.4.3 State history 15 N0t aCCESSIDIEcovviiiiiiiiiiiiccce, 51

2.5 Implementations Of ‘CONLIACESc.cvviviuiiriiiiiiiiiiiniiiiesiiceeseseneae 52
2.5.1 Object-oriented cONSLraiNts PELSPECHIVE ...vuruvvieruerrviiireneriisienersisneens 53
2.5.2 Task allocation or process co-ordination perspective........ovweevevreeeee 55
2.5.3 Service advertisement and invoCation PErspPeCtivevewevrveecrevreneeens 56
2.5.4 Project management PErSPECtIVEccoverururremiuereiiriieieieisieeeessssens 61
2.5.5 ‘If-then’ rule PErSPECHIVEcciueviiieiiiiiiiiiiiiie s 61
2.5.6 Financial-domain-specific perspectivecoccceueeveeuerrereecremreeerenseenens 61
2.5.7 Legal perspective needed ..o 62

2.6 Deontic LOGIC. ...t 63
2.6.1 Ideal world semantics: The moral ‘Ought’ccccoucvuviviviinviciiininnen. 63
2.6.2 Contflict-free SpecifiCationsocceciiiiiciiciiieieiceieeeees 64
2.6.3 Directedness of obligations and permissions.........cceeeeeervereeererreenens 66
2.6.4 Obligations are viewed as operators, N0t ENLEScoeveevevreeeererrinnnns 67
2.6.5 Temporal aspects and lifetime of norms are not addressed............... 68
2.6.6 Application of the theory ..., 72

2.7 Conclusion: Requirements for a SOIUtioncccceevvvivivivininininiiiicccenes 74
2.7.1 Store rich descriptions of business events and states (Chapter 3)..... 74
2.7.2 Support the transition from analysis to implementation (Chapter 4) 74
2.7.3 Model and store legal provisions (Chapter 5)ccccevveererrericrerreenen 75
2.7.4 Express, detect, and resolve conflict (Chapter 0)........cocceuevvecererrennee 76
2.7.5 Monitor and enforce provisions (Chapter 7)cccccoevvveeiviicrninnnnen 76

Chapter 3 Occurrences in Electronic Commerceccceeeeunnnnnes 77

3.1 Representing and Storing OCCULTENCES ..o 78

3.2 Representing and Storing QUETIES........ccoviviiviiiiiiiiiiiiiniicccce, 83

3.3 Determining Covering-QUETIEScccviiiuiriieiiiiiniiiininiiiesccseenes 86
3.3.1 Opverview of coverage checking.........cccovvivivivinininiiiiiiciiicccee, 36
3.3.2 Worked example 1: Queries COVEIING /5cuvuviiiuririieiriiiiiiiriiiinnanns 88
3.3.3 Worked example 2: Queries COVEIING GHeriescuvveurivivvcuevrinnnn. 90
3.3.4 Static and dynamic OVerlapcccevveeirniieinnieeeeeeeeeeeees 92
3.3.5 Applications of coverage checking..........cccoeuviviviviiiiiicciiciccnnne 94

3.4 SUMMALY oot 94

Chapter 4 From Analysis to Implementation..........cccceeeeeiinnnnnnes 97

4.1 Domain-Specific OCCULTENCES......cviiuiuiiiiiiiiiiiiieiiiiiiececceenes 98

4.2 Selection Occurrences (QUELIES) ...c.cueueueueueuereueriurieieinieieisiriieeeeeseesenenes 104

4.3 Quantification OCCULTENCES ..uvvrvreereriuiriririeierererintseeiereseestseeeeseseseseesesesesene 106

4.4 Sorting and Comparison OCCULTENCEScuvririeerrrrireiererririenereeeeeseeeeeaens 109

4.5 Normative (Prescriptive) OCCULTENCES....uvuiiiiiuiiiiiicicicieiereieeieieieiennes 111

4.6 Conventional (Descriptive) OCCUTENCESvviimiviiiiiiiiiiiiiiiiiceniinens 113

4.7 SUMMATY vt 117

Xiv

Table of Contents

Chapter 5 Representing Provisionscccceeeeeeiunnneneeeeeeiiicnnnnnnns 119
5.1 COMLEXL ottt 120
5.1.1 Kimbrough’s Disquotation Theory ..., 124
5.1.2 Animplementation of Kimbrough’s Disquotation Theory 126
5.2 AASSEITIONS ..ttt 128
53 PrOhIDIIONS w.cecueiieieciciriicieiiccree e eaes 129
5.3.1 Violable prohibitions ..., 129
5.3.2 Inviolable prohibitions (disabilities / immunities)cccceveurerreunce 132
5.4 PermiSSIONS ...uvviiiiiiiiiiicii e 134
5.4.1 Violable permissions (vested HDerties)ceoveuevrericurmreneererneeennnn. 135
5.4.2 Inviolable permissions (Privileges)........cocouiuruviriiuriiirierniiiniiieiiiienenn. 135
5.5 Powers and Liabilitiesccccvviiiiiiniiiiiiiiiiccciccecenaes 137
5.5.1 One-shot (single-use) fights.......cccocoviviriiiiiiciiiiiiie, 141
5.5.2 Persistent (Multi-use) rights......cccovvviviniiiiiiicciccee 141
5.6 Obligations (DULES)cccvviiuiuiiiiiiiiiii e 142
5.6.1 Obligation definition and fulfilment.........cccccvuvviniiniiiiniiininnnnnn. 142
5.6.2 Violations: Primary and secondary obligations..........cccceevvevevveeennn. 151
5.6.3 Directed OBZAtIONSc.ovieiueiriieiiciriieiciriecieeeee et 154
5.6.4 Prima facie (defeasible) and all-things-considered obligations......... 155
5.6.5 Conditional OblGatioNSccccuiuiviiiiiiiiiiiieiiiicieecenes 155
5.6.6 Ought-to-do and ought-to-be Obligations.........cccevevveuevriicrerreeeennnn. 158
5.6.7 Several (multiple) OBGAIONS......ccovviriiiiiiiiciciccccae 158
5.6.8 Impersonal and collective ObLIgationscccevevriviriiciriiiicniiiicecnenn. 160
5.6.9 Life cycle: From birth to termination.......c.cccceveerererererererereuererseeenenenn. 161
5.7 SUMMALY L. 166
Chapter 6 Conflict Expression, Detection and Resolution........ 169
6.1 Expressing Conflict: Identity & SItUationcccceveeevriviicriininccniininns 170
6.2 Detecting COontlCtccuiiiiiiiiiiniiiiiiiiiicccc e 174
6.2.1 Example 1: Obligation conflicts with prohibition..........cccccevuvunuunee. 176
6.2.2 Example 2: Obligations of different strictness........coccoeevveevrieirrennnns 179
0.3 Resolving CONflCtcouiiiiiiiiiiiiiiiiiciiic s 181
6.3.1 Example 1: Resolving a conflict between an obligation and a

PrORIDILON .o 182

6.3.2 Example 2: Resolving a conflict between obligations of different
STIICEIIESS 1uvveviieiuesesissnsete ettt a bbb 189
0.4 TIHMC .ttt s 190
6.5 SUMMALY . 192
Chapter 7 Monitoring and Enforcing Provisions...........cceeeeuenee 195
7.1 Provision MONItOLING ...c.cvvvviviviiiiiiiiiiccciceeee s 195
7.1.1 Immediate deteCtionovueiecviieciiiieiiieiceic 196
7.1.2 Delayed deteCtion.....c.cueueueiiirieiniririiriiiiceeceeierereresesesesesesesese e 197
7.2 Performance and Enforcement ... 199
721 INEEIVENTON. ittt 200
7.2.2 Prevention by 1efusalcccovvivirinininininiiiiccceeeeieeee e 201

p: 4%

Table of Contents

7.2.3 Prevention by construal......c.ccccceeiinninininininncccceeceeeenenenes 202
7.3 EDEE Implementation ... 203
7.4 SUMMATY .ot 206

Chapter 8 AnalysiS.....ccccueeeeeeiiiiiiiininnninniieeiinnneeenne, 209
8.1 SEENGLRS ..ot 209

8.1.1 Enhanced schema and code stability by reifying attributes 210

8.1.2 Fine-grained dynamic classification facility..........cccccoevviiiiviniiininnnns 211

8.1.3 Inbuilt support for temporal data and hiStofiescocceeuviriiurinnnes 212

8.1.4 Pattern-pattern matching for conflict detection........covveueuvericuenenes 213

8.1.5 Ability to cater for variable-attribute entitiescoceevverecrerrericrennenes 213

8.1.6 Expressive interface advertiSements.......ccovuecuevviicieiiinicnniniicnnininns 214

8.1.7 Database independent active WIapPercceveuvvvireerriiiiennisiineneininns 214

8.1.8 Multi-table tr@ZErS...cvuriiuerriiereiririeieerieieiene et 215

8.1.9 Exploitation of query optimization technology........ccceeveiviunnnes 215
8.2 WRAKNESSES ..ttt 215

8.2.1 Storage space INEffICIENCYccvuiviiiiiiiiiiiiiiiiiccaes 215

8.2.2 Inefficiency of graph traversal.........ccococviiiiiininnniniiccces 216

8.2.3 Slower performance of generic database Wrapper.......c.cceveveecreuenes 216
8.3 Pefformance ... 216

8.3.1 Theoretical complexity analysis..........coceueuriririeiiiiiniciniiieiiiieneiines 216

8.3.2 Practical eXPeriMents.....cccoouviiiiuiuriiiiiiieiiieieieiiisisissssssssseesenas 217

8.3.3 Comparative evaluationccocvuiiciiiiiieiiiiiiiiiissccsceenen 236
8.4 Tuture WOrkcooviiiiiciiiicccc e 238

8.4.1 Improving time and space efficiency......cccovviiiiviiiiiiiinicininiiciines 238

8.4.2 Creating a user-friendly contract definition languageccceceuevuees 238

8.4.3 Assessing the completeness Of CONIACESccvuvuviviriviririniriniicccnnes 239

8.4.4 Distributing contract and occurrence data to specialist nodes......... 240

8.4.5 Collating contracts from distributed nodes..........coccevvviviiirivinicninninns 240
8.5 SUMMATLY .ottt 241

Chapter 9 Conclusion: Contribution.......cccceevevrunnneneeeeeiiiiiiinnnnns 243
9.1 A generic schema for storing and monitoring a history of business
events and states (Chapter 3) ..o 243
9.2 A seamless application development approach catering for both analysis
and implementation (Chapter 4) ... 244
9.3 A representation schema for provisions of contracts, policies, and law
(Chapter 5) . 245
9.4 A sophisticated mechanism for conflict detection and resolution
(CRAPLEL 6).eviieiieiiiciiiciiiicc e 246
9.5 An architecture for monitoring and enforcing a dynamically changing set
of requirements (Chapter 7) ... 247
9.6 Summary of cONtrIbUON......cciiiiiiiciciie 247
Appendix 1 Query Storage.......ueeeeeeeeeiiiiiiiinnnninieeeeennnnnnnenee. 249
AL Algebraic QUELIES ...cucveeieieiiieieieiieieieeeee et eseaens 250

Xvi

Table of Contents

A1.2 Alphabetic QUETIEScccueviiiiiiiiiiiiic s 251
AL.3 Set-TheotetiC QQUELIES ...eueveuiiririeeerereiririeieieieertseeeereseest sttt eees 251
Al.4 Occurrence-Related QUETIES ..ooveueveuiiririeieieiiirieieeeceee s 254
ATLS5 Ordinal QUETIES...cueuiirieeeieeeiiirieieieieetrtet ettt ettt neees 256
AT.6 NeSted QUETIES .veveuiiririeieteieerirteteieietrtsteteies ettt sttt sttt seseees 256
A1.7 The Evaluation of Conditions.......c.cccccceueueueuereninnininninininininieeceeeenenes 257
Appendix 2 Coverage Checking Rules..........uuueeeeeeeiiiiiiinnnnnnnnnee. 259
A2.1 Relationships between qUETIEScccoviiiviiviiiiiiiiiieenne 260
A2.2 Determining which queries cover an item Of qUELYc.coeuvuveviieccucnnas 262
A2.3 Determining which queries or items are dirtied by a query 265
A2.4 Determining which queries or items are vacuumed by a query............. 266
Bibliographyccciiiiiiiiiiiiiiiiiiiiiiittinneeeeeee s 267

xvil

Index of Requirements

The following requirements are identified in Chapter 2 (Analysis of Related Work)
and addressed in the remaining chapters:

Requirement Addressed

No (Pg) Desctription Pg

1 (19) The information model must be able to describe occurrences of past events, 79
states, and processes, as well as the (active and passive) role-players involved.

2 (20) Occurrences with nested propositional content must be expressible. 127

3 (22) Matching (occurrence detection) must be against a long history. 90

4 (22) Persistent storage of business-level occurrences is required. 79

5 (23) Business applications require occurrences to be accessible via ad-hoc queries, 82
rather than via fixed access paths.

6 (24) A business-level, rather than technical-system-level, approach is needed for 80
business process automation.

7 (28) Situations should be interpreted against a dynamic set of rules. 91

8 (29) A large and growing number of machine-enforceable rules should be 120
controlled and managed in a database, not haphazardly distributed in text files.

9 (29) Analytic conflict detection is desirable. 174

10 (30) Pattern-pattern matching functionality is required for analytic policy conflict 90
detection.

11 (32) Fundamental legal conceptions — such as duties, privileges, powers, and 166
immunities [Hoh78] — must be natively incorporated in the development
approach.

12 (32) Rule attributes — such as author, specification time and document or utterance 170
location, scope, and jurisdiction — should be stored, as should attributes of
entities related to rules — such as author’s roles over time.

13 (32) Reasoning techniques should emulate legal reasoning. Conflict resolution 189
facilities should allow selection of applicable rules based on recency, specificity,
location, authority, or other criteria [GLC99].

14 (32) Context-specific rule precedence must be supported. 181

15 (33) The treatment of obligations — whether to void or violate them in a given case 190
— must be user-definable.

16 (34) Asynchronous fulfilment of chosen obligations must be supported as an 200
enforcement style

17 (38) It must be possible to define and store the criteria that an item must satisfy — 89
the description (query) it must fit — in order for it to count as being of a certain
type.

18 (39) We must be able to express policies applying to intensionally described (rather 89
than merely extensionally listed) groups of objects. The members of such
groups may change dynamically.

19 (39) Policy environments require a coverage detection service and interface that 205

would allow objects to determine which of a changing set of descriptions they,
or other objects, fall under.

Xix

Index of Requirements

Requirement Addressed

No (Pg) Description Pg

20 (41) Though it is perhaps not fully machine-automatable, the progression from 117
English specifications to machine interpretable policies should be further
systematized.

21 (42) Impersonal (collective) obligations must be expressible and checkable. 160

22 (43) It must be possible to express and monitor both obliged actions and obliged 158
states of affairs.

23 (43) The implementation must allow introduction of broad reaching provisions (e.g. 163
defining ‘fulfilment’ and ‘violation’) by a single insertion anywhere in the
specification.

24 (44) We must be able to refer to individual obligations of each party, and trace each 156
obligation to the general prescriptions, and events, that brought it about, or that
terminated it.

25 (45) Physical occurrences must be distinguished from legal occurrences. Both must 133
be recorded.

26 (49) Provisions (legal relations), should be explicitly stored, not implicitly encoded 166
in process models.

27 (50) Existence of obligations must be derived from interpretation of law, rather 159
than from a closed set of communicative acts or a rigidly defined protocol.

28 (51) The model should provide fundamental legal conceptions, rather than hard- 167
code the constraints of a particular system of law.

29 (60) Provisions, whether emanating from contracts, policies, or laws (inter-, intra-, 121
or extra-organizational provisions), should be uniformly represented, to
facilitate consistency checking;

30 (62) An approach is needed where provisions are explicitly captured as data, and are 166
thus readily available for inspection and analysis.

31 (67) Directed obligations, with actor, beneficiary, liable party, source utterance, and 154
issuer, must be expressible.

32 (67) Obligations should be individually identified. 158

33 (70) Obligation life-cycle must be modelled. Obligations must be traceable to the 161
events, states, and regulations that brought them about or cancelled them out.

34 (70) Both once-off and persistent rights should be expressible. 141

35 (70) Primitives governing change of legal relations — such as power and immunity 137

[Hoh78] — must be provided.

List of Abbreviations

ACE
ACL
ADEPT
ASL
BCA
CEA
ECA
EDEE
FLBC
GEM
IETF
LaSCO
LDAP
LGI
NLP
OASIS

OCL
ODL
OMG
OPSS
OQL
PCIM
PDL

PSL
RM-ODP
SCLPs
SDL
SLA
SLAPD
SPL
SQL
TriGS
tpaML
UML
WMC
WFMS
XML

Attempto Controlled English [FSS98, FSS99]

Agent Communication Language

Advanced Decision Environment for Process Tasks [JFEN2000]

Authorisation Specification Language [JSS97]

Business Contract Architecture [MBBR95, Mil95]

Cambridge Event Architecture [BMBH2000]

Event-Condition-Action [PD99]

E-commerce Development and Execution Environment [AB2002a, AB2001d]

Formal Language for Business Communication [KIM97, M002000]

Generalized Event Monitor [MS97]

Internet Engineering Task Force (http://www.ietf.org/)

Language for Security Constraints on Objects [HPL99]

Lightweight Directory Access Protocol (see [UM96])

Law Governed Interaction [MU2000]

Natural Language Processing [All95]

(1) Open Architecture for Secure Interworking Services [BMBH2001]

(2) Organization for the Advancement of Structured Information Standards
(http://www.oasis-open.org/)

Object Constraint Language [OMG2001]

Object Definition Language (http:/www.odmg.org/)

Object Management Group (http:/www.omg.org/)

Orchestra Process Support System [CDNF2001]

Object Query Language (http:/www.odmg.org/)

IETF’s Policy Core Information Model [MESW2001]

(1) Bell’s Policy Description Language [C1.2001, CLN2000, LBN99]

(2) Koch’s Policy Definition Language [Koc97]

Process Specification Language [SGTV2000]

Reference Model on Open Distributed Processing [ISO95]

Situated Courteous Logic Programs [GLC99, IBM2001, RGW2002]

Standard Deontic Logic (see [vW51, Che80, MW93])

Service Level Agreement

Standalone LDAP Daemon [UM9(]

Security Policy Language [RZF2001]

Structured Query Language [ISO99a]

Trigger system for GemStone [KRR98]

Trading Partner Agreement Markup Language [DDKIL2001]

OMG Unified Modelling Language [OMG2001]

Workflow Management Coalition (http://www.wfme.org/)

Workflow Management System

Extensible Markup Language (http://www.w3c.org/xml/)

XX1

Index of Figures

Figure 1:
Figure 2:

Figure 3:

Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Figure 10:
Figure 11:

Contextual overview of desited SOIUION ..o.iivviiviiiiiiiiieetectece e 10

Parse tree and storage schema for a query that returns all occurrences where
more than $10,000 is paid tO @ SUPPLET.....cvveverririercirricierreceeeeiereeeens 85
Parse tree and storage schema for a query that returns the first payment of
$25,000 by SkyHI tO SteelMans.......ccceeeueueueuereueiereieieinininieieeseeeeeeenenes 85
Occurrences fitting a description (covered by a stored query).......ocoeeueunnes 87
Covering relations graph before addition of being_supplier!cceveeerevrennee 93
Covering relations graph affer addition of being_supplier!ccccevvuievivrinnee. 93
Data model used in EDEEc.viuiiieniiecineiriiecreisciecineieeese e seseiesenes 95
General architecture of EDEEc.oeuiieiniiniieineerieseesineiseieciseneseeenene. 122
A not-yet-fulfilled-or-violated Obligationcccceevevviviiiiriniiiiiniiciiines 150

A fulfilled OBIZAION..c....cuivviieieiiicicireeree e 150
A violated OBIZAONcucvviieeieiiicicirecree e 153

Figure 12: Birth of a child from parents.........cccocvcnicncnicncceccce, 157
Figure 13: Birth of an obligation instance from policy and evidence.........ccceceueuuces 157
Figure 14: Life cycle of @ PErson ..o 165

Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:

Figure 20:

Figure 21:

Life cycle of an obligation INStANCE.cccccuiuiuciiiiiniiiiiriiiiccccieas 165
Document vs. utterance provenance ... 173
Document history: obligations and document labelscccoceurivinnnnn. 173
Contflict shown by overlap between obliged and prohibited occurrences
.. 177
Covering relations graph before addition of being_suppliert, highlighting the
obliged and prohibited occurrences, with no route connecting them..... 178
Covering relations graph affer addition of being_suppliert, highlighting the
obliged and prohibited occurrences, the connecting route, and the
dynamically-discovered CONtlCt.....uviiiieeereieieiiiiire e 178
Initial view: conflict between obligations of different strictness 180

Figure 22: Transcript of a session: adding and querying contracting and workflow

Figure 23:

OCCULTEIICES 1vveeneveeeereerereeeeseeseseseseessseessssesessesassesasesssseessssessssessssessssessssesssssessnes 191
IMMEdIate dEtECtION .uivuiiieiiceieeeieeeeeteee ettt ettt s vesae s b s b e saneeae 197

Figure 24: Delayed detection with bottom-up batching.........ccccccevviiiiinnniciinnnns 199

Figure 25:
Figure 26:

Figure 27:

Intervention by diligent COMPONENLS.....c.viuerrvriieeierricicierrieieieeeeienereeeeens 201
Number of unique identifiers (), as number of provisions and
OCCULTENICES VALY ...uiuiuiiirereiisiisesesesistssesesesessstesesesesesastssesesesessssssssesesesessssesenes 221
Total time, in seconds, to insert and coverage-check provisions, for best
performing installations, with trend-lines fittedccccovveervnirccrrenincecnnen. 224

xxiii

Index of Figures

Figure 28:

Figure 29:

Figure 30:

Figure 31:

Figure 32:

Figure 33:
Figure 34:

Figure 35:

Figure 306:

Figure 37:

Average time, in seconds per provision, to insert and coverage-check
provisions, comparing various installationscccceveieivniiiininiciiinnns 225
Total time, in seconds, to insert and coverage-check occurrences, on
machine teme, for a varying number of stored provisions, and batch-

SIZE T L ettt ettt ettt ettt et et en e be st e e enean 226
Total time, in seconds, to insert and coverage-check occurrences, on
machine teme, for 251 stored provisions, and different batch-sizes 226

Average time, in seconds per occurrence, to insert and coverage-check
occurrences, on machine teme, for a varying number of stored provisions,
and batch-size = 1 ..o 228
Average time, in seconds per occurrence, to insert and coverage-check
occurrences, on machine teme, with 251 stored provisions, and varying

DAtCR-SIZES .. 228
Total space for provisions, in rows of EdeeCoverer table (theoretical

limit = #° where # = number of unique identifiers in database)............... 230
Average space for provisions, in rows of Edeecoverer table (theoretical
limit = # where » = number of unique identifiers in database) 231

Total space for occurrences, in rows of EdeeCoverer table, for varying
numbers of provisions (theoretical limit = #° where # = number of unique
identifiers in database)......cooeeeeeiuieieieiiieieieiceieie e 232
Total conflicts detected between individual prohibitions and obligations,
for varying numbers of provisions and 0CCULTeNCes......covvvvvreevrvricnnnnn. 233
Total conflicts detected between individual prohibitions and obligations,
for 251 stored provisions, comparing different batch-sizes...................... 233

XXiv

Index of Tables

Table 1: Event detection mechanisms used in publish/subsctibe and active databases

.. 20
Table 2: Sample of some recent applications of deontic l0giC........cceuvuviererviricrerrennaee 73
Table 3: A tabular schema for stofing various OCCUITENCESc.vvrverrviiiienriiiiieniriinnaens 80
Table 4: Dirtied queries and their output dirt, stored in the Edeecoverer table, after

addition of the occurrence being_suppliert t0 2 NEW dataStOLE ..eevveeeveeereeereenns 89
Table 5: A schema for storing a violable general prohibitionccceeveieecreericenne. 130

Table 6: Generation of specific prohibition instances from general prohibitions.... 131
Table 7: A schema for storing a disability or immunity (inviolable prohibition)...... 133

Table 8: A schema for storing an inviolable general permission (privilege) 136
Table 9: Generation of specific permission instances from general permissions..... 136
Table 10: A schema for StOTING POWELS......cuiivimiuiriiiiiiriiiiiniieessiseresssessssssesnes 138

Table 11: Initial schema for storing obligations and their fulfilment conditions...... 143
Table 12: Corrected schema for storing obligations: with performance allocation

conStraints Added c...veecuevreieiiiiicee s 148
Table 13: A schema for storing violation conditions, and consequent liability

(secondary obligations) to pay damagescccceerririiieuiinininiiniienniinns 152
Table 14: A schema for storing a conditional Oblgation...........cceveveeerrericecrerreneeennnn. 156
Table 15: Defining termination or cessation of an Obligationcceveveeeereerereeennn. 163
Table 16: Defining ‘current’ (active) Obligations.........ccovurevviviiiivniniieriiniccneieicenn. 164
Table 17: Conflict deteCtion FULESccociuiviiviiiiiiiniiiiii e 175
Table 18: Representing a promise by an agent on behalf of a principal..................... 183

Table 19: Representing the rule that a promise by an agent binds their principal.... 184

Table 20: Representing the rule that a prima facie obligation on a principal is voided in
the case that the reliant party was aware of lack of authority of the agent
.. 185

Table 21: Representing the rule that an occurrence of reading a clause brings about an
occurrence of being aware of the legal relation directly mentioned by the

ClAUSE ..ot 185
Table 22: Representing the rule that being payee in an obligation to pay implies being
beneficiary of that ObIZAtION ..., 186

Table 23: Software and hardware specifications of machines used for experiments218
Table 24: Number of unique identifiers (#), as number of provisions and occurrences

VALY cotettiettaeaetaesetse sttt ettt eee 221
Table 25: Total time, in seconds, to insert and coverage-check provisions, comparing
VAIOUS INSTAIATIONS. .e.veveiereeiieieieeirteie ettt e s s s eneesens 224

XXV

Index of Tables

Table 26: Average time, in seconds per provision, to insert and coverage-check

provisions, comparing various installationscccceviernniiiiinicininnns 225
Table 27: Total time, in seconds, to insert and coverage-check occurrences, on
machine teme, for batch-size = T....coovieoioioieieeceeeeeeee e, 227
Table 28: Total time, in seconds, to insert and coverage-check occurrences, on
machine teme, for batch-8iz€ = 50 ..c..covvvviveieiiieeeececeeeee e 227
Table 29: Average time, in seconds per occurrence, to insert and coverage-check
occurrences, on machine teme, for batch-size = 1....ccooevvvieececveecreerene, 229
Table 30: Average time, in seconds per occurrence, to insert and coverage-check
occurrences, on machine teme, for batch-size = 50......ccccevvvevievievinrenrennnne. 229
Table 31: Total space for provisions, in rows of EdeeCoverer table......ccccovvicueunnes 230
Table 32: Average space for provisions, in rows of EdeeCoverer table.......ccccceuunes 231
Table 33: Total space for occurrences, in rows of EdeeCoverer table, for varying
NUMDELS Of PLOVISIONS w..vuviiiiiiiiiiiiiicii s 232
Table 34: Total conflicts detected between individual prohibitions and obligations,
£Or DALCh-S1Z€ = T cueveeiiieieieec et 234
Table 35: Total conflicts detected between individual prohibitions and obligations,
£Or BAtCh-81Z€ = 50 c.utuiiiririeieiiiririeieic ettt 234
Table 30: TYPES Of QUELT c.cvvuiuiiiiicicieiieieireeieteeee e nenaes 249
Table 37: Representation of basic algebraic queries: equality, strictly less than, and
strictly greater than ... 250
Table 38: Representation of basic alphabetic queries: equality, strictly less than, and
strictly greater than ... 251
Table 39: Representation Of 2 UNION QUELY....ccccuvuiecuerrinieeuemriierereeeiesensieeesenseeaesenennes 252
Table 40: Representation of an INterseCtion qUELYcoueveuviieriiriniereiiiiereisieesenennes 252
Table 41: Representation of a difference qUEry ... 252
Table 42: Representation of an identification query that returns ct if ¢t is in the
ALADASE ..ttt 253
Table 43: Representation of a query that counts the results of another query.......... 253
Table 44: Representation of an OCCULTENCE QUETY ...c.viiuiriviiemiiiiiieieiiissiersisisaesenennns 254
Table 45: A graphical representation of the ‘search window’ used to resolve an
OCCULTEIICE UETY ..euvuvireiitrttttiisisisiisissssssssssssssse bbb bbb eaessssssssssssssssaeas 254
Table 46: Representation of a partiCipant QUELYccveeeeuviieriiiiienniniiereisicenennnns 255
Table 47: A graphical representation of the ‘search window’ used to resolve a
PALTLCIPANT QUETY .ottt sssena 255
Table 48: Representation Of a £Ole qUETY ...cvvcueuriicieiriieieiicieieeeeeeeeseneeseeseneaes 255
Table 49: A graphical representation of the ‘search window’ used to resolve a role
QUETY woreieiiitiicscicscs sttt Rttt 256
Table 50: Representation of an ordinal item-in-poOSItion QUELY......ccceveveeerevrereeerennenes 256
Table 51: Evaluating truth conditions in a set-theoretic, occurrence-centric manner
.. 258

XxXvi

Chapter 1

Introduction

A constant stream of contracts, policies, and regulations describe and prescribe the
behaviour of human and automated systems in an organization. The provisions of
these specifications continually mix and coalesce in subtle and complex ways.
Modern e-commerce application development techniques lack the facilities to capture
and interpret these dynamically changing specifications. Instead, they hard-wire them
in compiled invocation sequences or rule sets. Business processes are calcified, and
software hardens. Meanwhile, the crucial legal conceptions conveyed in the original
expressions of requirements are diluted, and are lost as they dissolve into an opaque,

stagnant pool of code.

Current e-commerce application development approaches do not provide
structured representations of the continual flow of provisions emanating from
contracting with partner organizations, internal policy-making, and promulgation of
regulations by external authorities. They do not attend to the upstream phases of the
system development life cycle: the rules-of-thumb employable by a business analyst
to analyse English-language requirements specifications, in terms consistent with the
implementation technology, are not made explicit. Downstream, they do not provide
software facilities tailored to storing, interrogating, monitoring, and enforcing those
ever-changing requirements. An ability to assess the legal consequences of
operational fulfilment and environmental occurrences in the business, based on the

recorded provisions, is absent. Furthermore, the lack of a persistent, historical store

Chapter 1 - Introduction

of salient commercial occurrences has constrained our ability to build workflow
environments that monitor and direct system execution through the znterpretation of

business contracts, policies, and regulations.

It is the thesis of this dissertation that a fresh approach, grounded in linguistics,
philosophy, and law can provide the facilities required for contract-driven execution that
are lacking in modern e-commerce application development environments. We argue
that stored abstractions of normative and operational occurrences present a novel
device for developing and executing e-commerce applications. Our suggestions are
aimed at providing a seamless application development process, and more fluid
workflow applications, which are responsive to the periodically changing directives

that govern the organization’s human and automated systems.

This first chapter introduces the notion of business contracts, policies, and
regulations and the prospect of using them as a mechanism for executable
requirements specification. Section 1.1 introduces the background to this research.
An example application scenario that is used for illustration throughout this thesis is
provided (Section 1.2). Section 1.3 highlights the research issues and motivation. We
then list the goals and tasks that the research set out to achieve (Section 1.4) and
describe the contributions of the research (Section 1.5). We conclude this

introductory chapter with an outline of the structure of the rest of this document.

1.1 Research Background

In eatlier work on e-commerce application development undertaken with De Villiers
[DA99], we prescribed a requirements elicitation methodology based on Checkland’s
Soft Systems Approach [CT96a, CT96b, FJ91]. There we showed that, even in the
very first stages of the system development life cycle, attention is paid to the roles of
various stakeholders, their zorms of behaviour, and the distinction between act#al and
tdeal behaviour. However, our approach in that work was semi-structured, informal,

and independent of development technologies.

Research Background

Investigation subsequently began into the development of guidelines and focused
technologies to support the progression from the specification and analysis of norms
in business contracts, to the implementation of contract-driven executable systems.

The results of this investigation are documented in this thesis.

The Cambridge English Dictionary [CIDE95] defines a norm as ‘an accepted

way of behaving’. More specifically, we may say that:

A norm (given in a textual or verbal provision) specifies

a set of occurrences that are acceptable or unacceptable.

Acceptable occurrences are defined in permissions, powers, and obligations.
Permissions specify which occurrences do not bring about violations. Powers
describe occurrences that are accepted as bringing about legal relations. Obligations
refer to occurrences that are not only accepted but, more strongly, are required.
Absence of the required occurrences is unacceptable. Unacceptable occurrences are

also defined in prohibitions.

Requirements may be based on ethics, law, culture, business policies,
organizational commitments, and other sources of norms. Requirements either
prescribe certain actions or constrain the set of possible actions [KRR97]. At
present, business policies are typically recorded in multiple hard-copy contracts with
customers, suppliers, employees and partner organisations. Internal contracts are
captured in procedure manuals and user requirement specifications. There is a need
for formalisation of policies in order to provide an unambiguous interpretation of
them [SD2000]. In e-business, the ideal is that these policies are captured precisely
by the implementation code-base of the company. The progress of business should
be governed by monitoring what takes place against a precise representation of a

periodically changing set of contractual provisions.

The semantic form of business contracts is lost during the translation to
conventional object-oriented and procedural software. Here, methods are invoked in
a hard-coded sequence. The introduction of new contractual provisions requires a

tedious process of search and inject, in which appropriate method-invocations must

Chapter 1 - Introduction

be manually inserted into all relevant invocation sequences. Just as normalized
databases ensure data consistency across applications and remove dangerous
redundancy, a database of contractual provisions gives the same policy consistency
benefits. Redundant dispersion of provisions across multiple SQL triggers on
various tables or across multiple Java methods in various classes can be averted by a

database store.

Languages like Java and C++ suffer from embedding policy in both procedural
code and scattered SQL statements, making policy difficult to extract, reconcile, and
modify. Business policies are often blurred by code, making it difficult to cope with
their dynamic nature; they cannot easily be factored out or automatically shared by

and imposed on all applications [KRR97].

In traditional approaches, specifications and code are decoupled. Policies are
often implicit or haphazardly distributed in opaque code. The system’s specification
is not readily recollectable or modifiable. The mismatch between analysis
methodologies and implementation technologies means that documentation is
frequently out of synchronization with implementation. The code itself is often the
only up-to-date documentation of a program [FFF94], and is in a form inaccessible to
management. Translating design models written in complex modelling notations
such as UML [OMG2001], to implementation languages (like Java and C++) and
database languages (like OQL and SQL) is time-consuming and error-prone. UML
and object-oriented implementation languages do not provide constructs to model

the rights and duties of parties, which are the foundations of commercial exchanges.

The semantics of obligations, powers and authority are lost in sequential
invocation paradigms. It is therefore not possible to automatically assess the mutual
obligations of participants who are subject to contract. Conventional Interface
Definition Languages (IDLs) define available method names, and their argument and
return types, but do not provide a way to specify pre- and post-conditions for
method invocation. This absence of semantics makes it impossible to relate program
state to the business process. These limitations point to the need to adopt a contract-

aware, event-driven paradigm to monitor and control workflow execution.

Application Scenario

1.2 Application Scenatrio

To clarify the problems we will address, consider the following application scenario,
which we return to throughout this thesis to illustrate the plausibility of our

implementation.

SkyHi Builders is a construction company. Steelmans Warehouse is a supplier of
high-grade steel. SkyHi, having recently won a tender to build a new office block,

enters into a contract with Steelmans. An excerpt appears as follows:

Contract between SkyHi and Steelmans entered into on 1°' August 2001

“steel” shall mean low-carbon steel of the type Fe360 (Euro-Norm
10025) in sheets with dimensions 1600 x 400 x 5.0 mm, with thickness

tolerance = 0.040 mm on a single sheet. Clause D.1
SkyHi must pay Steelmans $25,000 before 1% September 2001. Clause C.1
Steelmans must deliver 10 tons of steel before 1** October 2001. Clause C.2
SkyHi has the right to return the steel within 30 days. Clause C.3

In the event of a return in terms of Clause C.3 above, Steelmans shall
refund SkyHi the amount paid. Clause C.4

In addition, SkyHi has the following internal organizational policies:

SkyHi Risk Management Procedures

Clerks may not buy steel. Clause P.1
Employees older than 25 may buy steel. Clause P.2
Payments of more than $10,000 to suppliers are prohibited. Clause P.3

And SkyHi finds itself subject to the following provisions of legislation:

Chapter 1 - Introduction

Commercial Trade Act

An obligation is fulfilled when all obliged occurrences have happened. Clause L.1

An obligation is violated if it is after the deadline and some obliged
occurrences have not happened. Clause L.2

Following successful instigation of the prescribed procedure for
claiming compensation, damages for violation of an obligation must

be paid, by the liable party, to the party entitled to compensation. Clause L.3

SkyHi wishes to store the provisions of their contracts and internal business
policies, and the legal regulations to which SkyHi is subject, in a database, so that the
provisions can be used to guide the behaviour of their (computer and human-
activity) systems. Scripting the system with procedural code is not an option: the
sequence of SkyHi’s business processes is not static and they do not wish to employ
a programmer to sift through and change procedural code to reflect the frequent
alterations in contracts, policies, and regulations. SkyHi would like the human and
software components in their system to consult the database in order to determine
what to do next in the light of a dynamically changing set of provisions. They need
to store a history of events and states, so that they know what occurrences have
happened over time. They want to see, for instance, what consequential obligations
and legal powers resulted, and whether these obligations were fulfilled or powers
were exercised. Further, they need to be able to assess whether a given activity is
permitted, to determine which historical occurrences were prohibited, and what
violations ensued. Finally, they would like to be aware of conflicts and
inconsistencies across their various documented policies, and be able to clarify the

intended interpretation where necessary.

Application Scenario

The application scenario described here has been chosen to include a varied set

of realistic legal provisions which we shall scrutinize as we progress:

See § (pg)

® definitions or ‘interpretations of terms’ (Clause D.1 defining ‘steel’, 5.5 (137)
and Clauses L.1 and L.2 defining ‘fulfilment’ and ‘violation’), 5.6.1 (142)
5.6.2 (151)

® unconditional obligations (Clauses C.1 and C.2)', 5.6.1 (142)

® conditional obligations (the obligation, in Clause C.4, to refund upon 565 (155)
return; the secondary obligations to pay damages in the

circumstances specified by Clause L.3),

® legal powers (the right to return the product within 30 days, in Clause 5.5 (137)
C.3; the authority or contractual capacity of an agent to purchase, in

Clause P.2),

® legal disabilities (Clause P.1), 53.2 (132)
® prohibitions (Clauses P.1 and P.3), and 5.3.1 (129)
® permissions (Clause P.2). 5.4 (134)

! Technically, these obligations were conditional upon the validity of the contract, but we shall assume
the contract is signed and valid, and that these obligations are now unconditional. Subsequent
invalidation of the contract may of course void these obligations.

Chapter 1 - Introduction

1.3 Research Issues and Motivation

Contracts are central to the operation of commercial organisations in that they
constrain and direct the behaviour of a company and its agents. Automated
management of business contracts holds the prospect of providing more accurate
and efficient commercial operation. We propose to make contracts central to the
development and control of e-commerce applications. To this end, we aim to
represent contractual provisions in a form suitable for machine interpretation.
Contracts may then be queried, executed, and monitored automatically; that is, our
goal is to provide contract-driven enforcement. Our contracts are not static but are
subject to change and this change must be managed. We propose to develop
applications by ensuring that participants adhere to the provisions of the contracts
that bind them, and highlighting when this does not take place. This is a novel
approach which will integrate the specification of an e-business application with the

implementation of its code base.

1.4 Research Goals and Tasks

We take as the input to our process a set of textual business contracts, policies, and
regulations, supplied by management, including user requirements documents
provided by a business analyst. These define what the various stakeholders (role-
players) in the system can and must do under various circumstances, as well as what
the computerized system itself cn and must do under various circumstances. The
input documents therefore define the contractual provisions that direct behaviour in
both the human and automated systems. Interpreting these documents using
automated natural language processing (NLP) techniques is not technologically viable
given the current state-of-the-art in NLP [OM96, Pul96, FSS99]. One of our goals
therefore is to provide a human analyst with sufficiently detailed methods to guide
the interpretation of the specifications and facilitate their input into a computerized

system. Our other primary objective is to engineer this computerized system to be

Research Goals and Tasks

capable of storage, consistency checking, enforcement, and execution of these
contractual provisions. Ideally, it should be possible to store the business
specification in the database and consult the specification for advice on what to do

next.

Managing contracts effectively requires a powerful semantic model and a generic
storage framework. If contracts are to be enforced automatically then the
representation must capture the relevant semantics in full. Which contract provisions
are applicable must be determined in changing circumstances and in the light of
frequent alterations and additions to the contracts themselves. The common system
development assumption that specifications and contracts are provided once off, up
front must be abandoned: the system must modify its behaviour as new directives
are added at run-time. Conflict resolution facilities must be capable of highlighting
mutually exclusive provisions and deciding between them. Schedulers must enact
obligations. Monitors must flag violations. Change management facilities must
maintain a history of the nature and status of the organisation’s past contracts in

order to resolve any disputes that may arise.

Following our detailed review of the adequacy of related work in Chapter 2, we
conclude that chapter with a more specific list of requirements for a contract-driven

e-commerce application development environment.

The implementation context for the desired environment is as shown in Figure 1
below. Business analysts feed the business policies defined in the business’s
contracts, policies, and regulations into the system. The business policies are stored
as structured data. Fulfilment occurrences, environmental happenings, and further
contracting occurrences are added to the occurrence store through defined interfaces
and checked against existing contracts by an active wrapper. Occurrences are
triggered automatically by the system in accordance with the policies defined in the

contracts (specifications) in the occurrence store.

Chapter 1 - Introduction

Business Occurrences

Specifications ' '
- What the system can/must do.
- What the users can/must do. ; ﬂ “.
Regulations
o AY
Contractlng Fulfilment Environmental
Contracts
® SKyHi must pay
Steelmans $25,000
before 1° September
2001. / Store of
Specifications

Wi

Policies and Occurrences
® (lerks may not buy HD
steel.
Activi
® Payments of more than A
S

; . Wrapper
$10,000 to suppliers pp
are prohibited.

\Development & Execution Environmenty

Figure 1: Contextual overview of desired solution

1.5 Contributions

We provide a set of guidance rules, which can be employed by an analyst to expose
salient occurrences in English language user requirements documents, such as
business contracts, policies, and legislation [AB2000, AB2001a]. Our investigations
into event semantics have led to the definition of a database schema for the
representation of these variable-attribute occurrences [AB2001b], paving the way to
interrogation and execution of stored e-commerce application specifications. Our
EDEE prototype provides a platform-independent active wrapper [AB2001c], which
allows us to record, reason about, and enact contractual provisions [AB2001d,
AB2002a]. We demonstrate a novel query storage and coverage determination
mechanism, which allows contract performance monitoring and facilitates dynamic
consistency checking of contracts against policies [AEB2002a, AEB2002b]. A new
model of the life and times of identified and situated norm instances is proposed
[AB2002b, AK2002]. The model is used in our contract-driven and legislation-aware

workflow automation approach, to support conflict resolution [AEB2002c].

10

Dissertation Outline

The work described here contributes to the understanding of the representation
and implementation of contracts, policies, and legal requirements, for business
process automation. The use of a database to record history in an integrated form
enables querying of state and history, which is essential to the abstract modelling of
processes at the business level. We have proposed a significant attempt to advance
the state of the art in the capturing of user requirements and their mapping to
computer systems functions such as access control, enactment, and audit. This
research may stimulate new approaches to delivering security and integrity to
business processes, and has the potential to feed into developer tools based on policy
specification and enforcement. The novel development style described could have a
significant impact on the automation of activities in commercial organisations and

would be an important contribution to workflow management in e-business.

Progress towards the creation of an integrated methodology and environment
for provision identification, representation, storage, conflict detection and resolution,
monitoring, and enforcement presents a significant engineering challenge, and

constitutes the main contribution of this thesis.

1.6 Dissertation Outline

This dissertation is organised as follows:

Chapter 2 investigates background and related work, providing a broad review of
treatments of events, rules, policies, executable specifications, and contracts by
previous authors. The chapter highlights the weaknesses in conventional approaches
to specifying and animating business workflows. Based on the shortcomings of
these approaches, and informed by some suggestions of deontic logic, it derives
requirements for a methodology and infrastructure for developing and executing

electronic commerce applications.

We begin to tackle the first of the identified requirements in Chapter 3, which
introduces a representation of business occurrences — that is, events and states —

which is grounded in philosophy and is semantically rich enough to record both

11

Chapter 1 - Introduction

workflow and association occurrences in e-business. We show how descriptions of
occurrences and entities are stored using identified queries, and we demonstrate a
novel incremental detection mechanism, which makes use of partial re-evaluation of

stored queries to determine whether an item is covered by a stored query.

Motivated by the requirement for improved consistency between the analysis and
implementation phases of e-commerce application development, Chapter 4 details a
set of guidelines that may be employed to expose salient occurrences in an English-
language specification. These aid the process of refining analysis documents, such as
user requirements specifications and business contracts, into structured provisions

that can be stored in a database.

Chapter 5 focuses on provisions, explaining the types of provisions, and their
storage. The chapter demonstrates that contract-related occurrences can be recorded
within the data schema used for recording operational workflow occurrences and

associations.
Mechanisms for conflict detection and resolution are explored in Chapter 6.

Monitoring and enforcement techniques for a contract-driven e-commerce
application execution environment are presented in Chapter 7. The chapter also
outlines the prototype implementation, EDEE, of the techniques introduced in this

thesis.

Chapter 8 discusses the solutions presented in this dissertation. It reviews the
strengths and weaknesses of the approach, gives a detailed experimental evaluation,

and suggests directions for future research.

Chapter 9 concludes this dissertation, and highlights the main contributions.

12

Chapter 2

Analysis of Related Work

We saw in the previous chapter that traditional business process application
development approaches suffer from a sequential invocation paradigm that is opague and
lacks an explicit representation of the norms governing behaviour. In particular, the
changing rights and duties of parties in contracts are typically overlooked. In this
chapter, we explore and criticise a broad range of technologies and formalisms that

have investigated some of these issues.

A sequential invocation paradigm, while efficient, does not allow us to monitor
for the occurrence of events and states against a changing set of contractual
provisions. The problem is two-fold: representing events, and detecting events. Section
2.1 introduces the technical literature on event monitoring, which tackles the second
aspect, and includes a brief review of the philosophical literature on event

representation, which provides some insights into the first.

Several research initiatives exploit an event-driven execution paradigm and
attempt to make business rules, policies, and processes explicit and executable.
Section 2.2 examines the rule-based approach, while Section 2.3 surveys policy
systems for access control and network and system management. Techniques for
business process modelling and animation, such as workflow process definition

languages and executable specifications, are examined in Section 2.4.

13

Chapter 2 - Analysis of Related Work

Section 2.5 evaluates the notion of ‘contracts’ used in a variety of
implementation technologies, and explains how these metaphorical borrowings of
the term differ from business contracts, which make rights and duties explicit.
Finally, we look at the literature on formal deontic logic (Section 2.6), which has been
employed for representing and reasoning about obligations and permissions in moral

law, and we contrast these with the obligations and permissions used in business law.

In each subsection, we highlight the major current approaches and identify
pressing issues and detailed requirements. Based on the gaps in existing approaches,
the chapter concludes with a list of high-level requirements for a comprehensive
e-commerce application development framework that expresses and exploits
structured abstractions of business occurrences and legal provisions. These

requirements are then systematically tackled in the remainder of the thesis.

2.1 Event Systems

Event monitoring is typically employed in three major styles: publish-subscribe event
notification (comparable to continuous query), active database triggers, and system

event schedulers.

Publish-Subscribe Event Notification and Continuous Query

Publish-subscribe event monitoring services, such as CEA [BMBH2000,
BHMM2001, BHMM2002], GEM [MS97], Siena [CRW98], Eve [GT98, Tom99],
JEDI [CDNF2001], DERPA [CDDF98], Elvin [SABH2000], and Le Subscribe
[FJLP2001], focus on event detection and filtering. In publish-subscribe, services
advertise (publish) the events they can notify, consumers su#bscribe to event patterns,
and event brokers nofify interested consumers upon receiving events that match a
pattern that a consumer subscribes to. Event-monitoring services allow composite

or aggregate events to be fired upon recognition of patterns of primitive events.

Continuous queries are standing queries that monitor source data and notify the

user whenever new data matches the query [LPT99]. Tapestry [TGNO92], a

14

Event Systems

purpose-built application designed for filtering mail and news messages, uses append-
only tables and notifies users when data matches a stored description. OpenCQ
[LPT99] generates database-dependent trigger scripts for the situations to be
monitored, and uploads each of them to the relevant database; currently only Oracle
is supported. NiagaraCQ [CDTW2000] defines continuous XML Query Language
(XML-QL) queries on XML files, storing delta files with recent changes, and

notifying relevant XML document revisions to interested parties.

Publish-subscribe and continuous query mechanisms are intended for targeted
dissemination of new, topical information to users. They have been used for
detecting events from remote sensors, or informing interested parties of changes to a
database or document. Composite event languages primarily support event detection
and notification distribution and have weak support for imperative aspects - GEM is

an exception to this and provides basic action facilities.

Active Database Triggers (Event-Condition-Action rules)

Active databases employ an Event-Condition-Action (ECA) paradigm: on the
occurrence of a certain event, if the condition is met, then an action is fired. Event-
Condition-Action rules, or triggers, are widely implemented in active databases
[PD99].

A variety of mainstream commercial relational databases, such as Microsoft
SQL Server, Oracle, and Sybase, implement triggers based on the SQL/99
[ISO992a] or previous SQL standards. SQL/99 triggers are limited to monitoring

simple upDATE, DELETE, INSERT, and (sometimes) seLECT operations on single tables.

Academic active database projects include relational active databases such as the
Postgres Rule System [SHP88, SK91], Ariel [Han92, HBC97], Datex [BM93], and
Starburst [Wid96], and object-oriented active databases such as SAMOS [GD93,
GD94, DFGG2000], Ode [G]S92a, GJS92b], Sentinel and Snoop [CKAKO3,
CM94a], NAOS [CCS94], and TriGS [KRRV94, Ret98, KRRS2001].

15

Chapter 2 - Analysis of Related Work

As an example of a trigger specification, Starburst allows the creation of rules
through the execution of statements of the form:

CREATE RULE rule_name ON table WHEN INSERTED/DELETED/UPDATED
[IF condition] THEN action_list

PRECEDES rule_list FOLLOWS rule_list
System Event Schedulers (Event-Action Systems)

An abundance of commercial system event schedulers exist: industrial products
include Unix’s cron, Microsoft’s Windows Tasks Scheduler, SRO Event
Manager, and Unisyn Automate. In the academic realm, a prototypical scheduler
is the Yeast event-action system [KR95]. Upon detection of system-level events,
such as windows opening, applications closing, or timer events, actions are invoked.
Actions involve running a command line script or making a method call to a system
application programming interface (API): for example, backup or archive files,

download emails, run a virus scan, or pop up a message window.

Critique

Traditional event systems present us with a number of issues:

2.1.1 Expressiveness of event representation

The literature on events can be broadly divided into philosophical treatments, which
explore the representation and logic of events, and #echnical approaches, which look at
efficient event monitoring. The divisions between logicians and systems
programmers in the approaches adopted for the representation and application of

event abstractions are marked.

Philosophical Issues: Representation of Events

The notion of individuated occurrences was arguably pioneered by the philosopher
Donald Davidson [MDBS69, Dav80] who suggested that events such as ‘the stabbing
of Caesar by Brutus’ are identified particulars. The basic argument is that the

traditional predicate logic representation

16

Event Systems

stabbing(Caesar, Brutus)

ought to individuate the occurrences of stabbing so that separate stabbings may be

distinguished. Davidson’s original proposals [Dav80, p118], would then yield:

= stabbing(Caesar, Brutus, x)

where x denotes the particular occurrence of stabbing being referred to. An
active philosophical debate has ensued for decades. A variety of authors — see, for
example Mourelatos [Mou78], Bach [Bac86], Bennett [Ben88], Verkuyl [Ver96], and
Steedman [Ste2000] — have looked at philosophical nuances and shared abstractions
for events, states, and processes. Contributors who have studied representational
issues have included Parsons [Par90]; Jurafsky and Martin [JM2000]; Higginbotham,
Pianesi, and Varzi [HPV2000]; and Kimbrough [Kim98a, Kim98b, Kim2001].
Parsons puts forth a more granular refinement of Davidson’s representation,
motivated by, amongst other reasons, the need to straightforwardly infer ‘there was a
stabbing’, ‘Caesar was stabbed’ and ‘Brutus stabbed’” from ‘Brutus stabbed Caesar’,

without requiring additional meaning postulates. Parsons’ version becomes:

= stabbing(x) » agent(x, Caesar) » theme(x, Brutus)

Kimbrough, in his ES® theory [Kim98b], adopts the Parsonian view. Both
propose that the quantifier variable (x) may individuate instances of any type of
eventuality — what we term here occurrences — including events, processes, and
states. Kowalski and Sergot [KS86] provide perhaps the seminal formal treatment of
instantaneous events in a logical calculus, showing how events initiate and terminate
prolonged properties. This work has been extended by Sadri and Kowalski [SK95]
and others. Daskalopulu [Das99] suggests that Kowalski and Sergot’s work is

compatible with Kimbrough’s approach to eventuality individuation.

With the notable exception of Kimbrough — who speaks of events such as
ordering, promising, invoicing, delivering, confirming, and debiting — other accounts of event
semantics restrict themselves to philosophically interesting, but commercially less
pertinent events, such as stabbing and killing. Furthermore, Kimbrough in his

Disquotation Theory [Kim2001], also in collaboration with Moore in their Formal

2 As per Parsons’ suggestion [Par90], we use the ‘—ing’ form of verbs as their canonical form.

17

Chapter 2 - Analysis of Related Work

Language for Business Communication (FLBC) [KM97, Moo2000], extends the
simple sentences treated by other authors with sentences containing embedded
propositional content. Such sentences include ‘promising that ...°, ‘requesting that ...,
and other examples prevalent in business communications. In each case,
propositional content (e.g. ‘I pay’) is bracketed or ‘quoted’ within a sentence that
indicates attitude’ (e.g ‘I promise that [I pay]). Kimbrough and Moore’s
contribution is in formalizing the suggestions of speech act theorists [Aus76, Sea69,
SV85], and in applying these ideas to deontic reasoning [Kim2001] and business
messaging [KM97, Moo2000]. Daskalopulu and Sergot [DS2002] investigate the
computational aspects of Kimbrough’s emerging theory, showing a logical

programming implementation, in Prolog, of some of his proposals.

Valuable strides have been made towards practical application of event semantics
and speech act theory in commercial messaging and inferencing. The foundational
work demonstrates the promise of applying the rich semantic view of events and
states from the philosophical literature to real world systems. However, specific
software architectures and services for the creation and storage of large numbers of
user-supplied event matching patterns, and event detection, lie outside the scope of
philosophical concern. For this we turn back to the technical literature on event
monitoring, which adopts a more impoverished view of events, but treats algorithms
and data structures to support the practical implementation of event monitoring in

more detail.

Technical Implementation: Event Representation

Technical approaches to event monitoring are typified by representations of events
and states that differ vastly from the recommendations of the philosophical
literature. Koch’s Event Definition Language (EDL) [Koc97] provides perhaps
the most pointed evidence of the primitive representation of events sometimes used.
EDL takes a limited size buffer of integer values and notifies a named event each
time a threshold is reached by the most recent value or by the running mean or

median of values in the buffer.

3 Austin [Aus76] and Searle [Sea69] use the term ‘illocutionary force’ rather than ‘attitude’.

18

Event Systems

Problematically, business events are at a higher level than the data management
events used in database triggers [PS98]. Database triggers monitor only for database-
level events, not business occurrences. Semantically richer named, tped, and
parameterized events are provided in some approaches [BMBH2000, Spi2000]. Notably,
however, event representation is not guided by philosophical recommendations.
Parameter choice and naming is arbitrary, and not driven by analysis of participants and
their roles in the event, as is recommended in the artificial intelligence and natural
language representation literature [All95, Gri94, JM2000, Par90, Sow2000]. Most
event languages surveyed, including composite event languages and Event-
Condition-Action rules, treat events as instantaneous [Bac96, Spi2000, PD99]
although GEM [MS97] treats composite events as durational (having both start- and
end- events). Various authors in the fields on logic and linguistics [Bac86, Hay95,
Kim2001, KR93, Mou78, Par90, Sow2000] contend that it is natural to consider
some events (or, rather, ‘eventualities’) as occupying intervals and being durational.
In contrast to these philosophical views, systems programmers would typically regard
durational events as states. An integrated stored history of both zustantaneons events
and prolonged states is essential for recording, monitoring, and auditing business

processes.

Requitement1 The information model must be able to describe
occurrences of past events, states, and processes, as well

as the (active and passive) role-players involved.

While typical workflow events like ‘withdraw’, ‘deposit’, and ‘pay’ are
unproblematic for the representation of events used in much of the event
monitoring literature, certain types of events cannot be defined. Speech act events
with nested propositional content, such as those expounded by Kimbrough (op cit, page
17), are not expressible. Events of this type include occurrences of promising,
authorizing, forbidding, requesting, expecting, attempting, or planning, which are

common in commerce.

19

Chapter 2 - Analysis of Related Work

Requirement 2 Occurrences with nested propositional content must be

expressible.

2.1.2 Monitoring for recent, non-persistent occurrences

While efficient for real-time monitoring, event monitors do not support long-term
event storage and querying which is essential for e-commerce. They do not explore
the monitoring and assessment of events against a changing set of stored provisions,
nor the logically derivable implications of events in terms of user-defined policies.
In the absence of integration with a business policy system, event monitoring
systems cannot check which business policies are applicable in the current
circumstances. Though CEA has been integrated with the OASIS access control
policy language (page 34) and GEM has been integrated with the Ponder network
management policy language (page 30), these are systems-level approaches unsuited

to the monitoring of high-level business contracts.

The event detection mechanisms employed by publish-subscribe and active
database systems (summarized in Table 1 below) match against a rapid stream of
current events and are optimized for high-performance with transient events and

conflict-free specifications.

Detection Mechanism Implementation

Regular Expressions / Finite State Automata | JEDI, Ode, DERPA

Petri Nets SAMOS

Trees / CEA, GEM,

Graphs Sentinel, Eve, Snoop, Schwiderski
Row Markers (Locks) Postgres

Multi-dimensional Indexing Le Subscribe

Table 1: Event detection mechanisms used in publish/subscribe and active databases

20

Event Systems

Regular expressions and Finite State Automata recognize events when a
Finite State Machine reaches its final state. They have no memory of which
particular transitions have been followed to arrive at that state. As counts of events
cannot be modelled with pure automata, Ode’s implementers extend the automata
with vectors of count variables. They warn, though, of a combinatorial explosion in
space complexity when trying to store all information derivable from the transition
history of a Finite State Automaton. Petri Nets generalize Finite State Automata,
making recent transition history accessible. Some history for the current rule firing is

held in tokens, but more distant past events are not stored.

In tree and graph-based detection approaches, each node in the graph
maintains an event buffer, with events moved from the child node’s buffer to the
parent node upon event detection, or discarded if the current node is a root node.
Most approaches use one or more of four hard-coded event consumption policies —
Recent, Chronicle, Cumulative, or Continuous [CM94a, PD99]. These consumption
policies choose which of a time-limited set of buffered events to use in matching
against a given subscription. While a given event may be sent to more than one tree
instance at the time of matching, events already matched are not available later to

other rules for firing and no event history is stored.

Row-markers (record- and relation-level locks) monitor for simple events: if a
marked row is altered, inserted, or deleted, the trigger is fired. Multi-dimensional
indexing approaches provide rapid performance when the number of subscriptions
is large, as they employ indexing to look up which matching patterns pertain to a

single, current event.

Matching against transient, consumable events is ill-suited to commercial
applications where event consumption is determined by business policy which
assesses event salience over time. The fact that an event has been matched against an
expression mentioned in a provision does not inhibit it from matching against further
expressions, and seldom means that it can be discarded. A chronicle of the history

of events is important for audit and evaluation of performance against contract, for

21

Chapter 2 - Analysis of Related Work

the gathering of performance metrics for process improvement, and for
retrospective evaluation and justification of actions. The ability to determine which
events brought about which obligations, is critical. Equally essential is the ability for
a historical event to bring about a new obligation even if it has previously brought
about other obligations — matched events therefore cannot be summarily garbage-
collected. Events must persist because contractual outcomes may depend upon

events in the distant past.

Requirement 3 Matching (occurrence detection) must be against a long

history.

It is not sufficient to merely provide a record of method invocation history, as
these are low-level service requests. An occurrence history must store a history of

business events and states in order to be assessable against a business contract.

Requirement 4 Persistent storage of business-level occurrences is

required.

Event-detection trees, graphs, and automata hard-code access paths to the events:
the detection graph would need to be traversed to find events; this is further
complicated by the short retention span of events. Occurrences cannot be looked
up via ad-hoc queries. This is not well suited to electronic commerce applications,
which require a persistent and easily interrogable record of occurrences. The
Herald event store for multimedia applications [Spi2000] demonstrated the viability
of matching subscriptions against events in persistent storage. However, Herald’s
implementation is optimized for a single access path to events: the time-ordered
access used in multimedia replay. CEA (page 14) provides both ODL- and XML-
based event stores queried via OQL and XPath respectively. A composite event
retains all its components, each with a timestamp. Event audit can be handled by a

background write to an audit store. The intended applications of CEA are mobile

22

Event Systems

entity tracking, controlling interactive multimedia applications, and monitoring

security conditions.

Requirement 5 Business applications require occurrences to be accessible

via ad-hoc queries, rather than via fixed access paths.

Patankar and Segev’s Business Event Manager [PS98] offers services such as
persistence and sharing which are not provided by existing active database systems.
They attempt to store a history of business events using an irregular-time-series data
type proprietary to Illustra/Informix Universal Server. Each event type is stored
in its own time series, indexed by occurrence time. Simultaneous events are not
supported as events are identified by occurrence time rather than by an occurrence
identifier. Though they see the need to conceptually support event attributes of any
data type, their implementation in Illustra restricts event attributes to numeric types
only, severely limiting the expressiveness of their events. Patankar and Segev do not
specify an event detection algorithm, and propose only an event scheduling approach
whereby scheduled occurrences are automatically inserted into a future event queue.
Their approach is therefore similar to system event schedulers (page 10), except
targeted at scheduling business events rather than system administration tasks, and

storing the event log in a temporal database rather than in a textual log,

2.1.3 Focus on system administration, not business

process automation

System event schedulers (page 16) are well-suited to automating system
administration tasks, but inappropriate for workflow automation. While these
products provide event detection facilities, they can monitor only a limited set of
system-level events such as file modification, drops in available file-system capacity
below a certain threshold, or user login. A typical system-level rule in an event

scheduler might say:

23

Chapter 2 - Analysis of Related Work

Effective from 13 January 2003 to 13 March 20083, print accounting reports before 8am
on the last working day of every month

A typical business-level rule appears superficially similar:

Effective from 13 January 2003, customers must settle their bills before 5pm on the last
working day of every month.

In the case of a system-level rule, the rule can only ever be a rule to be automated by
the system; the rule may not mention business objects (such as customers) to be
monitored. Indeed system event schedulers provide no general data model. The
system-level rule is not subject to override by other rules, and conflicts between rules
are not detectable. The system-level rule can be disabled by another rule, but only if
it is specified by identifier — it cannot be selected by attributes such as the identity or
organizational position of the rule’s specifier, the rule’s location in a document, or its
time of specification. The business-level rule may be voided for a variety of reasons:
because it is overridden by a conflicting rule from a higher authority, because it is
contained in a section of a contract declared null and void, or because it was written
before a certain date. Failure of the system-level rule usually initiates an e-mail
notification to the system administrator. A violation of a business level rule may

result in liabilities, such as obligations to pay interest on overdue bills.

Requirement 6 A business-level, rather than technical-system-level,

approach is needed for business process automation.

24

Rule-based Approaches

2.2 Rule-based Approaches

Business rule implementations vary from integrity constraints and procedural rules,
to logic programs, expert systems, and rule engines. Event-Condition-Action rules,

which we introduced eatrlier (page 15), may also be considered a rule-based approach.

Integrity Constraints

Integrity constraints, assertions, and pre- and post-conditions, are simple validity

checking conditions overlaid onto existing procedural approaches.

SQL/99 [ISO99a] integrity constraints and assertions, implemented using
cieck and asserTION statements, are a rudimentary form of rule that describe
conditions that a row, column, table, or database must satisfy [Dat2000]. Insertions,

deletions, or updates that violate these hard constraints are rejected.

For designers in the object-oriented community, integrity constraints, pre- and
post-conditions, class invariants, and assertions are semi-formally expressed using the
Object Constraint Language (OCL) modelling notation [OMG2001]. Integrity
constraints are operationalized in the Eiffel language [Mey99] or iContract pre-

processor for Java [Kra98], where conditions are tested on method entry or exit.

The logical language KAOS [Lam2001] allows the specification of constraints on
domain objects (similar to class invariants), and constraints on processes or
requirements (similar to necessary and sufficient pre- and post-conditions). KAOS
does not describe how conditions are monitored, as the approach downplays
operationalization and concerns itself with formal reasoning about whether goals are
achieved, maintained, or avoided, using temporal logic primitives (SomeTimelnFuture,

AlwaysInFuture ... Unless ..., and NeverInFuture).

Procedural Rules

Procedural approaches embed activity-triggering rules. For instance, internet
application servers like ATG Dynamo [ATG2001], BEA Weblogic [BEA2001],
Microsoft Site Server 3.0 [Mic2001a] and Commerce Server 2000 [Mic2001b]

25

Chapter 2 - Analysis of Related Work

implement simple procedural rules for content personalization. These are typically
encoded as sequential if .. then .. statements in VBScript, JavaScript, or Java, and

embedded in web-page generation templates.

Logic programs, expert systems, and rule engines

Full-fledged, non-procedural rule-based implementations include logic programs,

expert systems, and rule engines.

Prolog is a declarative, logic-programming language targeted at inferencing
applications. It employs a depth-first, left-to-right unification algorithm to infer
conclusions from rules (patterns) applied to facts or assumptions (objects) [CM94b].
Rules are expressed as Horn clauses, a subset of First Order Logic. Negation by

failure is employed.

Situated Courteous Logic Programs (SCLPs) [GLC99, IBM2001, RGW2002]
extend logic programs with labelled rules (for conflict resolution) and procedural

sensors and effectors.

Expert systems attempt to match a set of facts to patterns defined in unordered
if .. then .. rules. Forgy’s RETE algorithm [For82] is widely used in expert systems
shells, for rule condition testing. RETE is common in OPS5 [For82] descendants
including NASA’s CLIPS [Ril2001], and the Java implementation of CLIPS, Sandia’s
JESS [FH2001]. Itis also embedded in commercial rules engines such as Blaze and
Brokat Software’s Advisor [Bla2000], Versata Logic Server [Ver2001], Usoft
[Uso2001], ILOG Rules [ILOG2001], and Haley’s Eclipse and Café Rete
[Hal2001]. Some extensions may be provided. For instance, ILOG extends RETE
with a notion of rule packets or rule groups. These allow the activation and

deactivation of sets of rules.

RETE only tests rules that may have been affected by the most recent change in
data, thereby making it significantly faster than the naive approach of running data
through the entire set of if .. then .. rules in a procedural manner. Further, RETE’s
constraint checking approach avoids the explicit invocation problem of SQL triggers,

Java, and other procedural approaches, which leave programmers with the difficult

26

Rule-based Approaches

and error-prone task of inserting checks in all places where constraints might be

violated [Bla2001].

In RETE, new facts flow through a dataflow network of one-input (O) and two-
input (B or join) nodes, which test whether conditions (i.e. constraints or queries) are

met. Facts are stored at B-node memories to avoid the need to re-evaluate facts
already matched. Facts that reach terminal nodes activate rules, which are added to
an agenda. Optimization techniques that may be employed include sharing common

sub-conditions between rules [FH2001].

RETE is suitable only for small main memory data sets as the large number of

facts stored at B-node memories lead to exponential worst case storage requirements:
a storage cost of O(t) for # facts in a database, and a single condition with ; joins
[Mir87, BGLM91]. Friedman-Hill [FH2001] explores a simple example where the
compiled RETE data-flow network for a single rule with 5 conjuncts (4 joins), when
applied to 10 facts (events), stores 10,000 partial matches at the last join node. JESS
provides a profiling command that allows developers to restate the order of
conjuncts in the rule, so that they may decrease storage overhead by placing the most
selective predicates first. However, it seems unreasonable to expect developers to
manually profile and then restate and recompile their rules into a new RETE network
cach time the selectivity of predicates changes. A variant of RETE, TREAT
[Mir97], stores predicates (rather than facts) at B-nodes, in an effort to trade off
search time against memory overhead. However, the structure of the compiled
network in TREAT is again dependent on the order of statement of conjuncts in the
rules, rather than on the selectivity of predicates, meaning that the algorithm
performs pootly for certain data profiles. Gator [HKINPV9S], the trigger mechanism
used in Ariel (page 15), performs heuristics-based optimization of RETE and

TREAT networks, to improve match efficiency based on data profiles.
Critique

In the context of business process enactment, the following primary concerns

pertain to rule-based approaches:

27

Chapter 2 - Analysis of Related Work

2.2.1 Appropriateness for event monitoring

Expert systems are ill-suited to monitoring applications [Ril2001]. Firstly, reasoning
about events over time is not a built-in feature. Riley [Ril2001] recommends that an
additional slot be added to facts to store their creation time. Rules which reason
based on the contents of this slot must then be added. Howevet, as occurrence time
does not uniquely identify simultaneous occurrences, this approach is flawed, and use
of an occurrence identifier, as suggested by the philosophical event literature, seems
preferable. Secondly, the algorithms assume that data changes slowly over time.
Riley suggests that rapidly changing data may be partially addressed through creation
of a bespoke pre-processor. Two alternatives are proposed. If the change in sensor
value is insignificant — for example a change from 10 to 10.1 — the pre-processor
avoids the retraction of the old fact and the assertion of the new fact with the
changed sensor value until the change is convenient. An alternative is to convert
numeric values to symbolic values such as 1ow, nominal, and nigh and retract the old
fact and assert a new one only if the symbolic value has changed. Riley remarks that
a major drawback of this approach is that C code has to be written to pre-process

the data.

2.2.2 Management and control of small, static rule sets

Expert systems which compile rules into RETE networks are not intended for large,
dynamically changing rule-sets: the typical expert system assumes a fixed set of rules,
compiled into a static constraint checking network, and a variable set of facts

[FH2001].

Requirement 7 Situations should be interpreted against a dynamic set of

rules.

Rule engines are primarily directed at inferencing, with rule management being
unattended to. For instance, IBM CommonRules [IBM2001] stores rules in text

files, making it difficult to search for and view rules. RETE and TREAT are

28

Rule-based Approaches

restricted to in-memory rule sets, and assume that rules are read from text files;
manageability of large volumes of rules is therefore an issue. Similar concerns affect
active databases: triggers are stored in text files and compiled; the rules are not stored
in interrogable form in a database. Prolog rules are unlabelled, and held in text files,

though some implementations allow dynamic insertion of new rules into a data store.

Lee and Ryu [LR94] comment that, rather than modifying rules using an ordinary
text editor, updates should pass through deontic controls. The policy-based system
Ponder [DDLS2001] goes some way towards preventing undesirable updates to rules

through the use of meta-policies [LS99].

Commercial rules repositories, like BRS RuleTrack [BRS2001], can be used for
recording and organizing rules. RuleTrack is limited to storing textual descriptions

of the rules, which are not machine-interpretable.

Requirement 8 A large and growing number of machine-enforceable
rules should be controlled and managed in a database, not

haphazardly distributed in text files.

2.2.3 Absence of native conflict detection

In classical rule-based approaches, the semantic form of rules is inaccessible; rules
cannot be queried and conflict detection based on properties of rules cannot be
performed. Typically, no facilities are provided for ascertaining when two rules might
compete, making it difficult for the system administrator to determine when the
introduction of a new rule would impact upon the firing of rules lower down in the
rule file or in other rule files. In environments where rules are specified by
distributed and semi-autonomous authorities, conflicts frequently arise. Where
thousands of rules exists, it is not feasible to expect such conflicts to be located by

humans.

Requirement 9 Analytic conflict detection is desirable.

29

Chapter 2 - Analysis of Related Work

Importantly, RETE, TREAT, and Gator can only check whether fixed-value
tuples match patterns (queries), and cannot determine whether the results of some
patterns (queries) are subsets of the results of others. Similatly, Prolog provides no
native facilities for determining overlaps between rule conditions, as its intention is to
match facts to rules, rather than to compare rules to each other. Current rule based
approaches focus predominantly on object-pattern matching, rather than pattern-pattern
matching, and consequently do not provide native conflict detection facilities. The
RETE approach generates and then compiles code to represent & and B nodes, and
then feeds the data through these generated classes. Constraints therefore cannot be
individually identified and their semantic structure cannot be queried as they are split
into the compiled code of a data flow network, which is opaque. Ability to
interrogate the semantic structure of the rule set would be necessary for pattern-

pattern matching and analytic conflict detection.

Requirement 10 Pattern-pattern matching functionality is required for

analytic policy conflict detection.

2.2.4 Priority-based conflict resolution

Rule conflicts are not well dealt with in expert systems, where, as for active database
systems, resolution is via implicit ordering or explicit priority numbering.

Conflict resolution in active databases is usually limited to hard-coded rule
ordering or numeric prioritization. Prioritization is difficult to maintain when the
rule set is evolving, As is evident from its precepes and rorrows clauses (page 10), rule
ordering (conflict resolution) in Starburst is hard-coded through relative priorities
specified in the rule definition, and cannot be driven by external meta-policy. NAOS
also employs precepes clauses, while SAMOS uses PRIORITIES BEFORE|AFTER rule_name
for similar effect. Ariel, Postgres, and TriGS require an absolute priority level for
each rule. For instance, in TriGS, the priority information of each rule provides

absolute execution priorities in terms of number (0=highest priofity, 1=medium priofity,

30

Rule-based Approaches

etc.). Static linear prioritization through implicit textual ordering or priority
numbering is not feasible for large rule sets, especially as rule precedence is often
context-specific [Mak88]. JESS [FH2001] associates a salience property with each
rule, proceeding in a manner similar to that employed in TriGS. Rules with the
highest salience are fired first, followed by those with lower salience. Salience values
can be specified using constant integers, variables, or function calls. For rules with
the same salience, a conflict resolution strategy may be written in Java. The Java code
traverses the list of activated rules in the agenda and fires rules in chosen order.
Though provided as a feature, use of salience is discouraged as causing rules to fire

in a certain order is considered bad style in rule-based programming;

In Prolog, conflict resolution is achieved by implicit textual rule ordering in
combination with deft application of the cut command to control backtracking (the
search of alternative solutions). Rules are unlabelled, and, as in active database and
expert system approaches, their semantic form and attributes (e.g author,
specification time, jurisdiction, authot’s current and previous roles, etc.) are

inaccessible, so cannot be used for the selection of rules to regard as void.

SCLPs employ an overrides predicate to specify priorities between labelled rules.
For example, rules may be tagged as medium, high, very_low, Of lowest priotity, or

markers such as anazon and ebay may group them.

In Microsoft Site Server, conflicts are resolved by firing only the first applicable
rule. As in other procedural approaches, this is achieved by nested if.then.else..
control-flow statements organized in textual order. Similarly, switch..case.. control
structures, as available in C and Java, use break statements to prevent other
conditions from being evaluated.

In KAOS, goals are named, and goal priority is mentioned as a means for
resolving conflict between goals (goal weakening or sacrificing) but is not included in

the formal representation.

None of the traditional rule languages or goal-driven approaches natively
formalize the essential primitives of commercial law that pervade e-commerce.

According to the jurisprudential theorist Wesley Newcomb Hohfeld [Hoh78],

31

Chapter 2 - Analysis of Related Work

notions such as duties, privileges, powers, and immunities, are among the
fundamental legal conceptions, and are essential constructs for representing legal

relations between parties in contracts.

The constraint-checking approaches of RETE and TREAT do not emulate legal
reasoning. Constraints are taken as hard, with no facility for selective voidance of
certain constraints under special circumstances, as is typical in judgement formation.
During the assessment of events against legal provisions in legal reasoning, the
relaxation (voidance) of certain constraints may be justified by defined fairness

principles that apply in the case of conflict between constraints.

SQL/99 constraints and assertions are taken as absolute and strictly inviolable,
with no facility for voidance under special circumstances. That is, a rigid system-wide
conflict resolution strategy is imposed, where prohibitions are always taken to
override permissions and obligations. Rejection of updates regiments the
enforcement of prohibitions, and does not allow for the common case in commerce

where prohibitions may be violated at some cost.

Requirement 11 Fundamental legal conceptions — such as duties,
privileges, powers, and immunities [Hoh78] — must be

natively incorporated in the development approach.

Requirement 12 Rule attributes — such as author, specification time and
document or utterance location, scope, and jurisdiction —
should be stored, as should attributes of entities related to

rules — such as author’s roles over time.

Requirement 13 Reasoning techniques should emulate legal reasoning.
Conflict resolution facilities should allow selection of
applicable rules based on recency, specificity, location,

authority, or other criteria [GLC99].

Requirement 14 Context-specific rule precedence must be supported.

32

Rule-based Approaches

2.2.5 Synchronous invocation style

In business, events trigger obligations, permissions, and construals and these
motivate actions; whereas in the ECA rule paradigm events directly trigger actions.
In Prolog, inferencing may be supplemented with procedural side effects: that is,
invocation of operations during clause (goal) evaluation. These synchronous
invocation styles are inappropriate in e-commerce contracts where conditions create
obligations rather than directly invoke actions. An asynchronous ‘Event-Condition-
Obligation’ paradigm would appear to be more appropriate. In e-commerce the
existence of a condition does not imply that all obligations arising from that
condition will necessarily be fulfilled, as is suggested by ECA rules. Rather, it implies
that such obligations exis#; subsequent obligation choice decides which of the prima
facie obligations apply, and action choice decides which, of those that apply, will be
fulfilled. ECA rules and procedural side effects assume that managed agents lack
free will and always act in a certain manner upon occurrence of triggering events.
This assumption is unreasonable in commercial environments where free agents and
unpredictable environmental forces may lead to deviation from prescribed norms
[DDM2001]. ECA rules therefore require an indirection whereby conditions trigger
the creation of obligations. This makes it possible to reason about which of a set of
conflicting obligations to void, violate, or fulfil. ‘According to Clause C.1, SkyHi is
obliged to pay Steelmans’ does not mean that SkyHi is authoritatively obliged to pay
Steelmans, only that some clause says it is obliged. A government-imposed steel
embargo may void the obligation to pay Steelmans, were Steelmans to be domiciled
in a blacklisted country. A set of norms must be followed in choosing which clauses
are nullified and which prevail in the circumstance. It is only once an obligation or
construal has been chosen in accordance with these principles, that the obligation
should be enacted by triggering suitable action, or that the construal should be

accepted as a basis for decision-making,

Requirement 15 The treatment of obligations — whether to void or violate

them in a given case — must be user-definable.

33

Chapter 2 - Analysis of Related Work

A further incompatibility between business contract fulfilment and the
synchronous procedure invocation approach of rule-based systems is that obligations
typically specify deadlines, giving some leeway within which actions must be initiated.
Deadlines provide the flexibility to initiate actions at a more optimal time, rather than
immediately invoking operations the moment a condition occurs (as happens in ECA
triggers) or the moment a clause is evaluated (as happens in logic programs like
Prolog). Immediate invocation may be sub-optimal when the costs of overly-hasty
action exceed the benefits of waiting for a more opportune time. A business-driven
paradigm should therefore differ from the traditional ECA approach in that it is
obligations (and other legal relations) that come about on the occurrence of events,
and actions are asynchronously brought about by components which determine

which obligations still need to be fulfilled, and whether to fulfil them now or later.

Requirement 16 Asynchronous fulfilment of chosen obligations must be

supported as an enforcement style.

2.3 Policy-based Systems

Policy-based systems extend from action-constraining access contro/ architectures, to

action-initiation frameworks for network and systens management.

Access Control Policies

Access control architectures express and implement authorization policies. Here we
sample a few representative implementations.

OASIS [BMBH2000] manages, in a distributed setting, credentials that a principal
must hold in order to enter a role and access a service or resource.

LaSCO [HPL99] is a language for stating and enforcing authorization policies
for Java programs. LaSCO provides a policy compiler that adds policy checks into

Java source code as wrappers on method invocations. LaSCO can express only what

34

Policy-based Systems

events must be present, but not what events must be absent, for the policy to be
applicable. LaSCO cannot state system liveness properties such as obligations. Also,
LaSCO cannot state policies relating to objects that are in more than one distinct

state.

PolicyMaker [BFL96] and its successor, KeyNote [Bla2001], are verifiers which
give yes/no answers to questions of the form ‘is the proposed operation safe to
execute in terms of the defined security policy?’ (written as keyl, key2, key3 REQUEST
actionstring). The benefit of PolicyMaker/KeyNote is that policies (specifically,
security policies) are defined outside of the application code, rather than hard-coded

into applications, and can therefore be altered by responsible users [Bla2001].

The Authorisation Specification Language (ASL) [JSS97] is a logical language
that allows the specification of access control policies, but does not prescribe an

implementation.

The Security Policy Language (SPL) [RZF2001], used for database transaction

control, is designed to express policies about the acceptability of events.

Access control frameworks, like integrity constraints (page 25), are merely validity
checks, rather than action initiators: they support prevention, but not intervention

strategies.

Network and System Management Policies

In the field of network and system management, policy-based systems incorporate
event monitoring and policy triggering mechanisms. In all case, policies are laid atop

a traditional, statically-typed object-oriented framework.

Bell Lab’s Policy Description Language (PDL) [CL2001, CLN2000, LBN99]
expresses event-condition-action rules with action concurrency constraints, but not
access control policies. Extensions to Bell's PDL [CL2001] argue for history-based
policies where epochs of events are maintained. Formal mathematical argumentation
is provided but there is no discussion of the implementation intricacies of storing

and monitoring persistent occurrences in database environments.

35

Chapter 2 - Analysis of Related Work

Koch’s Policy Definition Language (PDL) [Koc97] relies upon the primitive
EDL language (page 18) which can monitor only number buffers, but not abstract

business events.

The IETF’s Policy Core Information Model (PCIM) [MESW2001] provides a
UML class structure for the representation of policy for the management of network
devices. Policies are condition-action rules, where the action is typically a primitive
of SNMP, CMIP, LDAP or other low-level network or system administration

protocols.

Imperial College’s Ponder [DDLS2001, DLSD2001] — perhaps the most
representative of the policy management frameworks and hence the one we review in
most depth here — can express authorization and ‘obligation’ policies as well as some
basic descriptive policies through an associated domain service. Ponder is intended
to improve system flexibility by not hard-coding policies into components. Sloman
[Slo94, Slo95] argues for the need to specify, represent, and manipulate policy
information independent from management components to enable dynamic change
of policies and reuse of components with different policies. A policy service
provides the means for storing policy specifications, determining the objects to which
they apply, performing analysis to detect conflicts, and disseminating policies to
managers for interpretation [Slo95]. Positive and negative authorization policies
allow access control specification. ‘Obligation’ policies support event-triggered
actions. Path-based domain scope expressions specify the sets of objects to which a

policy applies [DDLS2001].
Critique

The implementation-level languages employed for access control and network
management are ill-suited to specification or subsequent interpretation by business
users. Policy-based frameworks are primarily intended for systems administration
tasks, and are not appropriate for business workflow application development for the

following major reasons:

36

Policy-based Systems

2.3.1 Event storage services and retrospective review are

not inbuilt

Many access control logics [JSS97, CL2001] and language implementations
[DDLS2001, HV2001] support dynamic constraints such as separation of duties and
conflict-of-interest (Chinese Wall). Examples are:

(1) A person may not approve a cheque they have issued. [Dam2002, HV2001] or

(2) An author of a paper cannot act as its referee. [CDMR2001]

These policies, which are common in workflow scenarios, require that past events,
states, and execution history be captured [BFA99, HPL99, JSS97, RZF2001]. While
history-based policies are relatively easy to express, they are difficult to enforce

efficiently due to the need to maintain and query a record of past events [RZF2001].

A stream semantics, where events are short-lived and rapidly consumed, is
assumed by the event monitors in policy management frameworks. In contrast,
e-commerce applications require persistent event histories. Notably, a generic event-
and state-history storage service is absent from all access control logics and language
implementations reviewed here, and developers wishing to implement history-based
policies must find a means to maintain and monitor a persistent occurrence record
themselves. In ASL, history-based authorisations, based on accesses previously
executed by a requestor subject, can be specified, though no event storage or
monitoring mechanism is described. Ponder requires, but does not provide, an
event-history monitoring system in order to enforce history-based policies
[Dam2002, p106]. In both Ponder and Tower [HV2001], an object-oriented
information model is assumed. The cheque approval policy (separation of duty
constraint (1) above) is implemented by modelling both the issuerip and approverIp
as attributes of the cheque class. Generic information models and persistent storage

services for events are not provided.

37

Chapter 2 - Analysis of Related Work

2.3.2 Static typing

The policy management frameworks surveyed here are all built atop object-oriented
languages. In object-oriented environments, entity types are determined @ priori by
the analyst who designs a static class hierarchy. In commerce, typing is both a priori
and a posteriori. An entity’s type can be determined from the occurrences in which it
has participated. To support a posteriori typing, information about event and state
history must be available and queryable in an occurrence store. An item’s type is
dynamically determined by ascertaining whether it fits certain criteria, defined before

or after the existence of the item.

Requirement 17 It must be possible to define and store the criteria that an
item must satisfy — the description (query) it must fit — in

order for it to count as being of a certain type.

Object-oriented development environments do not incorporate services to store
event or state information nor are services for storing queries (sets of criteria)
provided. Keeping a persistent log of occurrence information typically requires the
insertion of OQL or SQL code in various methods of interest by the application
programmer to keep track of events and states by explicitly writing them to

persistent store.

Damianou [Dam2002; p40, p42] criticizes approaches such as LaSCO [HPL99]
which only allow policies to be specified for classes in a static object-oriented
hierarchy. Damianou remarks that, in practice, policies are specified for sets of
objects grouped together for reasons other than the (static, object-oriented) class or
type of the objects. ASL [JSS97] similarly provides no means for specifying
authorization rules for groups of objects that are not related by static type hierarchy

[DDLS2001].

38

Policy-based Systems

Requirement 18 We must be able to express policies applying to
intensionally described (rather than merely extensionally
listed) groups of objects. The members of such groups

may change dynamically.

In Ponder, the scope of policies is specified using domain scope expressions
(descriptions), rather than merely pointers to class identifiers. Domains improve
Sflexibility and maintainability by grouping objects for convenience and by shielding
policies from changes in group membership. They offer scalability by allowing single
policies to be uniformly stated for millions of objects in large systems, rather than
requiring separate policies to be stated for each individual object, which would

introduce consistency problems during policy update [Dam2002].

Ponder’s deployment model [MSY95, DLSD2001] resolves domain scope
expressions in order to determine all objects to which a policy applies. Policies are
then pushed to all applicable objects. The Ponder service does not provide ‘pull’
facilities to allow objects to determine which domain scope expressions (and

therefore policies) cover them.

Requirement 19 Policy environments require a coverage detection service
and interface that would allow objects to determine which
of a changing set of descriptions they, or other objects,

fall under.

2.3.3 Analysis phase of system development is under-
supported

A variety of authors have suggested that policies exist at various levels.

Masullo and Calo proceed down from societal policies, to organizational policies
(including contractual agreements and quality programmes), functional policies, and

process and procedural policies [MC92]. Goh [Goh97] describes a vague progression

39

Chapter 2 - Analysis of Related Work

from high-level objectives to low-level implementables. Michael, Ong, and Rowe
[MOR2001] see a distinction between meta-policy (policy about policy), goal-oriented
policy (which specifies an outcome but no action), and operational policy (which
defines actions but not goals). Wies’s levels [Wies95] descend from corporate (high-
level) policy, to task-oriented, functional, and then low-level policies. Wies provides a
policy template to store state and free-text information about policies, such as their
author, creation date, goal or activity, status, life-time, and functional area. Koch

[Koc97] mentions that there is a transformation from:

® natural language requirements-level policies, stored as text glosses with no

semantic structure, to

® semi-structured goal-level policies, which are given a name, ancestor, descendant,
subject, target, modality, action, constraint, event, no-success (exception / failure)

clause, and status, and finally to
® formal, executable, operational-level policies.

Moffett and Sloman [MS94] do not advocate specific policy levels, but suggest there
is a fuzzy progression from human-interpretable high-level policies written in natural
language, to machine-readable low-level imperatival and authority policies. They
illustrate how goals may be refined into sub-goals and how the relationship between
sub-goal completion and goal completion can be represented in Prolog. Finally,
Damianou [Dam2002] accepts three levels of policy specification for network and
system management: high-level abstract policies (goals, service level agreements, and
natural language statements), specification-level policies (network-level or business-
level policies written in policy specification languages, rule-based specifications, and
formal logic), and low-level environment and operating-system specific policies or
configurations. Refinement from high-level policies into specification- or low-level
policies is outside the scope of Damianou’s work. Instead, he provides mechanisms
for generating low-level LDAP entries, Java classes and policy files, and Linux and

Windows access control specifications, from specification-level authorization and

40

Policy-based Systems

obligation policies (written in the Ponder policy language). The generated output is

deployed to network components.

Access control policies and system and network management policies are
specified by system administrators. In contrast, policies in e-commerce are typically
specified by business analysts. Policy management architectures are targeted at low-
level network and system management applications as opposed to representing and
enforcing e-commerce contracts and business policies. The transition from policies

stated in natural language to statements that can be enforced by a machine is difficult.

Translation of a limited class of policy statements — access control expressions —
written in Controlled English [Pul96] into OASIS Role Definition Language has been
prototyped [Llo2000, BLM2001]. Michael, Ong, and Rowe [MOR2001] emphasize
that being able to quickly translate a natural language specification of security policy
into a formal logic would be useful as policy bases can be large, policy changes
frequently, and the relationships between policies may be complex. Ideally, they
argue, policy would be stored in a computational form in a centralized, searchable,
and updateable repository. The authors describe their natural-language-input-
processing tool: this is merely a part-of-speech tagger which maps natural language
sentences expressing security policies to an object-oriented schema and allows
queries against the schema. No mechanised interpretation and enforcement of the

output is described.

Requirement 20 Though it is perhaps not fully machine-automatable, the

progression from English specifications to machine

interpretable policies should be further systematized.

2.3.4 Absence of a commercial notion of obligation

The ‘obligation’ policies mentioned in policy management environments use a non-
commercial notion of obligation: personal (collective) obligations are not supported,

onght-to-be policies are not expressible or checkable, components are not asynchrononsly

41

Chapter 2 - Analysis of Related Work

invoked or monitored as they are assumed to lack freedom of choice, individnal obligations

are not identifiable, and obligations are not distinguished from powers.

Personal obligations only
In high-level business policy, impersonal, co/lective obligations are common, as in:
Customers must be notified (by some employee) of outstanding balances.

Here, no specific actor is specified but it is clear that the obligation can be
tulfilled through appropriate notifications to customers. In Ponder, the use of ‘some
X’ as the subject of an obligation policy is not supported as the deployment
mechanism is push-based and it is unclear which object of type X to push a ‘some X’
policy to. In Ponder’s low-level policy specifications, each policy expresses an activity
invocation (personal obligation) on an object. It is important that impersonal
obligations be formally expressible since companies frequently rely upon the initiative

of independent agents to meet these requirements.

Requirement 21 Impersonal (collective) obligations must be expressible

and checkable.

Low-level ought-to-do obligations only

Ponder is targeted at specifying low-level policies only and is unable to represent
high-level goals: actions (method invocations) can be obliged, but not states of
affairs. As Cole et al. point out [CDMR2001], this is unsuitable for instances where
the states of affairs to be obtained or avoided are known, but the actions which
would bring about such states of affairs are unclear. Deontic logicians have often
emphasised the need to support both ought-to-do (in German, ‘fun soller’) and ought-to-be
(‘sein soller’) obligations [Kro97]. High-level policy specification languages must
therefore be able to express obligations which speak of either actions or states-of-

affairs.

42

Policy-based Systems

Requirement 22 It must be possible to express and monitor both obliged

actions and obliged states of affairs.

Synchronous invocation (no freedom of choice) only

Obligation policies implement traditional, synchronous rules which model real world
obligations poorly (page 33). Critically, the assumption that subjects are well behaved
and lack freedom of choice has led policy management architectures to neglect
fulfilment monitoring, So-called ‘obligation monitoring’ in Ponder entails a form of
obligation applicability monitoring, rather than obligation fulfilment monitoring;
procedural scripts are invoked when applicable policies fire, with Ponder throwing
exceptions upon failure and Koch’s PDL invoking a nosuccess clause. Lee uses an or-
else connective [Lee80, p142] to model reneging (defaulting). These exception-
handling approaches make it onerous to subsequently and dynamically add (possibly
conflicting) clauses which define what circumstances bring about fulfilment and
violation, as is common in commercial legal reasoning. For instance, the introduction
of the de minimis rule in English law provides that a marginal discrepancy in
performance against that contracted does not amount to violation of the
corresponding obligation [TB99, p144]. Approaches based on exception throwing,
invocation of a nosuccess clause, or introduction of an or-else connective, impose a
substantial maintenance burden when broad-reaching legal provisions redefine what
is meant by ‘fulfilment’ and ‘violation’. Procedural enforcement approaches force an
arduous search-and-inject process where applicable exception code would need to be

located and modified in all relevant places.

Requirement 23 The implementation must allow introduction of broad
reaching provisions (e.g. defining ‘fulfilment’ and
‘violation’) by a single insertion anywhere in the

specification.

43

Chapter 2 - Analysis of Related Work

General obligation policies only (no identified obligation instances)

Perhaps the most problematic aspect of Ponder’s representation of obligations,
however, is the granularity of treatment: Ponder identifies general obligation policies,
but not individual obligations. For example, the obligation (policy) of nurses to
monitor, is not separable into the individual obligation of Sister Mary to monitor
Dirk, or the obligation of Sister Agnes to monitor Rachel. As no handle is available
to these individual obligations, the case-specific obligation instances of general
obligation policies cannot be voided without voiding the entire set of obligations.
Ponder supplies only a course-grained disable() method for general obligation
policies, not specific obligation instances, and also maintains no audit trail of which

policies were disabled or fulfilled and under what circumstances.

Requirement 24 We must be able to refer to individual obligations of each
party, and trace each obligation to the general
prescriptions, and events, that brought it about, or that

terminated it.

No distinction between obligation and power

The SPL security policy language [RZF2001] claims to implement a restricted type of

‘obligation’, expressed informally using sentences of the form:

(To make Action_T successful)* o .
o) Principal_T cannot (successfully) do Action_T
Principal_O must do Action_O o .)
L) if Principal_O will not do Action_O
if Principal_T has done Action_T

Enforcement is through an access control service and security monitor. The security
monitor allows a commit on a database transaction containing event action_t only if
the execution history contains action_o. SPL’s notion of ‘obligation’ is therefore
more accurately a form of history-based permission ot pre-condition. SPL ‘obligations’ are
constraints enforced by security monitors, and not obligations for agents to execute

specific actions on the occurrence of events [Dam2002, p38]. Though [RZF2001]

Clauses in brackets have been added to clarify the intention of [RZF2001].

44

Policy-based Systems

does not recognize this, SPL policies are more closely related to the concept of legal
power [JS96] than to the concept of legal obligation. However, their approach to
implementing ‘powers’ does not provide that a persistent, queryable record of
attempted (not-yet-committed or already-rolled-back) action be kept; retrospectively
determining which actions did not ‘commit’ is therefore not possible as this
information is discarded. Further, it fails to distinguish between the originating event
(e.g. a physical return) and the consequential legal event (e.g. a return in terms of
Clause C.3) that it brings about. This is troublesome as it makes it impossible to
express conflicting opinions, such as the case where one clause sees the existence of
a legal return originating from the physical return, whereas another denies the
existence of a valid return. Furthermore, failure to distinguish between the
originating physical events and consequential legal events means that denying the
existence of the legal event necessarily denies the existence of the physical event.
This has the undesirable effect of obliterating actual physical history. Consider that,
in a legal scenario, attempted ‘returns’ should not be omitted from the record merely
because they never qualified as ‘returns in terms of Clause C.3’. This omission

happens in SPL’s implementation device.

Requirement 25 Physical occurrences must be distinguished from legal

occurrences. Both must be recorded.

2.3.5 Configurable conflict resolution is not provided

In Ponder, meta-policies control access to other policies in the database, thereby
providing some measure of conflict avoidance. However, the conflict resolution
facilities supported are limited. A fixed, domain-nesting-based precedence is used to
resolve conflicts, effectively meaning that specificity-based precedence is used.
Negative authorization policy (prohibitions) are taken to always override positive
policies (permissions and obligations) [MSY95]. This is a limiting assumption given
that in many cases the reverse may be true: in many practical scenarios, a prohibition

may be violated in order to fulfil an obligation. In commerce, the decision as to

45

Chapter 2 - Analysis of Related Work

which policy prevails is context-dependent and must be made dynamically, based on
criteria such as recency, specificity, location, authority, leniency, or cost/benefit
evaluation. Since Ponder captures information such as policy author in opaque C-
language-style comments [MSY95], rather than in interrogable attributes, conflict
resolution cannot be automatically performed since important information about the

policy is not semantically accessible.

In ASL [JSS97], integrity rules may be used for conflict avoidance, to prevent
contradictory access control policies from being specified, by raising an error.
Resolution rules specify whether, in the case of conflicts, permissions or denials take
precedence for a given set of subjects and objects and a given type of access
operation. Conflict resolution is therefore more fine-grained than applying a single
system-wide precedence policy as is used in Ponder [DDLS2001]. As in many other
approaches [HPL99, UM96], rules in ASL are not labelled, so cannot be referred to
by identifier or name. Because ASL assumes that all rules are stated by the System
Security Officer, the identities of the utterers of rules are not recorded. The model
needs to be extended to reason about conflicts between rules stated by different
groups of system administrators, or to reason about conflicts between user-defined
rules and supervisor-defined rules. Such conflicts are common in distributed settings

where management is semi-autonomous.

Many frameworks [UM96, RZF2001] do not provide any control over the policy-
life cycle, as creation of a policy necessarily involves their activation, and de-
activation (voidance) cannot be achieved without deletion. Conflict resolution
through control of the policy life cycle is therefore not feasible. As in many general
rule-based approaches, priority of access control rules in SLAPD [UM96] is hard-
coded in the ordering of the rules: conflict resolution is achieved by applying the first
matching rule and ignoring remaining rules. Rule selection policies for advanced

configurable conflict resolution cannot be explicitly specified.

In the IETF’s Policy Core Information Model, priority is indicated with a non-

negative integer. It is assumed that policy is centrally and consistently specified, and

46

Business Process Modelling & Animation

the policy originator cannot be recorded, so multiple clients cannot state different

policies for a device.

2.4 Business Process Modelling & Animation

Animation of business process models during e-commerce application development
is the task of workflow management systems. With executable specification technologies, the

intention is to yield a declarative, machine-interpretable business logic.

Workflow Management Systems (WFMSs)

Workflow management systems (WEMSs) are targeted at process modelling.
Constructs generally follow those provided by the Process Specification Language
(PSL) [SGTV2000] and the Workflow Management Coalition’s (WfMC)
Workflow Process Definition Language (WPDL) and reference model
[WEMC95]. Workflow specification is based on process synchronization, with
activities linked via transitions using and/or, -split, -join, and iteration primitives
[GR2000, vdA96]. The WIMC reference model is adopted by the OMG’s Workflow
Management Facility [Sch99]. In ADEPT [JFN2000], the business process
definition language uses comparable primitives: sequence, can-be-parallel, must-be-
parallel, and loop (iteration). TriGSFlow [KRR98] provides sequencing,
branching, and joining primitives using the logical operators anp, 1ncrusive-or, and

EXCLUSIVE-OR tO Create composite event expressions.

The Orchestra Process Support Service (OPSS) [CDNF2001] uses the event
composition operators sequence, or, and, and not drawn from the composite event
detection language Snoop (page 15). The REWORK workflow system architecture
incorporates the Eve distributed composite event detector (page 14). Composite
events in Eve are specified using the operators seouence (event of type E1 followed
by event of type E2), concurrency (events of both types occur at virtually the same
time point), RepETITION (77 occurrences of E1), rreratron (all events of type El until

an event of type E2), prssuncrron (first event of any of the mentioned types),

47

Chapter 2 - Analysis of Related Work

EXCLUSIVE-DIsJUNCTION (one event of any of the mentioned types in interval),
conguncrIon (events of both types), or necarion (no event of type El within an
interval). Absolute, relative, and periodic time events can also be defined.
Composite event expressions may be tagged with the atoms :same-workflow and
:same-broker to require that the events occur in the same workflow or have the same
broker as their origin, but general parameter bindings between events in a composite
expression are not supported so it would not be possible, for instance, to require that

all matched events pertain to the same user or object.

Several workflow management systems, such as SAP R/3, ARIS, and
BaanERP, base their process modelling languages on Petri Nets [GR2000,
SvdAA99]. Petri Nets are event-based formal graphs for modelling concurrent
processes and systems [Sow2000]. Tokens, which carry with them associated data,
are passed around the net. Tokens rest at ‘places’ which represent states. Transitions,
which are connected to places via directed arcs, fire when all their input places have a
token and guard conditions are met, thereby implementing synchronization. Firing
causes tokens to be removed from input places and relocated to output places. van
der Aalst et al. [vdAvHH94] propose that timed, coloured, hierarchical Petri Nets
may be employed for the executable specification of sequences of states in
workflows. Each token represents a job or resource, and the current place of the
token captures the current state of the job or resource. Time is associated with
transitions and each token has a timestamp that models the time the token becomes
available for consumption. Each job has an identifier, a description, and a due date;
hence, the tokens are called ‘typed’ or ‘coloured’. Subsystems are modelled through

hierarchical nesting of Petri Nets within others.

48

Business Process Modelling & Animation

Executable Specification

Moving to higher-level and more natural mechanisms for specifying e-commerce
systems is a desirable end-goal. Specifications should preferably be executable
[Fuc92]. Attempto Controlled English (ACE) [FSS98, FSS99] is a controlled
natural language (a subset of English) suitable for specification. ACE is computer
processable and can be translated into a logic specification language which can be
input into a theorem prover, and can be queried. Ambiguity is resolved through the

useful mechanism of paraphrasing and user-confirmation.
Critique

Workflow and executable specification techniques for business process animation

suffer the following drawbacks:

2.4.1 Process models show task dependencies, not legal

relations

In conventional workflow implementations, the notion of business contracts is
overlooked. Workflow systems encode a process specification, and concentrate on
specifying task dependencies — ordering constraints — rather than interpreting a
contract. No attention is paid to legal constraints such as rights and powers of
parties. As a queryable occurrence history is not maintained, it is not possible to

assess the legal implications of actions in the light of historical circumstances.

The ACE specification language does not allow the use of modal operators such
as ‘can’, ‘must’, or ‘may’, which are typically used for the specification of permissions
and obligations. The absence of notions such as creation, satisfaction, and violation
of commitments means that the logical form employed by ACE does not model the

legal primitives prevalent in electronic commerce specifications.

Requirement 26 Provisions (legal relations), should be explicitly stored, not

implicitly encoded in process models.

49

Chapter 2 - Analysis of Related Work

Lee et al. [LD92, Lee98, BLWWO95] propose to execute trade procedures by
extending Petri Nets with deontic (legal) states of affairs brought about at each place.
Their approach is targeted at modelling document and communication flows and
their legal effects, rather than executing contracts. Furthermore, the approach
continues to suffer from the drawback that Petri Nets are stateless by default,
maintaining no queryable occurrence history; this makes it impossible to assess legal

implications of past actions retrospectively.

2.4.2 Rigid communication and obligation creation

protocols

Negotiation protocols set up agreements following a sequence of capability
advertisements, offers (proposals), counter-offers, rejections, and acceptances. They
are regularly discussed in the agent communication languages used in the business
process management literature — e.g. in the ADEPT framework (page 47), and in
[FK2001]. ADEPT provides that a message ‘1 propose .. necessarily brings about a
valid offer, and ‘r accept .. necessarily brings about a commitment, irrespective of

circumstances and background law.

In contrast, Jones’s contention [Jon2002], also embraced by Kimbrough and Tan
[K'T2000], is that the force of an utterance is not innate, but rather derived from socia/
conventions and background law applied by the interpreter. ‘1 propose ...” and ‘I commit ...
then bring about an offer or commitment (prima facie, according to a particular law)
not merely when the utterance is made alone, but also when the ‘fidelity conditions’
[Aus76, SV85, Cru2000, Tho98] mentioned by the laws that define valid offers and
commitments are satisfied. The laws to be applied to determine the illocutionary
force are chosen by the znterpreter, so the force is not hard-wired by the speaker alone

as is usually assumed in traditional agent communication languages and protocols.

Requirement 27 Existence of obligations must be derived from
interpretation of law, rather than from a closed set of

communicative acts or a rigidly defined protocol.

50

Business Process Modelling & Animation

ADEPT’ negotiation protocol relies on the assumption that an agent is never
obliged to accept a request from a peer. While this assumption is consistent with a
theory of free-willed agents and is often useful, it hard-wires the governing legal
framework, and ignores the possibility of option agreements, umbrella contracts,
standard terms and conditions, or relationship governance letters. These are
common in industry, and are used for specifying the conditions upon which future
contracts are formed: they are therefore sometimes termed ‘governing contracts’ in
legal patlance. Governing contracts simultaneously confer powers to parties and
impose legal liabilities upon counter-parties. For instance, an option or conditional
contract [TB99, p12] may give a party the power to buy a certain amount of steel at a
future date. In this instance, the option holder can exercise their option (legal power)
and create an obligation on the supplier merely by making a request — there is no
requirement that the request be accepted in order to create a valid contract. The
obligation to deliver the steel comes into effect upon the occurrence of the event of
requesting, irrespective of whether the option-bound supplier accepts or not. In
ADEPT, the architecture has ingrained within it the assumptions of a single rigid

system of law.

Requirement 28 The model should provide fundamental legal conceptions,
rather than hard-code the constraints of a particular

system of law.

2.4.3 State history is not accessible

van der Aalst [vdA90] argues that a state-based approach complements event-based
techniques as we need to refer to states such as ‘enabled’ and ‘executing’. States
make it easier to handle job transfers and rerouting as tokens can simply be moved to
the relevant place on a compatible procedure in another WEMS. Other authors
[CDDF98, CDNF2001] agree that event-based information must be supplemented

with state information, since event-based synchronization works only when the

51

Chapter 2 - Analysis of Related Work

components that need to synchronize are active and ready to receive synchronization

events.

OPSS (page 47) makes use of a State Server. The State Server provides
information on the current state of process entities; it maintains the current state by
subscribing to events of interest. Historic state is not stored, and only a predefined
list of processing entity states is provided: these include available, NotAvailable,

Defined, Assigning, OnGoing, Suspended, Terminated, and Aborted.

ADEPT (page 47) employs the trivalent condition values true, false, and unknown
to denote that a task has been successfully completed, has failed, or either has not
started or is in the process of being executed. Non-commencement and in-progress
states are indistinguishable in ADEPT as they are both indicated using unknown. Only

the current state is accessible, and past states are not recorded.

Attempto Controlled English (page 49) addresses specification-time natural
language understanding technologies and provides no persistence services. It
provides neither implementation-level services for event and state recording and

monitoring, nor persistent storage of specifications or run-time data.

2.5 Implementations of ‘Contracts’

Much recent work in procedural environments claims to employ the notion of a

‘contract’.
Critique

The term ‘contract’ is typically used metaphorically; the conditional obligations,
permissions, and powers that define legal relations between parties and characterize
business contracts [Hoh78] are seldom captured. Following are some of the

restricted perspectives of the notion of a ‘contract’ employed in the literature:

52

Implementations of ‘Contracts’

2.5.1 Object-oriented constraints perspective

In the object-oriented programming community, Meyer [Mey97, Mey99] has
advocated Design by Contract. By Meyer’s own admission [Mey97, p127] the word
contract is used analogically. Meyer’s ‘contracts’, implemented in Eiffel, define the
‘rights” and ‘obligations’ of method routines in classes through pre-conditions
(require clauses) and post-conditions (ensure clauses). Class invariants (invariant
clauses) specify object consistency properties. The intention of each of these
Boolean assertions is that a ‘suppliet’ class be able to guarantee to its ‘customers’ “if
you promise to call a method routine with its pre-condition satisfied, then I, in

return, promise to deliver a final state in which the method post-condition and class

invariants are satisfied”.

Beugnard and co-authors [BJPW99] provide a general taxonomy of the types of

‘contracts’ employed in object-oriented software development:

® Basic Contracts: are non-negotiable interfaces defined in an interface
definition language such as CORBA IDL. These contracts specify operations
a component can perform, as well as input and output parameters, and

possible exceptions raised.

® Behavioural Contracts: are non-negotiable method pre-conditions, post-
conditions, and class invariants (Boolean assertions) as available in OCL,
Eiffel, iContract, and KAOS (page 25). Though not mentioned in [BJPW99],
Holland [Hol92] combines interface definitions (Basic contracts) for multiple
classes with multi-class invariants (Behavioural contracts), to form ‘contracts’
used as a module interconnection language. Holland’s contracts have the
form:

contract [contractName]
[className] supports
{attribute signatures}

{method signatures}

invariants

53

Chapter 2 - Analysis of Related Work

end contract
Holland’s goal is to ensure reusability of relationships and interconnections
between classes by ensuring individual classes comply with their contracts

(interface definition and invariants) as the system evolves.

® Synchronization Contracts: are non-negotiable synchronization policies,
expressed through mutexes (semaphores) and Java’s synchronized keyword

which prevents concurrent invocation of a block or method.

® Quality of Service (QoS) Contracts: are negotiable parameters such as
maximum response delay on method invocation, average response, result
precision, or data stream throughput rates. These are implemented through

QoS extensions to component frameworks such as CORBA.

Beugnard et al. define contract management as incorporating contract definition,
subscription, application, termination, and deletion. Application involves runtime
monitoring. Contract violations are handled through raising an exception, waiting or
retrying until a precondition is satisfied, or simply ignoring the violation. For Basic,
Behavioural, and Synchronization contracts, definition and subscription are
indistinguishable as they occur at the build-time of the component. Similarly,
termination and deletion are inseparable and occur when components are unloaded.
In QoS contracts, defined contracts can be tailored to dynamic operating conditions
as clients can select a conformant service that has advertised properties within the
required threshold, and can ‘subscribe’ by setting service parameters. It is suggested
that acquiring the ability to alter contracts in response to changing needs is strong
motivation for defining QoS contracts as objects. Beugnard et al’s discussion
illustrates the many manifestations of contracts in object-oriented platforms. The
mapping of these diverse technical implementation constructs to business contracts
is obscure, and translation from the former to the latter consequently unsystematic.
‘Contracts’ are haphazardly distributed across various implementation devices, with

no consistent mechanism of finding, checking, and altering them.

54

Implementations of ‘Contracts’

2.5.2 Task allocation or process co-ordination perspective

In Smith’s ContractNet protocol [Smi80], high-level task descriptions are advertised
(announced) to distributed nodes in a processing ‘net’, contractors bid for subtasks,
and managers award contracts to winning bidders. The protocol, which Smith says
‘resembles contract negotiation’, is used for task allocation. Weigand and Xu
[WX2001] comment that the protocol is useful in the context of distributed problem
solving, but too naive for situations where agents are involved in real business. The
protocol is intended for problems that lend themselves to decomposition into a set
of relatively independent subtasks with little need for synchronization. ContractNet
is therefore inappropriate for business workflows, where task dependencies are

common.

Contractual Agent Societies [Del2000, DK99] is an approach that extends the
ContractNet protocol with electronic social institutions such as commitment
monitors, notaries, reputation servers, and socialization services. These are expected
to promote robust, stable, and efficient systemic behaviour. The goal is to evaluate
the effect of these social institutions on average task completion times in a

ContractNet-style allocation of tasks.

Minsky and Ungureanu propose a concept of Law-Governed Interaction
(LGI) for agent communities [MU2000]. Agents that need to be co-ordinated with
other agents choose to join a ‘law’ held by a controller component. The law
mandates the effects of events such as message sending, arrival, and exceptions, but
is not sensitive to the internal behaviour of agents, or to changes in their internal
state. The law is intended solely as a shared record of the coordination protocol between
agents, with ‘obligations’ implemented as named timers which cause the controller to
revoke resources when a given number of seconds expires, unless repeal () has been

invoked on the timer in the interim.

55

Chapter 2 - Analysis of Related Work

2.5.3 Service advertisement and invocation perspective

Contract-driven inter-enterprise workflow architectures such as COSMOS
[MGTM98, Mer98], CrossFlow [KGV99], and E-ADOME [KCK2001] focus on
service advertisement and invocation for pre-existing workflows, but attend neither
to the problems of assessing legal consequences of actions against contracts and
legislation, nor to ascertaining consistency between contractual terms and business
policies. The COSMOS workflow engine invokes functions in accordance with
temporal constraints extracted from contracts and assumes conflict-free
specifications, failing to recognize that clauses may mandate conflicting occurrences
and choice of applicable clauses in the circumstance may be necessary. COSMOS
has been criticized for ignoring the possibility of deviation from expected behaviour
and inability to reason about legal powers or consequences of violation, such as
secondary obligations coming into force [DDM2001]. CrossFlow and E-ADOME
use contracts for inter-organizational workflow process integration. Contracts
describe the agreed workflow interfaces as activities and transitions, based on the
WEMC’s WPDL (page 47). Contracts also specify what data objects in the remote

workflow are readable or updateable.

Milosevic et al’s Business Contract Architecture (BCA) [MBBR95, Mil95]
assumes that contracts are provided a priori; introduction of terms subsequent to
initial contract input is not supported and the architecture is therefore unable to cater
for dynamically changing business and regulatory environments. Contract validation
is a once-off process at contract-input time, relying upon hard-coded checks
embedded in the contract validator component. For instance, the BCA uses
compiled locale-specific code to check for the existence of consideration in the
contract; this makes the BCA inappropriate for systems of law that do not insist
upon the exchange of consideration for the valid formation of contracts. For
instance, in British law, deeds do not require the exchange of consideration’. In the

BCA, invalidation of the contract or change to validation rules subsequent to initial

5 Deeds are contracts that are explicitly expressed to be deeds, and are executed in a prescribed way:
signed, sealed, and delivered [TB99; p7, p51].

56

Implementations of ‘Contracts’

contract formation is not possible. The BCA does not provide generic occurrence
monitoring facilities, expecting each application developer to develop bespoke
monitoring code to detect and signal non-performance to the contract monitor.
Contract enforcement in the BCA is limited to either (a) signalling violation or (b)
preventing the non-performing party from entering further contracts; the former is
too weak and the latter too heavy-handed and the approaches are therefore rarely
used in practice. The common business practice, which is not supported by the
BCA, is to ascertain what legal relation between parties comes about in terms of the

contract as a result of the violation.

SeCo [GSSS2000] stores contracts in signed XML containers. It bases its
architecture on the BCA, and suffers similar drawbacks. SeCo’s monitoring service
monitors and logs only negotiation-phase events, not settlement-phase events.
Negotiation-phase events are logged to the XML container, which stores the parties,
product descriptions, and payment and delivery conditions for the contract. SeCo
does not implement an enforcement service, nor interoperation with payment and
logistic services. In order to attain those goals SeCo would need to encode product

description and payment delivery condition semantics more formally.

Hewlett Packard Laboratories [MSM2001] present work-in-progress towards a
high-level architecture for regulating electronic marketplaces using contracts,
proposing a contract repository, validator, monitor, and evidence store, which is
similar in structure to the BCA. The conceptual model remains to be implemented,

with the authors planning to embody contracts in XML.

Milosevic’s BCA and derivative approaches are inspired by the International
Standards Organization’s Reference Model on Open Distributed Processing
(RM-ODP) [ISO95] which establishes requirements for new specification
techniques. The RM-ODP emphasises the importance of contracts, obligations,
permissions, and prohibitions, but, like the BCA, does not provide guidance as to the
explicit representation of these entities. The RM-ODP does not incorporate
concepts of business contract validation, monitoring, and enforcement [Mil95, p177].

The temporal nature of obligations is also not treated [CDMR2001]: policies that are

57

Chapter 2 - Analysis of Related Work

conditional upon certain events are not dealt with, though absolute time intervals can
be used to specify policy applicability. The RM-ODP deliberately provides a cursory,

high-level view of concepts related to contracts.

To fill the need for an appropriate, concrete notation for more rigorous
specification of policies in ODP enterprise specifications, Steen and Derrick
[SD2000] construct a UML model and a specification language for the RM-ODP
Enterprise Viewpoint concepts. Their policy language is a combination of
structured English and simple predicate logic, which they translate into the formal
object-oriented specification language, Object-Z. Though the authors argue that the
purpose of policy is to both ‘constrain the bebaviour and membership of communities’
[SD2000, emphasis added], they limit their focus to behavioural constraints only.
Membership constraints are not dealt with: policy statements in their notation are
glued directly to static object-oriented classes, rather than to described sets of
objects. A procedural, object-oriented mapping for behavioural constraints is used:
permissions, prohibitions, and obligations map to pre-conditions on method
invocations. Only a partial implementation of obligations is provided, as the
obligations do not explicitly specify the events upon which the actions must be
executed [Dam2002, p46]. Policies are labelled for discussion purposes, but neither
policies nor the obligation instances derived from them have identifiers in the
eventual formal specification. There is no way to obtain a handle to a particular
obligation of a particular object, nor to determine its provenance and originating
occurrence. It is not possible to define what is meant by ‘violation’ as would be
required in different systems of law. For example, returning a book 1 minute after
the deadline probably does not count as violation according to the de minimis rule of
English law [TB99, p144], but may count as violation under other systems or
provisions of law. It is not described how particular obligations may be voided, say,
in the exceptional case where the Chief Librarian waives the obligations of
borrowers whose books were destroyed in an accidental residential fire. Powers
[JS96] and immunities [Hoh78] are not dealt with. The semantics for permission
does not capture legal subtleties from the jurisprudential literature, such as the

distinction between vested liberties — where others are forbidden from interfering

58

Implementations of ‘Contracts’

with the permitted action [Lin77] — and privileges — where indulging in the permitted
action does not bring about violations [And58]. Detection and resolution of
conflicts is not explored in any depth [SD2000, CDMR2001]. In terms of conflict
resolution, permissions are viewed as combining conjunctively. Temporal override is
hard-wired: it is assumed that subsequent permissions restrict the scope of earlier
permissions. This conjunctive combination of permissions is a consequence of
encoding permissions (and prohibitions) as pre-conditions of methods, and using
object-oriented inheritance to cascade pre-conditions through sub-classes. The
ultimate aim of the work is to develop a prototype tool for the specification and
analysis (rather than execution and monitoring) of open distributed systems
according to the ODP viewpoint. The authors speculate that once the specification
can be stored electronically, model-checking techniques could be employed to verify
if some actual enterprise conforms to a policy specification. Mapping high-level

policies to implementations is left for future work.

The XMIL-based Trading Partner Agreement Markup Language (tpaML)
from IBM Research [DDKI2001] uses ‘trading partner agreement’ as synonymous
with ‘contract’. tpaML is now pursued under the OASIS Collaboration Protocol
Profile (CPP) and Agreement (CPA) specifications [OAS2002]. tpaML and
CPP/CPA capture the technology specific interoperation parameters agreed by
parties. These include message formats (e.g. OBI), encryption techniques (e.g. SSL),
and communication protocols (e.g. HTTP). There is no notion of the rights and
duties of the parties, nor provision for fulfilment monitoring. Furthermore, the
framework does not provide for the management of the potentially conflicting policy

sources that may govern a single business entity.

The goal of the OASIS Provisioning Technical Committee [OAS2001] is to
propose standards for service provisioning. Their notion of a ‘provision’ is in the
sense of ‘providing resources’; the intention is to facilitate resource allocation by
setting up, amending, and revoking system access rights (cf. .Access Control Policies, page
34) to electronic services. This can be contrasted to the normative, contractual sense

of ‘provision’, which specifies desirable and undesirable situations in terms of

59

Chapter 2 - Analysis of Related Work

conventions for interpreting various happenings, and attitudes towards the
conventionally described occurrences. By dividing the problem into specifying inter-
operation between separate provisioning systems, and specifying inter-operation
between a provisioning system and its managed resources, they do not focus on the
introspection required within any given provision management system to manage

conflict situations.

Service Level Agreements (SLAs) are a form of contract. Terms of service for
an existing workflow application are advertised, client agents locate suitable services
and negotiate service parameters within certain bounds, and SLAs encode the
agreement. The ADEPT agent-based business process management architecture
(page 47) uses the SLA approach. In ADEPT, a fixed, standard template for SLAs is
provided, which can be populated with parameters for each agreed service. For each
client, the service name, number of allowed service invocations, cost per invocation,
permissible invocation interval, and penalty incurred by the server for any violations,
can be set. Costs and penalties are specified simply as integers in undefined units
(e.g. 30). Complex pricing and exchange schemes, and penalties graded according to

the nature, severity, and circumstances of violation, cannot be specified.

In spite of the presence of similar legal conceptions across contracts, internal
policies, and external regulations, the contract-driven service advertisement and
provisioning architectures surveyed here encode standard, parameterizable contracts
as data, but leave policies and regulations buried in procedural code or workflow
scripts. This makes it impossible to check the consistency of inter-organizational
provisions (contracts) against intra- and extra-organizational provisions (policies and

laws).

Requirement 29 Provisions, whether emanating from contracts, policies, or
laws (inter-, intra-, or extra-organizational provisions),
should be uniformly represented, to facilitate consistency

checking.

60

Implementations of ‘Contracts’

2.5.4 Project management perspective

Dowson [Dow87] presents a project support environment, ISTAR, a language-
independent software development project support environment. In ISTAR,
contracts are used for project management of the software development process.
That is, contracts are used for co-ordination of the developers and development

process, rather than for executable specification of the software system itself.

2.5.5 ‘If-then’ rule perspective

Grosof and co-authors [GLC99, RGW2002] specify contracts using declarative if-
then conditionals but do not explicitly specify the legal relations of parties. Their
ContractBot system employs parameterizable agreement templates (‘proto-
contracts’) and constraint rules to automate auction-based negotiation. Proto-
contracts are populated with the auction results, which provide values for buyer,
seller, price, quantity, and other attributes. The instantiated contracts can then be

executed as SCLPs (page 20).

2.5.6 Financial-domain-specific perspective

Peyton Jones et al. [PES2000] use the functional language, Haskell, to represent a
small class of contracts: financial option contracts where performance is by cash
flows only. No representation of obligations is provided, and the representation is

used only for option description and valuation, and not for contract execution.

In contrast, Lee’s formal CANDID calculus concerns itself not with valuation
of a small class of financial contracts, but with the formal description of a variety of
such contracts [Lee80; p120, p184]. CANDID describes leases, call and put options,
insurance, debt instruments (registered and coupon bonds, and secured loans), equity
instruments (common and preferred stock), and convertibles. Lee envisions
extending CANDID to the representation of more general contracts, such as
construction contracts and product warranties [Lee80, p2]. Automated monitoring

of contracts, completeness and consistency checking, and impact analysis of changes

61

Chapter 2 - Analysis of Related Work

are the desired eventual applications of the calculus, though the emphasis of
CANDID was primarily on modelling rather than on computational aspects [Lee80;

pv, p190]

2.5.7 Legal perspective needed

Huhns and Singh [HS98] remark that a system that supports Hohfeld’s conceptions
(op cit, page 31) could represent contracts and would be useful for defining and
testing the compliance of agent interactions to norms. The discussion above
demonstrates that many software implementations that claim to use ‘contracts’ use
the term in a sense quite unlike its business connotation, failing to explicitly or
generally capture rights, duties, and legal consequences of violations, and providing

only limited, parameterizable agreement templates.

A notable exception is recent theoretical work by Daskalopulu, Lee and others,
which assesses the status of legal contracts and the implications of events based on a
Finite State Machine [DDM2001, DM2001] or Petri Net [BLWW95, Das99]
approach. Establishing the procedure and deriving the Petri Net from the business
contract is, however, non-trivial [Das99]. Such approaches can only be appropriate if
the reduction to a particular FSM or Petri Net will remain valid for all time, which is
unrealistic in the volatile world of business contracts. FSM and Petri Net-based
techniques reduce contracts to directed graphs, which capture the business

procedure, but leave provisions, and occurrence history, implicit.

Requirement 30 An approach is needed where provisions are explicitly

captured as data, and are thus readily available for

inspection and analysis.

Explicit storage of provisions would allow consistency checking, contract
performance assessment, and management review of which provisions pertain to

which items or occurrences.

62

Deontic Logic

2.6 Deontic Logic

‘Deontic logic’ has come to describe various subtly differing logics of norms, or
more specifically, logics of obligations and permissions [MW93], and ideality versus
actuality [Ser99]. These are mostly derived from initial proposals by von Wright
[vW51]. The standard system of deontic logic augments propositional logic with the
operators O, P, and F, for obliged, permitted, and forbidden. As a broadly
representative axiomatization of deontic logic, we have chosen some principles from

the system described in [MW93] as the focus of discussion here:
Interdefinability: Po=4y~O~a=4s-Fa
‘ouis permitted’ is equivalent to ‘it is not obliged that not &’ and ‘@t is not forbidden’.

Strong consistency theorem: =(0a A O

It is never the case that o is both obliged and forbidden.

Deontic detachment / transitivity: O(a—pP) — (0a—0p)

If it is obliged that (if o then f) then, if a is obliged then S is obliged.

Ought implies can: O(a) > P(a)

If ais obliged then o is permitted.

The possible world semantics for Standard Deontic Logic (SDL) says that
something is obliged if and only if it is the case in all deontically perfect alternative

worlds, and is permitted if and only if it is the case in at least one such world.
Critique

The ideal wotlds semantics of SDL has been ctriticised on a number of bases, which
we deal with in turn in the following subsections:

2.6.1 Ideal world semantics: The moral ‘ought’

Statements in SDL speak of what is the case in an ideal world: the modal operator O
is better yielded as the fanciful moralistic notion of ‘in a perfect wotld, it ought to be

that ...” rather than as the commercial contractual concept of ‘there is an obligation

63

Chapter 2 - Analysis of Related Work

to In commerce, violations and external events happening in the often-
imperfect real world force the imposition of particular new obligations and the
termination of old ones. SDL’s deontic detachment principle (page 63) and ideal world

semantics results in some paradoxes, such as [Mak99]:

“The clerk ought to give you a receipt if you pay” and
“You ought to pay” implies

“The clerk ought to give you a receipt” (even if you don’t pay).

This paradox arises as SDL. mandates what must be the case in an ideal world,
but says nothing of what happens in an imperfect world, when things go wrong.
SDL fails to address contrary-to-duty obligations, which are secondary obligations that arise

from the violation of a primary obligation [PS97].

2.6.2 Conflict-free specifications

The interdefinability axiom and strong consistency theorem (page 63) imply that a state-of-
affairs cannot be both obliged and prohibited at the same time, and that obligation to
do something implies permission to do it. Sloman [Slo94] comments that, in reality,
obligations and authorizations can be specified independently, although obligation
without authorization can lead to conflicts. Taveter and Wagner [TW2001a,
TW2001b] add that the reduction of permission to absence of prohibition is an
unrealistic oversimplification. Chellas [Che80] argues that inconsistent norms and
conflicting obligations (Oa and O-a) abound. SDLs axioms fail to account for the
fact that obligations and permissions may arise from different sources, and may

therefore conflict. A number of types of conflict need to be attended to:

Conflict with defeat (prima facie versus all-things-considered obligations)

Kimbrough and Moore [KM93] remark that genuine conflicts of obligation are not
only possible, but common, and suggest the way out of this dilemma lies in
recognizing that most obligations are defeasible. A consequence of adopting the
strong consistency theorem, as well as the monotonic nature of SDL, is that conflict

of norms and prima facie or defeasible obligations are unaccounted for [HK93, KM93,

64

Deontic Logic

PS97]. An example might be the obligation to give a 10% discount to loyal
customers, which is defeated by the obligation to give a 15% discount to platinum
customers (who may also be loyal, but should not qualify for both discounts).
Kimbrough and Moore [KM93] propose a ‘presumably’ operator: PO« is taken to
mean ‘presumably « is obliged’. Kimbrough and Mootre’s presumption operator, P,
however, is undirected, making it impossible to specify who makes the presumption

and on what grounds. This makes choice of a winning presumption difficult.

Conflict without defeat (necessary violation)

A complementary avenue for attending to conflict is to recognize that conflicting
obligations may arise from different sources, and fulfilment of an obligation to one
party may require violation of an obligation to another. Prohibition to do something
does not necessarily imply permission to refrain from it as encoded in SDL, since
Catch-22 situations exist where violations are unavoidable: “damned if you do, and

956

damned if you don’t”™. SDL does not address conflict of duties: for instance, for a bank
customer with a low balance, the obligation to pay a debt may conflict with the
obligation to stay out of overdraft, and this may require prioritization of obligations

[dAMW96].

Conflicts arising from document provenance and occurrence evidence

Cholvy and Cuppens speak of merging sets of norms originating from conflicting
roles [CC95] or regulations [CC98]. They extend SDL by relativizing norms to
regulations, expressing sentences of the form ‘regulation R says, it is obligatory /
permitted / forbidden that P’. Their approach is reasonably course-grained as all
norms in regulation R/ are taken to override all norms in regulation R2. Their logic
therefore does not attend to conflicting obligations brought about by different events
covered by the same norm. For example, Hansson and Makinson [HM97] give the
case where the single rule that ‘the doctor must immediately visit heart attack victims’
generates conflicting obligations when two remote patients suffer heart-attacks: an

obligation to visit patient A immediately and a separate, conflicting one to visit

¢ This phrase is attributed to Lorenzo Dow (1777-1834).

65

Chapter 2 - Analysis of Related Work

patient B immediately. Cholvy and Cuppens’ treatment of the sowrce or origin of
obligations (and conflicts) effectively looks at their provenance in documents but not at

their birth in circumstance.

2.6.3 Directedness of obligations and permissions

SDL abstracts away from agents [Wag2001] and concentrates on impersonal
statements, rather than personal statements that are associated with particular action
performers [CDMR2001]. This downplays the importance of policies as encoding
relationships between explicit subjects and targets [Dam2002, p34]. SDL does not
account for the directedness of obligations from the right-bearers to the counter-
parties [HK93]. Various authors [HK93, TT99] have attempted to remedy this
through the introduction of indexed deontic and action operators such as 0,E.«

meaning x is obligated, to y, that x bring about a.

SDL does not express who Zssued the obligation or permission. Such information
is needed for conflict resolution. A consequence of its failure to assign a deontic
opinion to the person expressing that attitude is that SDL requires that some
normative stance (permission, obligation, prohibition) is taken with respect to every
state-of-affairs & Norman, Sierra, and Jennings [NSJ98] say that the absence of
obligation not to do & should not imply permission to do @ as is assumed in SDL.
Rather, it may be that an agent or norm system expresses no attitude with respect to
a. Norman et al. contend that an agent is permitted to perform an action only if the
formula for permission is explicitly recorded, so absence of obligation not to
perform does not imply permission to perform as in a negation-by-failure
interpretation of SDL. Cholvy and Cuppens [CC98] comment that, in SDL,
‘regulation r says that a is not obligatory’ is not distinguishable from ‘regulation r does
not say that « is obligatory’. In the former case, it may be argued that there is an
explicit permission (privilege) to do . That is, in Andersonian semantics [And58],
the former case says that refraining from doing « definitely does not bring about a
violation. In the latter case, the regulation simply does not comment on whether or

not refraining from doing « brings about a violation.

66

Deontic Logic

Requirement 31 Directed obligations, with actor, beneficiary, liable party,

source utterance, and issuer, must be expressible.

SDL does not address collective obligations (page 42) [CP2000]. Here, some member
of a group is expected to fulfil the obligation (e.g. ‘some nurse must monitor the
patient’), but there is not necessarily anyone that bears personal responsibility for the

behaviour of the group.

2.6.4 Obligations are viewed as operators, not entities

SDL denotes obligations with the modal operator O, rather than identifying each
obligation as an individual entity. Makinson [Mak99], following Alchourrén and
Bulygin, suggests we need to distinguish between norms and propositions about
norms. It is suggested that expressions such as O(a—p), where truth values are taken
as arguments to obligations, are troublesome to interpret as it is more natural to
conceive obligations as related to described states-of-affairs, rather than to truth-
values. Various recent authors have moved from operator-based accounts towards
identified speech acts, such as identified obligations [Kim2001, AB2002b, AK2002].
A consequence of SDL’s operator-based account is that particular obligations cannot
be tagged with their current state, making the obligation life-cycle difficult to

represent.

Requirement 32 Obligations should be individually identified.

67

Chapter 2 - Analysis of Related Work

2.6.5 Temporal aspects and lifetime of norms are not

addressed

SDL is static [CDMR2001, Dam2002] and sets aside the dynamic femporal aspects of
obligations. Taveter and Wagner [TW2001a, TW2001b, Wag2001] complain that
SDL abstracts away from the current circumstances, which play an important role

when dealing with deontic concepts in practice.

In terms of ‘birth’ of norms, SDL does not model the sources of obligations in
both norms and eventualities: for instance, it does not show how ‘John must write his
exams’ (obligation) is derived from ‘Students must write their exams’ (norm) and
‘John is a student’ (eventuality). Dignum and Weigand [DW95] argue that little was
said in early deontic approaches about how norms are established. They contend
that deontic effects arise as a result of communicative actions. SDL omits treatment
of conditional obligations [Che80, JS93], such as the obligation to fasten your seat belt
when driving a car, which is incorrectly modelled by regular material implication
[dAMW96]. Conditional operators [Che80] and dyadic deontic logics [PS97]

investigate this.

In terms of ‘death’ of norms, SDL does not model punishment and reward.

e SDL fails to model punishment. SDL leaves the violation and its consequences

unspecified [TT99]. Anderson [And58] proposes that Oa be reduced to /(-~a
— V), meaning ‘necessarily —a implies violation’. However, Anderson’s
violation atom, V, is vague as it speaks of the violation of the whole
normative system, rather than showing exactly where violation has arisen
[dAMW93]. Dignum and Kuiper [DK98] index the violation predicate into
the action that caused the violation (Violation(e) for violation of Oa) but not
to the violated provision. Dignum and Weigand [DW95] use the special
predicate Violation;; to model the violation of an agreement between agents i
and j. This is unsatisfactory as it does not specify which aspect of the
agreement was violated. d’Altan, Meyer, and Wieringa [dAMW93] propose

the indexed atom Violation, to indicate the violation of a piece of legislation /,

68

Deontic Logic

such as a paragraph of a code of laws. This too is unsatisfactory as each
paragraph may contain multiple obligations and prohibitions, and it is unclear
which specifically was violated. Distinguishing between violation of different
clauses is essential since violations of different clauses — and indeed even
violations of the same clauses at different times — have different
consequences. Observers typically wish to be aware not only of the fact that
there was a violation, but also of the precise norm that was violated and
when it was violated, so that they may assess the impact of the violation.
They may wish to quantify the exact loss to the aggrieved party as a result of
a particular violation at a particular time. Obliged parties face similar
requirements: they may wish to choose which of a set of conflicting
obligations to violate based on the expected costs of different potential
violations. Both indexed atoms, Violation;; and Violation,, fail to differentiate
between different violations of the same provision across time. Dignum and
Kuiper’s attempt to incorporate temporal aspects of violations [DK98]
speaks of a semi-persistent violation predicate that ‘disappears’ after a special
‘repair’ action has been performed. This is problematic as violation history is

not kept.

e SDL fails to model reward: Just as SDL does not model the punishment by

omitting a treatment of wzolation, it also fails to model the reward by omitting
treatment of fulfilment. That is, SDL does not model the legal consequences
of keeping your obligations. Anderson’s treatment [And58], is insufficient to
model fulfilment as ‘not-violated’ is vague and may mean ‘fulfilled’ or ‘not yet

fulfilled /violated’.

SDL treats standing obligations (e.g. ‘to honour your parents’) but not dynani,
dischargeable obligations (e.g. ‘to return the book’) [Bro96, Bro2000]. Though it seems
desirable in business to derive ~Oa from Oa A « (since fulfilling a dischargeable
obligation ends the obligation) the ideal worlds semantics of SDL treats obligations
as long-lived ideals. Applying the and-elimination rule of (atemporal) propositional

logic to O A aryields O as dynamic aspects are not treated.

69

Chapter 2 - Analysis of Related Work

The ought implies can rule (page 63), incorporated by some authors [Che80],
needlessly encodes a rigid system of law for determining obligation life-cycle —
Brown [Bro96] reminds that present inability to repay a debt does not render the
obligation to repay null and void, as the obligation is typically sustained. The system
of law may or may not provide that bankruptcy, disability, or death, render the
obligation null — mere impossibility is not sufficient criterion for deciding on the
status of the obligation, and the precise criteria differ across divergent systems of

law.

Requirement 33 Obligation life-cycle must be modelled. Obligations must

be traceable to the events, states, and regulations that

brought them about or cancelled them out.

Cardinality of actions is an issue [CDMR2001]: permission to do an action in the
standard approach is a permission to do the action many times. SDL only expresses
standing permissions; permissions to do something once, or # times, cannot be

stated.

Requirement 34 Both once-off and persistent rights should be expressible.

As SDL does not model change of legal relations, Jones and Sergot [JS96]
supplement the prescriptive normative notions of deontic logic (obligations,
prohibitions, and permissions) with the descriptive normative notion of power (legal
capability) to bring about states of affairs. Immunity (legal disability of another party

to bring about a state of affairs) must also be represented.

Requirement 35 Primitives governing change of legal relations — such as

power and immunity [Hoh78] — must be provided.

In addition to putting aside the temporal nature of obligations themselves, SDL

does not model the temporal nature of the obliged actions: being obliged to give a talk

70

Deontic Logic

today does not imply being obliged to give a talk tomorrow, even if the obligation to
give the talk is not fulfilled [Kro97]. A talk on 21" October will not do if a talk on
20™ October was what was required, since the former does not fit the ‘quality criteria’
for the desired occurrence. SDL omits consideration of action types [Wag2001], and

other action quality criteria.

Various authors have investigated temporal deontic logics. Dignum et al
[DWV96, DK97, DK98] complain that Meyet’s deontic dynamic logic is capable of
expressing only immediate obligations where the action should be performed as the
next action. They argue for an extension that caters for obligations to perform an
action as soon as possible, before a deadline (relative or absolute time condition), or
periodically. Examples of obligations specifying a deadline include obligations to
‘pay within 30 days of purchasing’, ‘pass within 1 year of enrolling’, ‘order before
stock is too low’, or ‘repair the roof before the October rains start’. Periodic
obligations may include ‘pay employees between 25" and 30" of every month’ or
‘order whenever available stock is between 6 and 10 units’. Dignum et al. model the
dynamic system in terms of a purely theoretical formal mathematical Kripke
structure, providing no practical implementation. Initially [DWV906], these structures
constrained their framework by forcing the impractical assumption that all actions
take the same amount of time. Later [DK97], they propose that an assumption of
instantaneous begin- and end-actions may be appropriate, but requires further
investigation.

More recently, Bons et al. [BDLT2000] introduce an ‘epistemic dynamic deontic
temporal logic’, using the notation [F/O¢ to indicate that state-of-affairs £ causes a
transition to the state-of-affairs O« where a is obliged. As an example,
[promise(rl,r2,0)]0,;,»(®) means that ‘after r/ promises to perform « to r2, then rl is
obliged towards r2 to actually perform the action &. State history is not kept and
contradictory rules and conflict resolution are not attended to. For instance,
subsequent imposition of a law to the effect that ‘only promises made by legally

competent parties lead to obligations’ could not be introduced.

71

Chapter 2 - Analysis of Related Work

Eiter et al. [ESP99] introduce a do operator for the absence of a mechanism for
triggering state changes in standard deontics. Bons et al. [BDLT2000] proceed
similarly; their DO(a) operator entails that o will hold at the next moment; and
DONE(@) entails that o held at the very last moment (o was the very last action
performed). For instance, DONE(pay(John,$100)) indicates that the very last action was
John paying $100. This operator is troublesome as it needs to be reset after each
system event to reflect which action was last performed, and problematic race
conditions can be expected in the determination of exactly which was the last action
performed. No action history is maintained and logical errors arise as DONE(a) is

overwritten.

2.6.6 Application of the theory

Minksy and Ungureanu [MU2000], citing Roscheisen and Winograd, remark that
deontic logic allows one to reason about what an agent must do, but provides no
means of ensuring that what needs to be done will actually be done — that is, it
provides no direct help in the enforcement of obligations. Nevertheless, there are a
vast number of projects which apply notions from deontic logic; see for example
Meyer and Wieringa [MW93, pp. 17-40]. An illustrative sample of recent initiatives

that have employed notions inspired by deontic logic is given in Table 2 below.

72

Deontic Logic

Application Area

Examples

Legal reasoning

DX Deontic Expert System [LR94|

Norman-G [Ser2001]

Contract assessment

Daskalopulu [DDM2001, DM2001]

Lee [BLWWO95]

Analysis and modelling phase of

system development

Norm Analysis [LO99, Liu2000, LSDM2001]

Agent-Object-Relationship modelling
[Wag2000, Wag2001]

Implementation techniques

Trigger-based temporal database:

Object-oriented code generation:

Agent-oriented programming:

LEGOL and NormBase [Liu2000]
COLOR-X [BvdR95, DSvdR2000, SvdRD2000]

Knowledge-Perception-Memory-Commitment

agents [TW2001a, TW2001b]

Table 2: Sample of some recent applications of deontic logic

73

Chapter 2 - Analysis of Related Work

2.7 Conclusion: Requirements for a Solution

This chapter has reviewed the literature on event representation and monitoring,
business rules, policy-based approaches, business process specification and
automation, contracts, and deontic logic. From this review, we can derive the
following criteria that need to be satisfied by a comprehensive e-commerce

application development methodology and environment:

2.7.1 Store rich descriptions of business events and states
(Chapter 3)

Events and states in commerce require a richer and more general representation than
that provided by the event monitoring literature. A schema grounded in the
philosophical writings, and corresponding services for the storage and interrogation
of past events and states, is required. Business process automation would benefit
from a generic occurrence monitor, which is able to assess which contractual
provisions are relevant based on current events and states and past history. Dynamic
classification, rather than static object-oriented class hierarchies, should be
supported. This is because in legal environments the class of an item, and pertinent

provisions, are determined by conformance of the item to an explicit description.

2.7.2 Support the transition from analysis to

implementation (Chapter 4)

The primitives of conventional event-, policy-, workflow-, and contract-
implementation languages are technical in nature and do not mirror the legal
concepts present in business specifications. van Lamsweerde [Lam2001] suggests
that software modelling research should propagate requirements abstractions down
to the programming level rather than abstracting programming constructs up to

requirements level as is conventional. An e-commerce application development

74

Conclusion: Requirements for a Solution

method should give guidance to aid the transition from analysis to implementation.
Human analysts would benefit from suggestions for exposing implementation
primitives from a principled analysis of specifications and contracts. Whilst the
difference between natural language policy statements and lower-level machine-
readable policies is widely recognized (§2.3.3), little has been done to support the
translation. Controlled languages for executable specification such as ACE (page 49)
fall short of the ability to model contracts. An important aim is to facilitate the
refinement of an unstructured specification into a format amenable to direct analysis
and implementation. The methodology must provide guidelines to assist in
uncovering the formal structure underlying specifications of contracts, policies, and

regulations written in English.

2.7.3 Model and store legal provisions (Chapter 5)

Deontic logicians and jurisprudential theorists have long advocated the need for
representation of obligations, permissions and prohibitions [vW51, And58, And62,
MW93], and institutional powers [Hoh78, JS96, JS2000]. Advanced e-commerce
support requires incorporation of deontic and jurisprudential primitives to model
provisions in terms of fundamental legal conceptions. These primitives will provide
compositionality — the ability to build sophisticated legal systems from basic blocks,

rather than hard-coding the assumptions of any one system of law.

The business process must be guided by a dynamically changing set of
contractual and regulatory provisions. Approaches based on standard form contracts
and contract templates are too rigid. Once-off validation of contracts at contract
creation time is insufficient (see page 56) because recently added policies and

legislation may affect provision validity.

Major normative notions include the representation of ought-to-do and ought-
to-be obligations; personal and impersonal obligations; prima facie (defeasible)
obligations; conditional, and secondary obligations; legal powers and immunities,
prohibitions and permissions; one-shot and persistent rights; obligations over time;

and violations. A software implementation of contracts and regulations should

75

Chapter 2 - Analysis of Related Work

therefore incorporate these notions, and be capable of expressing both prescriptive

and descriptive norms, drawn from intra-, inter-, and extra-organizational policies.

2.7.4 Express, detect, and resolve conflict (Chapter 6)

The inevitable tendency for business specifications to contain multiple contradictory
provisions pertaining to a given circumstance indicates the need for sophisticated
facilities both to detect conflicts at the time provisions are added to the data store,
and to resolve conflicts at run-time. Conflict resolution should not merely be by
priority numbering and implicit text ordering of rules. Advanced facilities should be
able to determine which legal consequences of provisions are null in a situation, by

which laws, and why.

2.7.5 Monitor and enforce provisions (Chapter 7)

A major goal of this research is substantive progress towards machine-checkable and
executable contracts. An architecture, including appropriate mechanisms and

interfaces, for efficiently monitoring and enforcing contracts must be provided.

The chapters that follow introduce novel techniques and tools for addressing these

requirements.

76

Chapter 3

Occurrences 1in Electronic

Commerce

This chapter describes an approach for representing and reasoning about

occurrences in electronic commerce.

We first define what is meant by an occurrence and demonstrate how an
occurrence may be used to store a workflow event, such as a payment, or an
association state, such as ‘being a supplier for’ (§3.1). We continue with an
explanation of various types of queries and demonstrate how queries can be
represented and stored (§3.2). We shall see later (Chapter 5) that the storage of
queries provides us with the ability to store provisions, which are propositions with
nested propositional content. Query storage is necessary in order to determine
which recorded descriptions describe a given occurrence or item, as well as which
recorded descriptions overlap: processes we call ‘coverage checking’ (§3.3). The
ability to determine which descriptions (queries) cover an occurrence or item allows
us to determine which provisions apply to that occurrence or item (Chapter 7).
Furthermore, the facility to dynamically detect overlaps between descriptions enables

conflict detection (Chapter 0).

77

Chapter 3 - Occurrences in Electronic Commerce

3.1 Representing and Storing Occurrences

We treat an occurrence as being an instance of a specific relationship type or
association type that exists between entities, at a moment in time or over an interval
in time. For instance, we would treat buying, owning, approving, being-obliged, and being-
prohibited as occurrence types. Each occurrence has a single type and an occurrence
type (such as buying) may have multiple occurrence instances. FEach occurrence
instance has role-players acting in a role in the occurrence: an occurrence of buying
typically has at least participants in the roles buyer, seller, sold item, and purchase prz'c/.
An occurrence may be an event, a state, or a process. Consider an event of supplying
that is instantaneous, and has as participants a supplier, a supplied party, and an item
supplied at that instant. In contrast, a state of being supplier has (perhaps unspecified)
duration, where the supplier and supplied party have an association for the whole
duration of the state. And a process of supplying does not imply that what is being
supplied is ever supplied. When referring to an occurrence we should generally
clarify which semantics (event, state, or process) we mean, and also which sense of

the word we intend.

Different occurrences may overlap in time: John may be involved in a process of
buying a fridge, while Jeff is involved in a process of buying a car. Indeed, if both
processes are brought to a successful conclusion by the single fall of a hammer in a
clearance sale, then the occurrence of the instantaneous events of buying could
happen simultaneously as well. For this reason, occurrence times are insufficient to

identify occurrences, and unique identifiers are used to distinguish occurrences.

We have chosen the term ‘occurrence’ since the term ‘event’ used in the
philosophical literature (page 16) to describe a momentary or prolonged state of
affairs, is typically understood as being instantaneous in the active database and

systems programming literature (page 15). Furthermore, we do not wish to impl
y prog g g ply

7 Inanimate ‘participants’, such as parchase price, might be more easily thought of as attribute values for
attributes of the occurrence.

78

Representing and Storing Occurrences

that our notion shares any of the philosophical subtleties of various uses of the term

‘event’ in the literature. For instance, Bennett [Ben88], controversially (though he is

not alone) argues that John’s crossing the Channel and John’s swimming the Channel
< b]

are the same ‘event’, whereas we treat them as separate occurrences. Our notion of

an ‘occurrence’ most closely resembles Parsons’ notion of an ‘eventuality’ (an event,

state, or process), which Kimbrough [Kim2001] has applied to deontic reasoning;

We treat occurrences of events, states, and processes |

uniformly in certain respects. Our contention is that all | Requirement] (pg19):

. . . . The information model
indicate a temporal relatedness between participants in
must be able to desctibe

. . . s
various roles, and the abstract notion of an ‘occurrence’ is | oecurrences of past events,

therefore useful. Policies such as ‘Bob is forbidden to buy X states, and processes, as

. . 5 well as the (active and
or ‘Bob is forbidden to own X’ speak of occurrences of (
passive) role-players

buying and owning in pragmatically similar ways even though involved.

the former seems to be forbidding the occurrence of an
event and the latter forbidding the occurrence of a state. As we saw earlier (page 42)
high-level policies must be able to speak of either actions or states of affairs: this
requirement can be met using an approach based on occurrences, which provide a
uniform treatment of events and states for obligation fulfilment monitoring. For our
purposes we wish to exploit the similarity in order to uniformly monitor for the
occurrence of events, states, and processes over time. Furthermore, we can provide
a uniform set of facilities for querying occurrences, and their role-holders, without
needing to explicitly decide in each case whether the occurrence is instantaneous or

prolonged.

Let us illustrate with an example. Take the scenario, |

from §1.2, where Steelmans is a supplier for SkyHi, and Requirement 4 (pg 22):

Persiste orage of
SkyHi has paid them $25,000 for a specific delivery. Ignore eistent stoteg

business-level occurtrences

for the moment any contractual relationships (contract- is requited.

related occurrences), which we return to later, and consider
only the simple occurrence of a state of being a supplier, and an occurrence of an

event of paying. Let being_suppliert and payingt be Skolem constants that name

79

Chapter 3 - Occurrences in Electronic Commerce

occurrence instances of types being a supplier and paying %}

respectively. We might add allocatingt to denote that the | Requitement6 (pg 24):

A business-level, rather

payment was allocated, using the First-In First-Out basis, to a
than technical-system-level,

delivery, and occurringt to indicate that the payment occurred on approachis needed for
15" August 2001. A basic occurrence-role-participant business process
automation.

tabular schema can be employed for storing occurrences: in

each row, we store the occurrence identifier and a participant and its role in the
occurrence. Table 3 depicts a tabular representation of the above-mentioned
occurrences. For readability we have included values like Steelmans in our tables
instead of foreign key references. Similarly we show occurrence primary keys in
forms such as being_suppliert, instead of foreign key references into a table describing

the occurrence type being supplier. Finally we omit repeated key values in adjacent

TOWS.
Commentary Occurrence Role Participant
Steelmans being a supplier for SkyHi being_supplieri supplier Steelmans
supplied SkyHi
According to Clause 1, SkyHi paid $25,000 (| paying1 payer SkyHi
{0 Steelmans paid-amount $25,000
payee Steelmans

isAccordingTo Clause 1

The payment was allocated to a previous allocating1 allocated paying1

i
delivery allocatedTo delivering1

allocationBasis FIFO

The payment occurred on 15 August 2001 occurring1 occurred paying1

occurredOn 15 August 2001

Table 3: A tabular schema for storing various occurrences
The storage schema depicted above bears some resemblance to the graph-based

binary-relational model used by Ayres and King in the functional database language

Hydra [AK96], and shares some of the same useful properties. Ayres and King

8o

Representing and Storing Occurrences

comment that conventional relational and object-oriented database systems are
unable to support associational queries corresponding to questions such as ‘what is
the relationship between Sandra and Mike?”. Hydra, in contrast, provides
associational primitives, which return the list of functions or inverse-functions that
relate two items. Our occurrence-centric representation provides similar advantages,
facilitating queries such as ‘(select occurrences in which Steelmans participates) intersection (select
occurrences where SkyHi participates)’. This would return payingl and being_suppliert in the
example above. This style of associational query is especially useful in commerce
applications for determining legal relationships between parties. For instance, an
associational query may be framed to determine the history of interactions between

two parties, or indeed to determine what obligations (occurrences of being-obliged)

bind two parties.

Comparing our approach to Kimbrough’s ES® theory (op cit, page 17),
Kimbrough represents events and states using event variables and either thematic or
grammatical roles. An occurrence of SkyHi paying $25,000 to Steelmans for a
particular delivery would be formally represented as:

Fe (paying(e) A Subject(e,SkyHi) A DirectObject(e,$25000) A
IndirectObject(e,Steelmans) A Sake(e,e’) A delivering(e’))
Formula 1

Our ‘occurrences’ differ from Kimbrough’s events and states in the following
ways:
® we choose to use domain- or application-specific roles — so-called ‘deep roles’

[JM2000] — rather than generic thematic roles (such as agent, theme, etc.) or

grammatical syntax markers (such as subject, object, etc.), in the representation of

occurrences. While generic thematic roles — such as agent, patient, instrument, source,
and destination — are often helpful and are commonly used in knowledge
representation in artificial intelligence [All95, Gri94, Sow2000], they have been

criticized. Davis [Dav96], for instance, argues that the thematic role of a

participant in an event occurrence may be difficult to determine or ambiguous.

Citing Jackendoff, Fillmore, Gawron, and Croft, Davis explains that in a

81

Chapter 3 - Occurrences in Electronic Commerce

commercial event such as buying both the buyer and the seller can be construed to
be in the agent thematic role, as the buyer acts to supply money and the seller acts
to supply goods. Using domain-specific roles (such as buyer, seller, etc.) allows us
to avoid this vagueness. An alternative to thematic roles is the use of
grammatical syntax markers such as subject and object. Kimbrough, acknowledging
that it is almost certainly preferable to employ semantic markers instead, uses
these for illustration purposes only. Grammatical syntax markers have vague
semantics: consider that, in John opened the doot’ (active or causative reading)
and ‘the door opened’ (passive or inchoative reading), the door occupies different
syntactic positions — object and subject respectively — even though its semantic role
as being opened stays constant. One of the triumphs of event semantics is
semantic stability in its treatment of active and passive sentences [Par90]; a
benefit lost by simplifying the illustration with grammatical syntax markers. We
prefer to employ domain-specific roles, such as opener and opened, as these are
stable, precise, and simple for an analyst untrained in linguistics to identify and

comprehend.

® to support measures by different parties over time we employ measuring
occurrences (see §4.3) instead of Kimbrough’s wunit() and quantity() predicates

[Kim98a].

® we employ allocating occurrences (see §5.6.1) in place of Kimbrough’s Sakef...)
predicate to allow different parties to allocate performances to obligations using

different bases.

® we employ a tabular representation, which we believe |

improves accessibility to the set of roles for an | Requirement5 (pg23):

Business applications

occurrence, enabling them to be easily stored and ,
requlre occurrences to bC

queried using conventional relational query languages, accessible via ad-hoc

such as SQL. It may be difficult to retrieve the set of queries, rather than via
fixed access paths.

roles for a Kimbrian occurrence in a logic program,

since some logic programming implementations are not capable of resolving

X(el,Y), to a set of predicates (roles), X.

82

Representing and Storing Queries

In the case of simple occurrences, the representation we offer (tuples versus
Kimbrough’s logical expressions) affords us an implementation mechanism using
relational, or just tabular, data stores. The representation is similar whether the
occurrences are stored in a relational database, held in a spreadsheet, or transmitted
in a comma-delimited or XML text file. No data transposition is technically
necessary, so streaming the data into and out of the database from communication
channels can proceed without schema transformation difficulties, and using very
simple and efficient parsers. We have not dealt with compression or data clustering
techniques, though it seems clear the representation could be stored and accessed

more efficiently without loss of information.

In occurrences that are more complex and nest propositional content, the
relationship to Kimbrough’s Disquotation operator (op cit, page 17) is more
removed, but, we believe, still faithful to the intentions of the logic. The details are
described in Chapter 5. In spite of the additional complexity of occurrences which
nest propositional content (i.e. queries), the same simple tabular structure still
suffices for representation purposes and no changes to the data schema, transmission

format, or parsers are required.

3.2 Representing and Storing Queries

In the previous section, participants were denoted extensionally: that is, by indicating
the specific identifier of the participant in the occurrence. It is also possible to select
participants intensionally, by providing a description of the participants; all identifiers
that fit the description at a particular time are then viewed as participating in the
occurrence at that time. A description can be viewed as a query that defines a set of
criteria and returns a set of resulting identifiers, which may vary over time as the
contents on the knowledge-base changes. The benefit of using descriptions, instead
of identifiers, is in enhanced stability of the specification. An obligation of John to
process an insurance claim would become meaningless if John left the company. But

an obligation of the claims processing clerk to process an insurance claim would

83

Chapter 3 - Occurrences in Electronic Commerce

ensure that Mary assumes responsibility for processing an insurance claim as she
takes over John’s position as claims processing clerk. In the latter case, the query
‘claims processing clerk’ returns first John and then, as human resources in the

organization change, returns Mary in his place.

For the purposes of representing policies and contracts and determining which
provisions apply (Chapter 5), queries need to be stored rather than merely answered
and discarded as is typically the case with conventional relational databases. A named
(or identified) query is often called a vzew in the database literature. In our case, given
the potentially large number of identified queries (views) we need to record, we must

store them in a database, rather than merely hold them in memory.

Queries can be stored by storing their identifiers, and values for their criteria. For
this purpose we assign names to each type of criterion. Depending on the type of
query, the criterion-value for a query may be either a constant value or another query.
Queries may be stored in occurrence-role-participant tabular form by assigning a
query-occurrence-identifier, and, for each criterion storing the criterion-value in the
participant column, and the criterion-type in the role-column. The criterion-value
may be a constant or a reference to an embedded query. EDEE’ parser takes the
textual form of the query in our purpose-built language, EDEEQL, and converts it to
its tabular semantic form. EDEEQL currently defines algebraic, alphabetic, set-
theoretic, occurrence-related, ordinal, and nested queries. See Appendix 1 for further

details of the syntax and storage schemata of these query types.

Take for example the query that returns all occurrences where more than $10,000
is paid to a supplier. The complete query, identified as Query10, is shown in Figure 2
below, which illustrates the parse tree for the query. Similarly, we can store another
query, Query19, that returns the first occurrence of SkyHi paying Steelmans $25,000
for the delivery before 1 September 2001. The parse tree and tabular schema for

Query19 is shown in Figure 3 below.

84

Representing and Storing Queries

QueryID|Criterion Type |Value

(_occurrences - queryd queryl type paying

(—_of [paying] queryl query?2 greater-than 10000

(— where [510,000] query2 query3 identified-concept|paid_amount
query4 occurrence queryl

(__is [-paid_amount] auens participant query?2

(n P query1Q role query3

(occurrences } 7777777 query9| queryd identified-concept|supplier

(of Tpaying] queryl query6 type being_supplier|
query7 role queryb

(_ where [participants in F--- query? occurrence query6

(role [=supplier] queryd query8 identified-concept|payee

C in Toccurrences }] query9 occurrence queryl

C of Toeing_supplier]] e bt eyt

(are [=payee] queryd queryl0 [intersectand query4

intersectand query9

Figure 2: Parse tree and storage schema for a query that returns

all occurrences where more than $10,000 is paid to a supplier

(Ist of [}”””””,””””1‘ QueryID |Criterion-type |Value
(_ occurrences)------ query13 3 queryll |identified-concept|SkyHi
(__of I[paying] queryl 3 queryl2 |identified-concept|payer
(_ where [=SkyHil queryll 3 queryl3 |occurrence queryl
is [=payer query12 i participant queryll
E A cayer)) 777777777777 query18 | role queryl2
(occurrences DI queryl5 queryl4 [|identified-concept|Steelmans
(of [paying] queryl querylb occu-rr.ence queryl
(_ where [=Steelmans] queryl4 query19 participant queryl4
(_is [=payeel query8 | role duerys
! queryl6 [equal-to 25000
(o) 7777777777777 | queryl7 |occurrence queryl
(_occurrences)------ e 3 participant queryl6
(__of [paying] queryl 3 role query3
(__where [=25,000] query16 3 queryl8 |intersectand query13
(is [=paid_amount] query3 3 intersectand queryld
[] in [ascending] } i intersectand query17
[temporal] order queryl9 |set queryl8

Figure 3: Parse tree and storage schema for a query that returns

the first payment of $25,000 by SkyHi to Steelmans

The ability to store queries also means that we can use queries to look-up other
(stored) queries. The ability to look-up queries that return results which fit certain
criteria is useful for finding which queries cover a certain item. This in turn is useful

for determining which policies cover a particular item, and for interrogating a

85

Chapter 3 - Occurrences in Electronic Commerce

contract to determine what items and eventualities the contract covers. We describe
the mechanism for finding covering-queries, and its use in finding the policies

applicable to an item, in more detail in the next sub-section (§3.3).

3.3 Determining Covering-Queries

Finding covering-queries is the reverse of query resolution. In query resolution, we
begin with a defined query and return all the results that match the specified criteria.
When finding covering-queries we begin with an item, and determine which queries
cover the item. The item may be a regular concept or it may itself be a query, in
which case we can still determine analytically which other queries completely cover
the results of that query. The process is analogous to the process of determining
which subscriptions cover an event, described in the literature on publish-subscribe
event notification (§2.1). As we saw earlier though, for contracts we require
persistent events, explicitly stored subscriptions, and traceable inferences. We
demonstrate here, and in Chapter 5, how a novel continuous query mechanism based

on stored queries addresses these requirements.

3.3.1 Overview of coverage checking

Figure 4 below illustrates the complementary nature of query resolution and
determination of covering-queries. Assume we have the occurrences ‘SkyHi paying
Steelmans $25,000” (payingt), ‘SkyHi paying BrickMen $5,000” (paying2), and ‘SkyHi
paying their employee, Jack, $15,000” (paying3) stored in the occurrence store. Further,
assume we have the queries ‘payments of more than $10,000” (query4, in Figure 2
above) and ‘payments to suppliers’ (query9, in Figure 2 above) stored in the occurrence
store. Turning now to query resolution, the query ‘payments to suppliers’ would
return the occurrences payingt and paying2. Similatly, the query ‘payments of more
than $10,000” would return the occurrences paying! and paying3. 1f we consider the
reverse, determination of covering-queries, we see that the occurrence payingt is

covered by both the queries ‘payments of more than $10,000” (query4) and ‘payments

86

Determining Covering-Queries

to suppliers’ (query9). We say that an occurrence (or indeed any item) fizs a description if

it is covered by a stored query.

queryl
Payments ~
query9 query4
“"Payments to “Payments of
suppliers” more than $10,000” - Stored
Queries
(Descriptions)
%
N
Family of
Occurrence of paying Occurrence of paying Occurrence of Occurrences

BrickMen $5,000 Steelmans $25,000 paying Jack $15,000 Fitting

Figure 4: Occurrences fitting a description (covered by a stored query)

The notions of covering relationships between queries, and dirtying relationships
between data and queries, are used to find run-time overlaps. We say that a query is
covered by another stored query if the results of the former are a subset of the results
of the latter for any data-set. Some questions of coverage are decidable statically, but
others depend on application semantics: some covering relations change when new
data is added, in a context-specific manner. We say a query is dirtied by new data (input
dird) if the new data changes a criterion (cf. text of a wuere clause in an SQL serect
statement) of the query. For example, upon the addition of the new suppliet,
Steelmans, to the database, the query ‘payments to suppliers’ is dirtied as the results
must now also include any ‘payments to Steelmans’. Any such payments would be
what we term output dirt. The materialized view literature [GM95] talks of dirt in the
sense of our output dirt. Whereas materialized views would only change when any
actual payments to Steelmans were added, covering relationships may change even in

the absence of any payments stored in the database.

We now look at detailed worked examples that show how we determine which

queries cover an item, and which queries cover a query.

87

Chapter 3 - Occurrences in Electronic Commerce

3.3.2 Worked example 1: Queries covering items

Take the query ‘payments of more than $10,000 to suppliers’ (Query10 in Figure 2 on

page 85). Assume that this query is stored in an empty database. Then, assume that

we record, in this database, that Steelmans is a supplier of SkyHi, by inserting an

occurrence, being_suppliert, as described in Table 3 on page 80. (Assume that the

payment, paying1, is not inserted yet and is only inserted later.) Upon insertion of the

rows for being_suppliert the coverage-checking algorithm examines each of the unique

items — Steelmans, being_supplier1, supplier, SkyHi, and supplied — in the set of triples added to

the database for the occurrence:

1. By Rulk A2.2.10",

2. ByRulk A2.2.2,

3. ByRuk A2.3.2,

4. By Rule A2.3.2,
and step 3

the query [=supplier] (Query5) covers supplier

item being_supplier! is covered by the query occurrences of

[being_supplier] (QueryG)

queries [=supplier] (Query5) and occurrences of
[being_supplier] (Querys) dirty [participants in role
[=supplier] in [occurrences of [being_supplier]]] (Query7).
Substituting the input dirt (shown underlined) for the dirtied
criteria yields the partial re-evaluation query: [participants in

role [=supplier] in [=being supplieril]. Ewvaluation of this

partial re-evaluation query yields the output dirt Steelmans.

The dirt, Steelmans, from the previous step dirties occurrences
of I[paying] where [participants in role [=supplier] 1in
[occurrences of [being_supplier]]] are [=payee] (Queryg).
Substituting the input dirt (shown underlined) for the dirtied
criterion yields the partial re-evaluation query: occurrences of
[paying] where [=Steelmans] are [=payee]. Evaluation of this
partial re-evaluation query yields no output dirt. The

coverage-checker thus stops.

8 FEach of the rules mentioned here is defined in detail in Appendix 2, which defines the full set of
coverage-checking rules, extracted from the coverage-checker module of our EDEE prototype.

88

Determining Covering-Queries

We conclude that the new occurtrence, being_suppliert, is
covered only by the query occurrences of [being_supplier]
(Querys). We record the queries that have been dirtied by this
new data and cache the output dirt, since we can use the
output dirt for partial re-evaluation of queries later. The list
of dirtied queries and their output dirt is shown in Table 4
below. Though in this case only one item of dirt is

produced for each query, the number of items of dirt may

|

Requirement 17 (pg 38):

It must be possible to
define and store the criteria
that an item must satisfy —
the description (query) it
must fit — in order for it to

count as being of a certain

type.

be greater than one. For instance, the addition of a new occurrence of being a

supplier may cause a new supplier to be added as output dirt for query7 in Table 4

below.
Coverer (Dirtied Query) | Covered (Output Dirt)
query5 supplier
query6 being_supplier1
query7 Steelmans
query5 = [=supplier]
query6 = [occurrences of [being_supplier]]
query7 = [participants in the role [=supplier] in [occurrences of [being_supplier]]]

(see Figure 2 on page 85 for full definitions of each of these queries)

Table 4: Dirtied queries and their output dirt, stored in the Edeecoverer table,

after addition of the occurrence being_supplier1 to a new datastore

By a similar coverage-determination process

[

we can coverage-check items such as Steelmans in Requirement 18 (pg 39):

order to answer such queries as ‘which provisions

pertain to Steelmans?’, even as the number and

We must be able to express policies
applying to intensionally described

(rather than merely extensionally listed)

values of Steelmans attributes (i.e. the occurrences | groups of objects. The members of such

associated with Steelmans) change over time. The

groups may change dynamically.

representation of provisions using nested queries is dealt with in Chapter 5.

The mechanism explained above demonstrates how we can incrementally

determine which queries cover a newly added occurrence, or begin to cover an entity

89

Chapter 3 - Occurrences in Electronic Commerce

whose attributes are dynamically changing. We can consequently determine (Chapter

7) which provisions cover an occurrence or mention an entity.

The incremental nature of the algorithm is important as
tens of thousands of occurrences and entities may be stored

in the database.

M
Requirement 3 22):

Matching (occurrence

Re-executing every query stored in the
detection) must be against a

database each time an occurrence is added is not feasible, oy o,

particularly since most results will be unchanged. It is
important therefore to re-execute only queries whose results may have been changed.
The cache of dirtied queries provides a potential performance boost by allowing the
creation of more specific partial re-evaluation queries. Even if the actual dirt cache
was cleared to conserve resources, we can still rely upon the query optimizer to re-
evaluate only the minimal set requiring re-evaluation. For large data volumes, a query
execution approach is likely to be more efficient than a theorem-proving or logic
programming approach, as the query execution approach incorporates query
optimizers which take into account data profiles (predicate selectivity) when

executing a query, whereas theorem provers and logic programs typically do not

concern themselves with such execution efficiency issues.

3.3.3 Worked example 2: Queries covering queries

The determination by the coverage-checking algorithm of M
which queries cover a query, is also best illustrated through Requirement 10 (pg 30):
)) Pattern-pattern matching
an example. Let us continue using the data store as it stands o ,

functionality is required for

at the end of the previous example (§3.3.2). Assume that we analytic policy conflict

detection.

record the query ‘the first payment of $25,000 by SkyHi to

Steelmans’ (Query19 in Figure 3 on page 85), in the data store. Notice that, by Rule
A2.2.3, (=paid-amount] (nested in Query19) is given the identifier Query3, as such a query
is already stored in the parse tree of Query10. Similatly [=payee] (nested in Query19) is
given the identifier Querys. Now, comparing Query19 to other queries stored in the

database we find:

90

By Rule A2.2.9,

By Rule A2.2.16
and step 1,

By Rule A2.2.11,

By Rule A2.2.16
and step 3,

By Rule A2.2.14,
step 2 and step 4,

By Rule A2.2.18
and step 5,

By Rule A2.2.5,
step 5 and step 6,

Determining Covering-Queries

[=25,000] (Query16) is covered by query (>10,000] (Query2)

occurrences of [paying] where [>10,000] is

[=paid_amount] (Query4) COVerS occurrences of [paying]

where [=25,000] is [=paid-amount] (Ouery17).

[=Steelmans] (Query14) is covered by any query which
covers Steelmans. As seen eatlier, [participants in the
role [=supplier] in [occurrences of [being_supplier]]]
(Query7) covers Steelmans. This fact is stored in the last row
of the ‘dirtied query and dirt’ cache shown in Table 4

(page 89) above. Therefore Query7 covers Query14.

The query occurrences of [paying] where [participants

in the role [=supplier] in [occurrences of
[being_supplier]]] are [=payee] (Query9) covers
occurrences of [paying] where [=Steelmans] 1is [=payee]
(Query15).

Query18 is covered by Query10.

The set criterion (Query18) covers Query19.

Query19 is covered by Query10.

This example shows how overlaps may be detected at
the time queries are added to the database, or when inserted
data dirties queries and thus brings queries into overlap; that
is, dynamically appearing overlaps are detectable. In this

case, the addition of the application data, being_suppliert,

|

Requirement 7 28):
Situations should be
interpreted against a

dynamic set of rules.

which says that Steelmans is a supplier for SkyHi, brought the queries ‘payments of

more than $10,000 to suppliers’ and ‘the first payment of $25,000 by SkyHi to

Steelmans’ into overlap at run-time.

o1

Chapter 3 - Occurrences in Electronic Commerce

3.3.4 Static and dynamic overlap

Determination of the relationships between queries may be performed at two times:

® statically: at the time the query is added to the database.

Static relationships are analytic relationships that must hold between queries
irrespective of the data in the database. For instance, it is statically determinable
that the query [occurrences of [paying] where [=SkyHi] is [=payer]] n
l[occurrences of [paying] where [=25,000] is [=paid_amount]] is covered by the
query occurrences of [paying] where [=SkyHi] is [=payer] Irrespective of what
payments are actually stored in the database. For performance reasons, it is
preferable to store static relationships at the time the query is added to the

database, as these results can be derived once and used repeatedly.

® dynamically: at the time occurrences are added to the databases.

Dynamic relationships are those that hold between queries as a result of the
particular contents of the database. §3.3.3 gave an example of the determination
of a dynamic relationship between queries. Because dynamic relationships
change as data is added, they must be computed each time new occurrences are
added to the database if immediate detection is required. Using actual results
produced by EDEE’s coveragechecker class, Figure 5 and Figure 6 show how the
addition of application data may change the covering relations between queries:
compare the coverage graphs before and affer the addition of being_suppliert to the

occurrence store.

92

Determining Covering-Queries

Steelmans
A

R 4

T

... is covered by ...

Figure 5: Covering relations graph before addition of being_supplier1

Steelmans
b

R 4
©)

Numbers in circles show the
order in which these new
relations are discovered.

... is covered by ...

... is now also covered by ...

Figure 6: Covering relations graph after addition of being_supplier1

93

Chapter 3 - Occurrences in Electronic Commerce

3.3.5 Applications of coverage checking

As we shall shortly see (Chapter 5) the ability to determine whether an occurrence
(or other entity) is covered by a stored query allows us to rapidly ascertain which of a
large number of recorded provisions apply to a given eventuality. The same facilities are
helptul during management review of policies, as management can quickly determine
which policies apply to a given user or class of user, to a given item or type of item
(e.g. inventory item, machine, building, vehicle, or other asset), to a given location, or

even to a given document.

In Chapter 6 we see that the ability to analytically spot overlap between queries
facilitates conflict detection as co-applicable clauses with conflicting opinions can be

found.

3.4 Summary

This chapter has tackled the first of the requirements identified by our critique of

related work in the previous chapter.

We have reviewed the representation and storage of occurrences of instantaneous events
and prolonged states. We have described a scheme for representing variable-attribute
commercial events and states using an abstraction known as the occurrence.
Occurrences have participants acting in various roles. The participants in an
occurrence may be explicitly specified using an identifier, or may be described using a
query. A persistent history of business eventualities (past events and states) can be
maintained and interrogated using ad-hoc queries in SQL or EDEEQL. In our

example (Table 3, page 80), occurrences of being_supplier and paying were stored.

Occurrences and other entities can be described using gueries. We have described
how queries may be stored and resolved, and we have shown in detail how we can
determine which queries dynamically begin (or cease) to cover an item or another

query. Our occurrence detection algorithm is able to detect even occurrences in the

94

Summary

distant past — e.g. that were added to the database many months eatlier — but that are

still pertinent to current occurrence evaluation.

Figure 7 summarises the data model employed in EDEE.

EdeeNumber EdeeOccurrence EdeeConcept
NumberID & Occurrence ConceptID
NumberValue Role
Participant
EdeeSymbol EdeeQuery
SymbollD pe QuerylD Covered
SymbolText CriterionType & » Coverer :
CriterionValue

Figure 7: Data model used in EDEE
In the next chapter, we look at pointers that a business analyst can use to uncover

the occurrence structure encoded in English language specifications of business

process applications.

95

Chapter 4

From Analysis to

Implementation

Some assistance is required in the process of transition from specification to
implementation. The transition cannot be completely systematized; the natural
language processing and artificial intelligence problem is, at present, simply too
difficult [OM96]. We do not therefore propose to address natural language
processing issues. Rather, we seek to pay some attention to how contract structure
and workflow occurrences are expressed in natural language, with the goal of
providing helpful insights to aid in capturing the essentials of a business
specification. Previous work in the area of natural language requirements analysis
includes the KISS approach and associated Grammalizer tool [HvdVH97], which

help analysts to derive a conceptual model from a textual domain description.

This chapter details a set of guidelines that can be used by an analyst to
undertake a formal analysis of business contracts and wuser requirements
specifications. It outlines a set of basic rules that may be used to expase occurrences
from appearances of certain words and word forms in English-language
specifications. The guidelines are labelled and applied to worked examples from our
application scenario (§1.2). The envisaged output of applying these rules is not

procedural code, but rather contract structure that is actionable and can be

97

Chapter 4 - From Analysis to Implementation

monitored. The analysis output can be used for direct software implementation, as
the occurrences identified by the analyst can be stored in the occurrence store. While
this is only a limited step, not equivalent to writing a whole application, it moves us

towards the ultimate goal of driving applications from contracts.

In each of the sections that follow, we propose various techniques that can be
employed to expose occurrences in business process application specifications. We
look, in turn, at domain-specific occurrences (§4.1), and occurrences of selection
(§4.2), quantification (§4.3), sorting and comparison (§4.4), prescription (§4.5), and
description (§4.6).

4.1 Domain-Specific Occurrences

Identification of domain-specific occurrences from an English-language specification
may proceed through a search for verbs, deverbative nouns, and roles, which indicate

underlying occurrences.

Explicit verbs may indicate occurrences of events, states, or processes. Explicit
verbs can be detected through a number of means including indicative suffixes, or

consultation of a lexicon.

Indicative suffixes such as —ing, —s, and —ed on words often point to Guideline 1
the existence of occurrences whose type is the gerund’ form of the
word. Occurrences are also often indicated by non-modal auxiliaries:

1s’, ‘was’, ‘being’, ‘been’, ‘are’; ‘were’, ‘will’, ‘have’, ‘has’.

9 A canonical form ending in —ing.
g g

98

Domain-Specific Occurrences

Examples:

By Guideline 1, (Provenance)

(Evidence) (Consequence)

Appearance of Word ... indicates ... Occurrences of Type

owning owning

owns "

owned "

is/has overdrawn being overdrawn / overdrawing

Guidelines are applied as for any other rule defined in this thesis: evidence is
taken in conjunction with the rule to justify a (prima facie) conclusion in terms of the

rule. For example:

Evidence: Appearance of ‘owned’ in the English-language specification, ...
Provenance: ... according to Guideline 1 above, ...
Consequence: ... indicates, an occurrence, or occurrences, of type owning.

Deverbative nouns are noun forms of verbs, and as such may also reveal

underlying occurrences.

Indicative suffixes such as as -ion, -ment, -ent, -ure, -ance, -ence, Guideline 2
-ancy, -ency, -ing, -al, -y, or —age in a deverbative noun often point to
the existence of occurrences whose type is the gerund form of the

deverbative noun.

99

Chapter 4 - From Analysis to Implementation

Examples:
By Guideline 2, (Provenance)

(Evidence) (Consequence)
Appearance of Word ... indicates ... Occurrences of Type
registration registering
acceptance accepting

approval approving

delivery delivering

breakage breaking

failure failing

Examples from Application Scenario (§1.2):

tolerance (Clause D.1) tolerating

payment (Clause P.3) paying (Table 3, p80)
violation (Clause L.3) violating (Table 13, p152)
instigation (") instigating (")
compensation (") compensating

obligation (") being obliged (Table 11, p143)

Parsons (op cit, page 17), in his theory of event and state semantics, advises that

some suffixes may be indicative of instances of states.

100

Domain-Specific Occurrences

Suffixes such as such as —ness, -ship, —hood, and —ly may indicate Guideline 3

underlying occurrences of states or events.

Examples:

By Guideline 3, (Provenance)

(Evidence) (Consequence)
Appearance of Word ... indicates ... Occurrences of Type
illness being ill (state)
membership being a member (state)
allegedly alleging (event)

Examples from Application Scenario (§1.2):
thickness (Clause D.1) being thick

More specifically, ‘being thick’, indicates an occurrence of measuring
where dimension_measured is ‘thickness’ (see §4.3)

There are also a number of ways in which occurrences of possessing seem to be

indicated in English.

The ending —s’ or —s, the preposition ‘of’, and the possessive Guideline 4
pronouns ‘his’, ‘her’, ‘their’, ‘our’, and ‘its’ may indicate occurrences

of possessing, having, or owning.

101

Chapter 4 - From Analysis to Implementation

Word forms denoting the names of roles held by participants in an occurrence

often indicate underlying domain-specific occurrences.

Indicative suffixes such as —ert, —or, —ar, —ee, —ant, —ent, —ed, -d, —en, Guideline 5
or —yst on an English word typically denote role names, and often

point to the existence of occurrences whose type is the gerund form

of the role name.

Examples:

By Guideline 5, (Provenance)

(Evidence) (Consequence)
Appearance of Word ... indicates ... Occurrences of Type
employer employing
director directing
registrar registering
payee paying
applicant applying
resident residing
delivered delivering
forbidden forbidding
analyst analysing

Examples from Application Scenario:

paid (Clause C.4) paying (see Table 3, p80)
employee (Clause P.2) employing

supplier (Clause P.3) supplying (see Table 3, p80)
prohibited (Clause P.3) prohibiting (see Table 5, p130)
fulfilled (Clause L.1) fulfilling (see Table 11, p143)
violated (Clause L.2) violating (see Table 13, p152)
entitled (Clause L.3) being entitled

More specifically, ‘being entitled’ or ‘having a right’, implies an occurrence of someone else
‘being obliged’ (see Guideline 14, p111; Table 13, p152).

102

Domain-Specific Occurrences

Exposing underlying occurrences from role names is an important step in
requirements elicitation, as it allows the analyst to identify associations about which
further information may need to be recorded. For example, the identification of an
occurrence of employing points to the need to record not only the holder of the
employee role (which is explicit in the specification in our application scenario), but
also the holder of the employer role, and start- and end- dates of employment (which
are implicit in the specification). Also, responsibilities and privileges (§4.5) are typically
associated with each identified role. During requirements elicitation, an analyst can
uncover the norms associated with each role by using templates such as ‘[role-name]
must ...", Trole-name] must not ...", and qrole-name] can ...". For instance ‘[applicants] can

register for the conference by completing the registration form before the deadline’.

Whilst Employee and Manager are commonly regarded as classes in object-oriented
design (often inheriting from person), an occurrence-centric analysis would recognize
occurrences of employing and managing. A person would then be a current employee
for the duration of their participation in an occurrence of being employed (by a
company), and a person would be a manager through their participation in an

occurrence of managing (employees).

103

Chapter 4 - From Analysis to Implementation

4.2 Selection Occurrences (Queries)

Modifiers in English are used to select instances based on qualification (matching or

conformance with recorded criteria).

Modifiers or qualifiers are often indicated by (explicit or implicit) Guideline 6

‘that’, ‘which’, ‘where’, or ‘who’ and may imply:

a) the existence of a query which describes — that is, is covering

(§3.3) — a set of individuals, and

b) the use of that query for selecting, at a certain time, a particular

Set or sets.

Examples from Application Scenario:

By Guideline 6, (Provenance)

(Evidence) (Consequence)
Appearance of Word ... indicates ... Query in EDEEQL (p84)
employees (that are) older [participants in role [=employee] in
than 25 [occurrences of [employing]]]
(Clause P.2) intersection
[participants in role [=aged] in

occurrences of [being_aged] where

[participants in role [=age] are [>25]]
payments (that are) more occurrences of [paying] where [>10,000]
than $10,000 is [=paid_amount]

(Clause P.3) (query4 in Figure 2, p85)

104

Selection Occurrences (Queries)

Various English words or symbols may indicate specific set-operators Guideline 7

in EDEEQL (see Appendix 1 for syntax).

Examples:

By Guideline 7, (Provenance)

(Evidence) (Consequence)
Appearance of Word / Symbol ... indicates ... EDEEQL Set Operator
‘and’, ‘also’, ‘with’, ‘that’, ‘which’, ‘where’, ‘who’, intersection

and adjectives or adjectival clauses

e.g. ‘low-carbon [ad].] steel’; ‘steel that is low in e.g. steel n low-carbon things
carbon’; ‘steel with low-carbon content’)

‘and’, ‘or’, comma (‘,’), semi-colon (';’), bullet (list). union
e.g. customers and employees e.g. customers U employees
‘but’, ‘not’, ‘except’, ‘excluding’, ‘apart from’, difference

‘besides’, 'without’, ‘with the exception of’, ‘save’,
‘however’, ‘although’

e.g. ‘customers but not gold customers’ e.g. customers — gold customers

Words used for discourse deixis'’ — such as ‘above’, ‘below’, ‘earlier’, Guideline 8
‘afore-mentioned’, ‘later’, ‘this’, ‘here’, ‘there’, ‘previous’, ‘following’,

‘next’, and cross-references to documents or chapter and section

headings — may indicate the existence of a query that selects labelled

utterances or provisions (see §6.1). Typically, provisions are selected

so that they may be voided during conflict resolution (see §6.3), or in

order to choose which clauses specify all-things-considered

obligations (see §5.6.9).

Examples:

By Guideline 8, (Provenance)

(Evidence) (Consequence)
Appearance of Word ... indicates ... Query
‘above’ a query that selects all clauses that appear above

the current clause in the current document

10 ‘Discourse deixis’ [SIL2002] is a term used in linguistics for expressions that point to other
utterances in a verbal or textual discourse.

105

Chapter 4 - From Analysis to Implementation

4.3 Quantification Occurrences

The simplest form of quantification occurrence is counting. Occurrences of counting
imply the storage and execution, at the appropriate time, of cardinality queries
(Section A1.3), as well as, perhaps, the storage of counting occurrences that provide a
history of such counts. Other forms of quantification include measuring (by observing

Of computing).

The English cardinals (‘one’, ‘two’, etc.) and the quantifiers 4’ / Guideline 9
‘one’, ‘none’ / ‘no’ / ‘not’ (and negation affixes such as un—, il
non—, im—, in—, —less, —free), ‘some’, ‘few’, ‘multiple’, ‘many’, ‘most’,
‘each’ / ‘all’ / ‘every’, ‘only’, low’, and ‘high’, may imply counting or
measuring, and can also indicate implicit prohibitions or powers (see
§4.5). With vague quantifiers, a specific convention — see §{4.6 — is
typically applied (e.g. ‘few, according to clause x’ is ‘<3’ ‘low,
according to clause y’ is ‘< 10°). The exact convention used should

be made explicit to avoid fuzziness in the contract.

Examples:

By Guideline 9, (Provenance)

(Evidence) (Consequence)

Appearance of Word ... indicates ... Occurrences of Type

no counting, with count = 0

all counting (where two counts are equal)

e.g. one interpretation of ‘all clerks are married’ is that ‘count (clerks)’ = ‘count (clerks
participating in role married in occurrences of being_married)’. Consistent with

this is the interpretation of the sentence as ‘the participants in an occurrence of being-married
are the results of (select the set of clerks)’.

three management counting, of occurrences of signing by

signatures are needed managers

106

only managers possess
company credit cards

Quantification Occurrences

‘zero non-managers possess company credit

cards’ or “count (occurrences of

possessing with credit cards in role

[=possessed] and (universe minus
managers) 1in role [=possessor]), if the
result of the counting exceeds zero, the
counted items violate policy”

Examples from Application Scenario:

all (Clause L.1) counting, where count of actual
occurrences = count of obliged

occurrences (see Table 11, p143)

some (Clause L.2) counting, where count of actual
occurrences < count of obliged

occurrences (see Table 13, p152)

low carbon (Clause D.1) measuring, of carbon content, and comparing

(§4.4) to threshold

‘Adverbs of frequency’, which stand in the place of the usual Guideline 10

quantifiers, may show that occurrences are being quantified over.

For instance:

Regular Quantifier ... becomes ... Frequency Adverb (Quantifier over Occurrences)
no never / at no time / not once

all always

some sometimes / occasionally

few rarely / seldom / almost never / hardly ever
many often / regularly

most usually / normally / almost always

one once

two twice

107

Chapter 4 - From Analysis to Implementation

Examples:

By Guideline 10, (Provenance)

(Evidence) (Consequence)

Appearance of Word ... indicates ... Occurrences of Type

Steelmans never counting, with (count of on-time
delivered on time occurrences of delivering by Steelmans) = 0

The appearance of a numeral, or a unit of measure, in a Guideline 11
specification typically denotes that some form of counting or
measuring has occurred or must occut.

Examples from Application Scenario:

By Guideline 11, (Provenance)

(Evidence) (Consequence)

Appearance of Word ... indicates ... Occurrences of Type

1600 x 400 x 5.0 mm measuring: at least three measuring
(Clause D.1) occurrences, where steel is item_measured

and length, width, and thickness are the

dimension_measured

Occurrences of measuring — which are comparable in some senses to
CANDID’s measurement functions [Lee80, p50] — should take a quantity (number), a
unit of measure (e.g. 3 metres, 5 managers), an item measured, and a dimension (e.g.
height, width). For instance, an occurrence of measuring the thickness of a delivered
sheet of steel would be denoted thus:

measuring1 (occurrence instance)

(role) (participant)
item_measured: sheet4
quantity_measured: 5.02

unit_of_measure: mm
dimension_measured: thickness

measurer: Bob (Quality Controller 3)

Presuming the sheet also measured 1600mm in length, and 400mm in width, and

had a computed carbon content of less than 0.1% (the maximum prescribed by

108

Sorting and Comparison Occurrences

Euro-Norm 10025 for low-carbon steel) at the time of delivery, this sheet would — at
least temporarily — be within the quality specifications of the clause, and would

therefore count as being ‘steel’, in terms of Clause D.1 (see §5.5).

4.4 Sorting and Comparison Occurrences

Comparitives, superlatives, ordinals, ranges, and some function words may imply
occurrences of sorting (1.e. ordering or sequencing) or alternatively merely occurrences of
comparing. Every occurrence of sorting includes occurrences of comparing using

some comparator function.

The existence of implicit occurrences of sorting and comparison may Guideline 12

be indicated variously by:
= ordinals like “first’, ‘second’, ‘third’, ..., ‘last’

= suffixes such as —er, —st, —nd, —rd, and —th (e.g ‘richer’,

‘wealthiest’), or prefixes like pre—, post—, and suc—
= lexical items such as ‘than’, ‘too’, ‘exceeds’, ‘excess’, ‘enough’,
‘before’, ‘after’, ‘prior’, ‘different’, ‘same’, ‘more’, ‘most’, ‘less’,

‘Tleast’, ‘wotse’, and ‘wotst’.

Examples:

By Guideline 12, (Provenance)

(Evidence) (Consequence)

Appearance of Word ... indicates ... Occurrences of Type

the lowest cost sorting by cost

the higher priced item sorting by price

before 1*' October comparing temporal order

too long / long enough comparing to a deadline or threshold

109

Chapter 4 - From Analysis to Implementation

Examples from Application Scenario:

more than $10,000 comparing to threshold measured in units of
(Clause P.3) dollars

older than 25 comparing to an age threshold measured in
(Clause P.2) years

Ranges are often signalled by means and tolerance levels (e.g. 12pm Guideline 13

b

T 30 minutes), or by the prepositions and words: ‘between’, ‘ir’,
‘within’, ‘above’, ‘below’, ‘from... to...’; ‘on’, ‘during’, ‘more than’,
‘less than’, ‘maximum’, ‘minimum’, ‘limit’, or ‘bounds’).

Examples from Application Scenario:

+0.040 mm comparing to upper and lower bounds

(Clause D.1)

Sorting may be accomplished by storing and executing, at the relevant time, an
ordinal query (Section A1.5) or by explicitly tagging items with their predecessor and
successot, the means of comparison (comparator function) used, and the time of
comparison. Explicitly tagging items can be achieved through occurrences of

preceding of the form °x preceding y in comparison order z, at time t’.

The nature of the comparator function (i.e. comparison setric used) is important,
and often needs to be made explicit. For instance, in ‘the wealthiest individual’ there
is clearly some sorting of individuals, but the comparison function used may take
into account the cash reserves of the individual, their ‘paper wealth’ in terms of
shares, property valuations, or other criteria. It would not be contradictory for an
individual to rate first in a comparison of cash wealth, but to rate lower down in the

scale for a comparison of paper wealth done at the same time.

110

Normative (Prescriptive) Occurrences

4.5 Normative (Prescriptive) Occurrences

Prescriptive policies define what can or must (or cannot or must not) do what, to
what, and when; that is, they prescribe the behaviour of role-players in the system.
Obligations (occurrences of being-obliged) associated with a named role are the
responsibilities of the role — e.g what the user musz do. Authorisations
(permissions and prohibitions) associated with a role are the privileges of the role —

e.g. what the user can do.

Appearances of the modal auxiliaries ‘can’, ‘may’, ‘shall’, ‘must’, Guideline 14
‘has/have to’, ‘need to’, ‘should’, ‘could’, ‘would’, ‘ought’, ‘will’,
‘has/have the right/authority to’, ‘is/are entitled to’, or negations
of these (‘cannot’, ‘may not’, ...) indicate occurrences of permitting
(§5.4), probibiting (§5.3), or being-obliged (§5.6). Likewise for the
suffixes —able and -ible. These indicators may also, or
alternatively, indicate the existence of a function which encodes a

power or liability (§5.5), or disability or immunity (§5.3.2).

Examples:

By Guideline 14, (Provenance)

(Evidence) (Consequence)

Appearance of Word ... indicates ... (Prima facie) Occurrences of Type

acceptable permitting to accept / power to bring about

an occurrence of accepting

tolerable permitting to tolerate / power to bring
about an occurrence of folerating

payable being-obliged to pay

111

Chapter 4 - From Analysis to Implementation

Examples from Application Scenario:

SkyHi must pay Steelmans being-obliged to pay (§5.6)

(Clause C.1)
Clerks may not buy steel prohibiting buying (§5.3)

(Clause P.1) legal disability of clerks to buy (§5.3.2)
SkyHi has the right to return power to bring about an occurrence of
the steel within 30 days returning in terms of that clause (§5.5)

(similarly ~ “The steel is
returnable within 30 days”)

(Clause C.3)
“steel” shall mean ... a power to bring about an occurrence of
(Clause D.1) being-steel for any item that meets the
criteria (§5.5)
party entitled to compensation another party being-obliged to do
(Clause C.3) compensating (§5.6.2)

Often, ‘must’, ‘shall’, ‘have to’, ‘will’, or ‘ought’ indicate the existence of an
obligation: ‘SkyHi must (similarly shall/have-to/will/ought-to) pay Steelmans $25,000° may
indicate that ‘SkyHi zs obliged to pay Steelmans $25,000°. Similatly, ‘can’ or ‘may’
regularly denote permission: ‘SkyHi can (may) distribute steel in the East Anglia region’ might
have the intended reading ‘SkyHi #s permitted to distribute steel in the East Anglia
region’. Finally, ‘must not” could be read as a prohibition, as in ‘Steelmans must not
supply to other distributors” which might be read ‘Steelmans zs probibited (forbidden) from
supplying to other distributors’. Caution must, however, be exercised. As explained
by Jones and Sergot [JS93], regarding every appearance of the word ‘must’ or ‘shall’
as implying an obligation is naive. Consider that ‘Managers must sign purchase orders’
may be intended to mean ‘Anyone other than a manager is prohibited from signing
purchase orders’, and does not necessarily imply that managers are obliged to sign

purchase orders.

It is also important to realize that in some contexts modal auxiliaries may not
refer to legal concepts such as obligation at all. Instead (or in addition), they might

indicate occurrences of predicting, expecting, or intending (It will be delivered

112

Conventional (Descriptive) Occurrences

tomorrow’); requesting or suggesting (‘Can you deliver ten tons of steel tomorrow?’);
offering, inviting to treat'", volunteering, or accepting ("You can store it in our warehouse’); or
being physically able (‘1 can pay you tomorrow’). The distinction between permission
and practical ability has been pointed out by Jones and Sergot [JS96]. The difference
between predicting and promising has been explored in the literature on speech acts
(illocutionary forces) [Aus76, Sea(9, SV85] and agent communication languages

(ACLs); for instance, in the work on FLBC (page 17).

4.6 Conventional (Descriptive) Occurrences

Contracts and specifications commonly encode /fga/ powers (§5.5) to bring about
certain occurrences. Provisions use particular names ot classifications for items fitting
certain criteria. 'That is, the items are named, called, or classified, acording to a
particular clanse as being of that type, only if they conform to certain criteria. One
might think of these criteria as somewhat comparable to the fidelity criteria of the
speech act literature [Aus76, Tho98]; these are conditions that must be met in order
for a naming or christening to be legal in terms of some set of norms. As is evident
from Clause D.1, defining ‘steel’, in our application scenario, a particular word may
mean different things — that is, cover (§3.3) different observed items — according to
different clauses. Consider that an item given the identifier c1 may colloquially be
called ‘steel’ because it is silver and shiny, but may not be ‘steel, according to Clause
D.1” because it either does not conform to the requirements of Euro-Norm 10025,
or it does not meet the specifications constraining its allowable dimensions in terms
of the clause. Steelmans could physically call a particular round ball of shiny metal

‘steel’, but that would not /ga/ly mean the item is called ‘steel, according to Clause

1 “Invitation to treat’ is a construct of English law intended to capture a non-binding suggestion by a
party. Acceptance of a legal offer creates an obligation, whereas acceptance of an invitation to treat
has no such result [TB99]. Similarly, accepting a volunteer does not lead to the creation of an
obligation under English law, since volunteering implies there is no expectation of payment and,
except for the special case of deeds, English law requires the existence of consideration (exchange)
for the formation of a valid contract [TB99].

113

Chapter 4 - From Analysis to Implementation

D.1” as the conformance constraints — fidelity criteria — are not met. Subjective

interpretations of words or clauses are dealt with in §5.2 and §5.5.

Classification is a means of grouping items that are similar in some respect. In
object-oriented techniques, a class is typically defined as a pre-defined, instantiable
template to store data about items in a category. An alternative, which we adopt, is
to store criteria (queries) separately from the attributes of entities. This makes it
possible to reason about classifications: we can determine whether an item is in a
certain class (§3.3.2), or ascertain overlaps between the descriptions of classes

(§3.3.3). The latter is helpful in finding and resolving conflicts (Chapter 0).

Note that a record of classification criteria used over time (as is provided by the
function device we will introduce in §5.5) is useful because names and classifications
change over time and we may wish to refer to an entity unambiguously by a new
name, or by a previous name in use at some earlier date. Our approach provides a
strong conceptual separation between the symbols and the items they represent. It
permits different individuals or institutions to assign different names to the same
concept. In the case of two or more individuals assigning the same name to different
concepts, we can resolve the ambiguity by qualifying the name with the clause (or
document or person) assigning the name, or perhaps with the time or context of the

naming, in order to select only the intended concept.

114

Conventional (Descriptive) Occurrences

Power (§5.5) is encoded in a variety of ways. Nouns (including Guideline 15
proper and common nouns), verbs, adjectives and adverbs often
have clause-specific meanings, and imply the existence of criteria
for items or occurrences in that class. Also, the English
conditionals ‘if’, if ... then ...’, and ‘when’ may indicate that
certain occurrences only come about upon the existence of
particular conditions, which are described in terms of other
occurrences. Similarly, the English prepositions ‘to’, ‘in order to’,
‘by’, and ‘through’ may indicate that some set of occurrences

brings about some other occurrence.

Examples:

By Guideline 15, (Provenance)

(Evidence) (Consequence)

Appearance of Word ... indicates ... Power of Type

The steel is returned if/when it is shipped An act of (successful) shipping brings
to the registered address of Steelmans about an occurrence of returning

The steel is returned by/through shipping
it to the registered address of Steelmans

To / In order to return the steel, ship it to
the registered address of Steelmans

A conventional occurrence of ‘returning’ is recognized when occurrences fitting a
description (‘shipping to the registered address of Steelmans’) happen. This is one
example of a power (here, of SkyHi to return steel) encoded in a contract. Section

5.5 introduces a structured implementation of the notion of power.

115

Chapter 4 - From Analysis to Implementation

The English conditionals ‘provided’, ‘providing’, ‘on condition Guideline 16
that’, ‘as long as’, ‘so long as’, ‘unless’, and ‘in order to’, may

indicate minimal necessary conditions that must exist in order for

a state of affairs to come about. That is, an wmunity (§5.3.2), or

alternatively a voidance (§5.6.9), is encoded: unless those conditions

exist, the state of affairs is not taken to obtain.

Examples:

By Guideline 16, (Provenance)

(Evidence) (Consequence)

Appearance of Word ... indicates ... Immunity of Type / Voidance

The steel may be returned provided / as if the steel is damaged, then
long as / on condition that it is (according to this clause), count
undamaged. (returnings of this steel) = 0,

or, alternatively, all obligations

resulting from this return are voided.

The steel may be returned unless it is "

damaged.

In_order to return the steel, it must be "
undamaged.

Caution should, as always, be used in applying these guidelines. For instance, ‘in
order to’ may indicate intention, expectation, or recommendation (occurrences of
intending, expecting, or recommending), rather than existence of legal power or a
guarantee. For example, in ...

= The steel may be trucked by CargoCarriers in order to return it.

the specification certainly seems to indicate a permission (based on the
appearance of ‘may’ as described in §4.5). However, it is not clear whether it is meant
to confer a power to return steel via that means, or merely gives a recommendation as to
how steel could be returned. Less forcefully even, it might simply give an expectation
as to how the goal might be achieved. That is, it might just say that occurrences of
trucking steel back with CargoCarriers are intended or expected to result in

occurrences of returning the steel. Disambiguation of these various senses is

116

Summary

important in contracts, as a party may wish to recommend a course of action to
another party, but may not wish to confer a legal power to the other party. Specifying
explicitly that this is a recommendation or expectation, rather than a conferral of

power or guarantee, may reduce misunderstanding and avoid contractual disputes.

4.7 Summary

This chapter has introduced and documented a spectrum of M

Requirement 20 (pg 41):

techniques for exposing occurrences in an English language
Though it is perhaps not

specification. Though we have attempted to be thorough, fully machine-atomatahle

the rules we have set out are by no means exhaustive, and we the progression from

have also not considered counterexamples. The intention English specifications to
machine interpretable
was simply to provide helpful insights that may be employed

policies should be further

by an analyst when uncovering logical structures in natural systematized.

language specifications. We have shown how to move from
varying expressions of semantics in English to canonical forms — for example,

various ways of expressing negation in English, such as ‘no’ and ‘un—, can be

b
rendered as the canonical form ‘comnting, with count=0" ({4.3); and diverse
prescriptive expressions like ‘must’, ‘have to’, and ‘—able’ might be rendered as

implying occurrences of being-obliged (§4.5).

We qualified our proposals with the reminder that, with the current state-of-the-
art in natural language understanding technology, the process cannot hope to be
mechanistically systematic. Each of the indicative keywords and fragments we have
mentioned in this section point to the existence of instances of certain types of
occurrences. We seek here only to capture a subset of meanings that may be useful
in enlightening the legal and semantic structure of an English language specification
of contracts, policies, or regulations. Our guidelines are useful in that they make
explicit some helpful rules that analysts can employ when developing structured

representations of natural language specifications. The intention is to move some

117

Chapter 4 - From Analysis to Implementation

way towards codifying the hitherto unsystematic transition from analysis to

implementation (§2.3.3).

In the next chapters, we explore in detail the types of provisions in a
specification, and investigate mechanisms for storing, enforcing, and consistency-

checking these provisions.

118

Chapter 5

Representing Provisions

Kimbrough’s Disquotation Theory (op cit, page 17) — a formal theory about
sentences that embed propositional content — expounds the fulfilment and violation
conditions for speech acts such as asserting, permitting, and obliging. In Chapter 3
we examined the notion of an occurrence and provided a structural representation
of this abstraction. This chapter, and the chapters that follow, aim to show how an
extended version of Disquotation Theory can be profitably applied to the creation
of computational environments for monitoring and enforcing electronic commerce
contracts using pervasive, mainstream industrial technologies such as Java and
relational databases. In this chapter, we show how contractual provisions —
obligations, permissions, prohibitions, and powers — can be represented and stored.
In Chapter 6, detailed examples illustrate how a query coverage-determination
mechanism can be used to check inter-organizational contractual provisions against
internal policies and external legislation for dynamic conflicts. A conflict resolution
mechanism that takes into account the life-cycle of individual instantiated obligations
is proposed. Finally, in Chapter 7 we look at approaches to monitoring occurrences
and enforcing provisions. The work presented in these chapters demonstrates that
our extended version of Kimbrough’s theory presents a new and promising means
of storing interrogable and executable specifications for e-commerce workflow

applications.

119

Chapter 5 - Representing Provisions

We begin this chapter with a contextual overview of our |

approach to storing and executing provisions (Section 5.1). | Requirement8 (pg 29):
A large and growing

In Section 5.1.1, we give a brief review of Kimbrough’s
number of machine-

Disquotation Theory. Section 5.1.2 explains how | caforceable rules should be

Kimbrough’s notions may be implemented in softwatre: we | controlled and managed in

. . . a database, not haphazardly
show that stored queries can be used as the implementation P !
distributed in text files.

mechanism of Kimbrough’s quotation construct that is used
for bracketing propositions within deontic statements. Storage schemata for
assertions and for common provisions such as prohibitions, permissions, powers and
liabilities, and obligations are shown (Sections 5.2 — 5.6), and we demonstrate how
functions are used to determine the necessary deontic and legal consequences of

particular provisions.

5.1 Context

Implicit and explicit contracts are an important mechanism for co-ordinating
organizational activities. In their contracts, organizations express which states of
affairs are desirable and undesirable. They specify which legal states of affairs are
achievable, and how, and which are not. In each case, a subjective attitude towards
propositional content is given: the state of affairs is obliged, forbidden, permitted,
obtains in law, or does not, according to some clause. We demonstrate here that
representing and reasoning about subjective, propositional content has applications
in the automation of commerce.

In our novel software realization, we adopt a declarative, event-driven approach,
where each contractual provision is explicitly stored and monitored, and both
software and human components may consult the provisions to determine what

currently holds, and what to do next.

120

Context

We view a contract, policy, or regulation, as a set ™

of provisions. A provision specifies an obligation Requirement 29 (pg 60):

Provisions, whether emanating

(§5.6), permission (§5.4), prohibition (§5.3), or power

from contracts, policies, or laws

(§5.5). Provisions are described in clauses. Broadly, Rtz Rtz o Gl

provisions represent rights and duties. We wish to | organizational provisions), should

.. . be uniformly represented, to
represent and store these provisions and their contents
facilitate consistency checking.

as records in a database.

Figure 8 presents the general architecture of our EDEE environment. An active
database wrapper compares inbound occurrences against stored contract terms,
firing consequent obligations and permissions, and bringing about conventionally
accepted states of affairs. As illustrated in Figure 8, the wrapper accepts new
occurrences, checks which descriptions they fit (1) and which contractual provisions
therefore apply (2). The wrapper then infers obligations (3), which can be
asynchronously fulfilled by a fulfilment engine (4). The fulfilment occurrences can
then be added to the occurrence store where they may bring about obligation

satisfaction.

The database is not intended as a general e-marketplace, but rather as a
repository of the current contracts and policies of a single company. Together these
contracts and policies represent the workflow system specification for that company.
Our system is intended for inter-organizational contracts, internal policies within an
organization, and external legislation, since all specify the norms that govern the
organization and guide execution. Execution components use the database to
ascertain what they are obliged to do: that is, what procedures to enact. Users may
query the database to ascertain what legal relations have obtained as a result of past

occurrences.

121

Chapter 5 - Representing Provisions

Platform-Independent Active Database

' / Occurrence Store

Softwa re\\

e L (e.g. Oracle, Microsoft SQL Server, Wrapper
LY ﬂ 1BM DB/ 2, Postgres, MS Access) (e.g. Java)
A N dynamically...
contract-related
occurrences, | | L. .
> Provisions find
applicable
provisions
Stored Queries check
i if occurrences
en?/lijrﬂnﬁ\%rﬁal fit description
?::E“”"emes Regular Occurrences deduce
obligations
' insfances
4 Diligent Components & ‘,\‘m’% asynchronously

/ Fulfilment Scheduler “’3

fulfllJ
obligations

Figure 8: General architecture of EDEE

Existing event-, rule-, and policy-based approaches (§2.1, §2.2, §2.3) assume that
components lack free will and execute all their obligations immediately and without
delay (§2.2.5). In commercial environments though, agents typically have more
flexibility in scheduling the fulfilment of their obligations. Immediate enactment is
one possible option, which may or may not minimize overall response time or
maximize profitability. With commercial obligations, it is often the case that agents
can fulfil an obligation by acting at any time before a deadline or within an interval.
Furthermore, while we agree that in the ideal world all obligations are fulfilled, this
ideal is unattainable because of real world practicalities such as resource limitations,
conflicting obligations, unpredictable environmental forces, and free agents; thus
there is a possibility of deviation from prescribed behaviour [DDM2001]. The
intention of obligations is not only to specify what should ideally take place, but also
what happens when the ideal cannot be met. We must qualify our assumption of
free will though, since we do not mean to imply that the software components are
simply free to ignore obligations. Rather, our architecture requires that software (and

human) components are di/gent: they consult the database to ascertain what

122

Context

obligations currently apply, or are notified of this by the active database, and attempt
to fulfil them within their resource constraints. When they fail, or indeed when they
succeed, they are forced to accept the obligations construed by the database, and the

occurrences that are deemed to have occurred as a result of their action or inaction.

Unlike Standard Deontic Logic (page 63), which assumes that being-obliged to
do something which is prohibited is a logical contradiction (obligation and
prohibition are treated as inter-defined gperators), we assume that prohibitions and
obligations are independent entities (i.e. variables that are quantified over), and
conflicting norms can exist. An agent may find itself violating a prohibition in order
to fulfil an obligation, or vice versa. Entirely avoiding such conflicts is not our
intention since we believe that in a world of multiple norm-givers, conflicts and
consequent trade-offs are inevitable. Indeed, even a single norm promulgated by a
party can result in conflict. Consider Hansson and Makinson’s example (op cit, page
65) of a single imperative ‘the doctor must immediately visit heart attack victims’ producing
conflicts if multiple patients, living at remote locations in the rural outback, suffer
heart-attacks in quick succession. Hansson and Makinson’s view is that, since
conflicts cannot exist, one of these norms must be blocked (restrained from the
output set of norms) to eliminate the conflict. Our view is that it is undeniable,
prima facie, that both obligations exist. It may be that one is violated if the doctor
visits only one of the patients. More likely though, one of the obligations is voided
by a separate principle of fairness which effectively specifies that a violation in this
case is forgivable. Other principles may specify another obligation, to visit the
second patient within a more lenient time interval, that can be fulfilled by the doctor.

Some ordering criteria must specify which patient is ‘second’.

We now turn to a review of Kimbrough’s Disquotation Theory (op cit, page 17)
and the extensions, alterations, and implementation mechanisms we propose to

facilitate executable specification of e-commerce applications.

123

Chapter 5 - Representing Provisions

5.1.1 Kimbrough’s Disquotation Theory

In this section, we illustrate briefly Kimbrough’s representation of a number of
sentence types with embedded propositions: assertions, permissions, prohibitions,

and obligations.

Assertions: An instantiation of ‘Mary asserts that SkyHi paid $25,000 to

Steelmans’ from Kimbrough’s axiom schema for assertions would yield:

e, (asserting(e;) A Subject(e,Mary) A Object(e,[8])) — (Veridical(e;) <> ¢)

Formula 2
where ¢ represents the predicates from Formula I (page 81) which say, in brief,
‘Steelmans was paid’. The brackets /...J” are special quotation operators that turn
their contents into an opaque string; thereby preventing ‘Mary asserting that
Steelmans was paid’ from necessarily entailing ‘Steelmans was paid’. This says that
Mary’s assertion that SkyHi paid $25,000 to Steelmans is veridical (true) if and only if

there was an actual occurrence of SkyHi paying $25,000 to Steelmans.
Prohibitions: In Kimbrough’s semantics, a prohibition against SkyHi paying

more than $10,000 could be expressed as:

Ze, (prohibiting(es) A IsAccordingToClause(esc) A Object(es[])) —
(Violated(esc) <> @)

Formula 3
where ¢ is an expression describing an occurrence of SkyHi paying more than
$10,000. Thus we say that the prohibition against SkyHi paying Steelmans is violated,
in terms of clause ¢, if and only if, more than $10,000 is actually paid to Steelmans.
It should be noted that we have, here and elsewhere, supplanted Kimbrough’s
original ~ suggestion of an InSystemOfNorms(e;n) predicate, with an

<

IsAccordingToClause(e,c) predicate, to capture the more specific sentence ‘... is

b

violated, according to this clause (utterance) ¢, if ...”. We believe this adjustment is
necessary as systems of norms (sets of regulations) may contain conflicting
provisions that can only be resolved through choice between identified clauses.

Therefore, in each provision it is only appropriate to authoritatively state that ‘there is

124

Context

violation in terms of this specific clanse , but not ‘there is violation in terms of this system
of norms’, since other provisions (clauses) in the system of norms may conflict and
override. For instance, the so-called de minimis provision of English Law [TB99,
p144] may rule that there is no violation in the event that SkyHi paid only $24,499,

since the difference is not material.

Permissions: In Kimbrough’s semantics, the permission of SkyHi to pay

Steelmans could be expressed as:

Fes (permitting(e;) A IsAccordingToClause(es,c) A Object(es,[@])) — (—~Violated(es,c))

Formula 4

Kimbrough reads this as ‘permissions cannot be violated’. More particularly, we
would read this as ‘no violations are brought about by permitted occurrences’. A
similar interpretation of permission, following Anderson [And58], is provided in
[Lee88], who says that a state of affairs is permitted if and only if it will never be the
case that bringing about that state of affairs implies sanctions. We prefer the
Kimbrian interpretation, since we see violations as being distinct from sanctions, as
the former does not necessarily imply redress (penalty), merely fransgress. Lee’s
interpretation receives support from Cholvy, Cuppens, and Saurel [CCS97], who
argue that it is prejudicial that p is the case if and only if it is necessary that if p
occurs then it is obligatory to repair damage. However, we wish to emphasize that
the fact that something is wrong (there is a violation or offence) is distinct from any
penalties — ‘sanctions’ [Lee88] or ‘reparations’ [CCS97] — that follow from that
violation. That someone has been wronged does not automatically imply an
obligation to repair the wrong: there are many cases where no reparations are
specified or available, yet the violation is still deemed to have occurred. Many
contractual obligations do not actually have specific sanctions explicitly noted both
because parties may prefer to leave things open for future resolution should the need
arise, or because, at least under English Law, sanctions are not automatically imposed
unless the injured party initiates litigation and is successful. Thus, violations may

exist without sanctions.

125

Chapter 5 - Representing Provisions

Another useful sense of the term ‘permission’, commonly attributed to Bentham
[Lin77], is permission in the sense of ‘vested liberty’. A vested liberty obliges others
not to prevent the action [Lin77, p17], whereas a naked liberty allows other people to
prevent the action in question. Violation (through attempting to prevent a permitted
occurrence, or more specifically, through attempting to interfere with a vested liberty)

can bring about a set of obligations on a liable party.

Obligations: In Kimbrough’s semantics, the obligation of SkyHi to pay

Steelmans could be expressed as:

e, (ought(e,) A IsAccordingToClause(e,c) A Object(es[])) — (Violated(esc) <> =)
Formula 5
This says that the obligation of SkyHi to pay Steelmans is violated, in terms of
clause ¢, if and only if, SkyHi did not actually pay $25,000 to Steelmans. Kimbrough
here uses a variant of Anderson’s [And58] reduction, which says that ‘¢ ought to be

the case’ unpacks to ‘necessarily, if ¢ is not the case, violation happens’.

5.1.2 An implementation of Kimbrough’s Disquotation

Theory

Kimbrough’s logic is, by and large, appealing; certain alterations were proposed above
(§3.1, §5.1.1). What we desire is a database representation that mimics this logic. We
suggest an implementation in Java which models the quoted contents /¢] as a query —
specifically, a query that returns occurrences. The quoted contents cannot be
modelled as facts as this would imply that the occurrences actually occurred, when in
fact they were only described. That is, the occurrences enclosed in a disquotation
operator should not be regarded as actual occurrences, but descriptions of occurrences.
For instance, if obliged occurrences were regarded as actual (rather than described)
this would imply that all obligations are kept, when indeed obligations may be
violated should the described occurrences never happen. Thus it is proper to model
only the criteria that describe the occurrences, since these describe what nature of
occurrence was obliged, without the undesirable implication that the described

occurrences were actually realized. We provide a continuous query mechanism,

126

Context

which determines incrementally, as data is added to the database, which stored
queries produce new results or consume existing results. This mechanism enables
the system to determine whether an occurrence is obliged, permitted, or prohibited,

by determining whether the occurrence fits a stored query.

When we store obligations, permissions, prohibitions, |

and powers, what we are putting into the database are | Requirement2 (pg 20):

. Occurrences with nested
representations of expressions with propositional content: N
propositional content must

e.g. x permits that P, it is obligatory that (), y prohibits that

be expressible.

R, § brings about T. We know that the expression occurred
since we can be sure the obligation, permission, prohibition, or power was once
given or expressed (even if it has since been overridden). However, we do not assume
that the disquoted propositional content — P, O, R, S, or T — is true, since permissions are
not always used, obligations are not always met, prohibitions are not always violated,
and powers are not always exercised. We must then use a query — a descriptive set of
criteria — to store the disquoted propositional content, rather than use an actual
occurrence. This captures the intuition that the disquoted content was deseribed, but
may not have actually occurred. The benefit of using stored queries — that is, stored
descriptions — is that, when and if the content (occurrence or set of occurrences)
does happen, we can detect that the occurrences (eventualities) are covered by a
stored query. A continuous query mechanism, or ‘coverage-checker’; is employed for
this purpose. Upon insertion of a new occurrence, the coverage-checker determines
which stored queries cover the new occurrence, and which expressed provisions

pertain to the occurrence.

The remainder of this section revisits examples of assertions, prohibitions,
permissions, and obligations from our application scenario (§1.2), demonstrating
implementations of Kimbrough’s constructs. We also add notions of powers,
liabilities, disabilities, and immunities, inspired by Hohfeld [Hoh78], which we have

found necessary.

127

Chapter 5 - Representing Provisions

5.2 Assertions

The case of assertions is unique, in that we have decided not to adopt the
disquotation operator for reasons of the inherent subjectivism of our approach. By
this we mean that we have chosen a wortld-view where all recorded ‘facts’ are taken as
subjective opinions. For our purposes, we do not find it meaningful to determine
whether an assertion is ‘veridical’ since we are unable to compare to an objective
truth: only subjective opinions — X is the case according to this clause, and Y is the

case according to another clause — are stored.

For the anomalous case of assertions then, our approach has been to supplant
the disquotation operator with an alternative: we append the conjunct IsAccordingTo(e,
ClauseX) to all occurrence descriptions. This captures the notion that all occurrence
descriptions are prima-facie construals relative to an utterance (identified by a
system-defined clause identifier). Our database representation assumes that, while
objective truth exists, it may sometimes be arguable as to what it is — all occurrence
descriptions are relative to some clause. For instance, “The clerk, John, bought steel,
according to Clause 8’ does not mean that the steel was certainly bought (for other
regulations may override); only that Clause 8 states this. That John bought steel” is
therefore the opinion of Clause 8, and is merely prima facie, not conclusive, evidence
of buying. Our rules must be specific. We must differentiate ‘buying according to
Clause 8’ from ‘buying according to Clause P.1°, since it is possible, in the case where
clerks are not empowered to buy steel and John is a clerk, for there to be a buying in
terms of the former clause, but not in terms of the latter. In contrast to many
traditional views of data representation, in our database we record what has been
said, rather than attempting to capture what ‘is™: when we ask the database what is, we

are more specifically asking what is according to a certain utterance (clause).

It is worthwhile to note here that many approaches to evaluating subjective
evidence are available. In our gwalitative approach, occurrences according to a
particular clause are brought about, through a function, whenever there are

occurrences in a particular domain — that is, whenever an occurrence fitting a

128

Prohibitions

convention is recognized. An interesting and complementary guantitative approach to
assessing the believability of subjective opinions of various agents in a distributed
setting is provided in Dimitrakos and Bicarregui [DB2001] and Daskalopulu,
Dimitrakos, and Maibaum [DDM2001]. A believability metric, computed by numeric
combination of weighted opinions, is associated with each proposition. Roughly,
Dimitrakos and co-authors have it that ‘pizza A is delivered’ if Susan believes with
0.8 probability that it was delivered, Peter believes with 0.2 probability that it was
delivered, and Susan’s opinion is weighted more strongly than Peter’s, based on their
reputations and credibility in the area. In contrast, we might have it that ‘pizza A is
delivered, according to Clause 8.6 of the delivery contract between Peter and Susan’
whenever Peter says it has been delivered, irrespective of Peter’s credibility. Such a
construal of what ‘delivery’ means is common in ‘customer satisfaction guaranteed’
contracts. Clause 9.1 of the Uniform Commercial Code may specify different criteria
as to what it means for a good to have been delivered, and we may need to choose, in
accordance with explicit legal principles, which construal overrides in the
circumstance. Our approach to subjectivity of information is one of ‘locality of
inference’, whereas Dimitrakos and co-authors deal with the aspect of ‘reliability of

evidence’.

5.3 Prohibitions

We distinguish here between two types of prohibitions: violable prohibitions, and

inviolable prohibitions (legal disabilities).

5.3.1 Violable prohibitions

Violable prohibitions admit the possibility of violation. This is the sense of
prohibition used by Kimbrough. If an occurrence fits the description of
occurrences prohibited by a particular clause, it can be said to be prohibited in terms
of that clause, and its existence brings about a violation of that clause. Consider

Clause P3 (‘payments of more than $10,000 to suppliers are prohibited’) from our

129

Chapter 5 - Representing Provisions

application scenario of §1.2. The ‘violable prohibition’ sense of this clause can be
modelled as shown in Table 5. Here, Query10 is a pointer to a query describing the set
of prohibited occurrences: in our example, occurrences of a supplier being paid

more than $10,000. The representation of Query10 was shown on page 84.

Occurrence Role Participant

prohibiting1 prohibited Query10

isAccordingTo Clause P.3

violating_function1 domain Query10

isAccordingTo Clause 82

violated prohibiting1

Query10 (see page 84) = occurrences of paying where more than $10,000 is in role=paid N

occurrences of paying where a supplier is in role=payee

Table 5: A schema for storing a violable general prohibition

violating_functiont is an identified function, whose domain is Query10 and whose range
is a set of occurrences violating_functiont(Query10). We append the occurrence type
produced by the function to the start of the function name to make the output range
clearer and more easily accessible to the query mechanism. Therefore, an
occurrence, payingt, as defined in Table 3, which is covered by Query10 and hence in the
domain of violating_function1, would produce an occurrence which we might refer to as
violating_function1(paying1), which can be seen (Table 5) to be an occurrence of violating,
where it is the general prohibition, prohibitingt, that is violated. The shorthand
identifier violating_functiont(payingt) may be thought of as referring to the following

specific occurrence that could be explicitly stored in the occurrence store:

violating1 = (legal consequence)
source_rule: violating_function1 (provenance)
source_occurrence: paying1 (evidence)
violated: prohibiting1

violating1 (where 1 is a unique identifier) captures the particular legal consequence
brought about from applying rules of exact provenance (violating_functiont) to specific

evidence (paying?). The link between a rule (function), a happening, and the resultant

130

Prohibitions

conclusion is recorded by storing the sources of the conclusion as its source_rule and

source_occurrence attributes.

It should be noted that the occurrence, prohibitingt, is a genera/ prohibition, which
generates specific prohibition instances for each prohibited occurrence. As shown in
Table 0, the function device is used to produce case-specific instances of

prohibitions, from the general prohibitions.

Occurrence Role Participant

prohibiting_function1 | domain Query10
prohibited |Query10|'2
isAccordingTo | Clause P.3

Query10 (see page 84) = occurrences of paying where more than $10,000 is in role=paid N

occurrences of paying where a supplier is in role=payee

Table 6: Generation of specific prohibition instances from general prohibitions

Assuming that payingt, a payment of $25,000 to Steelmans (Table 3, page 80),

occurred, we could deduce the existence of the following specific prohibition

instance:
prohibiting2 = (legal consequence)
source_rule: prohibiting_function1 (provenance)
source_occurrence: paying1 (evidence)
prohibited: paying1

prohibiting2 ~ (another name for the occurrence also identifiable as
prohibiting_function1(paying1)) may be interpreted as saying that there is, prima facie, a

specific prohibition against the payment, paying1.

12 The notation |...| allows us to refer to the originating occutrence that brought about the state of
affairs produced by the function. We can refer to the attributes of the originating occurrence by
embedding |...| into query exptressions from our language. To give an example from Table 6:
assuming the occurrence paying! is in the domain denoted by Query1o, it then brings about an
occurrence prohibiting_functiont(paying1), alias prohibiting2, where paying1 is substituted for |Query10| in the
prohibited role of prohibiting2.

131

Chapter 5 - Representing Provisions

The function construct is comparable in some senses to Jones and Sergot’s [JS96]
counts-as connective, =, and Goldman’s conventional-generation connective,
though our functions are relativized to an identified clause (utterance), C, rather than
relativized to an institution, S, as for the counts-as connective, =. Thus, it is the
clause that deems that a certain occurrence is brought about, rather than an
institution. This is necessary because clauses are atomic, whereas current
institutional interpretations can only be selected once all prima facie atomic clausal
interpretations have been compared. Further, Jones and Sergot’s connective, =, is
used in the context of Hohfeld’s [Hoh78] notion of power, where an agent is only
empowered to bring about ideal states, whereas we follow Goldman’s construal that a
non-ideal state, such as an occurrence of violating, may be generated by conventional

occurrences (occurrences in the domain of an identified function).

Again, we point out that all provisions in a contract should be regarded as
subjective construals. “The prohibition is violated” should 7of be taken to mean that
the prohibition is authoritatively violated; but should rather be taken as a partial
rendering of the sentence “The prohibition is violated according to some clause. Another
clause may provide that the prohibition is not violated, and a choice of which clause
to accept as authoritative is then required. The conflicting clauses may even originate
from the same institution. Determining the overarching construal of the institution

involves choosing which clause applies under the circumstances.

5.3.2 Inviolable prohibitions (disabilities / immunities)

Inviolable prohibitions are often termed legal ‘disabilities’ or ‘immunities’. Inviolable
prohibitions cannot be violated, since the prohibited party simply doesn’t have the
legal power to bring about the prohibited state. Under Hohfeld’s [Hoh7§]
terminology this would be called disability. We could take Clause P1 of our
application scenario (§1.2) as specifying that clerks have no authority to purchase
steel. Table 7 illustrates the representation of this sense of the clause: it specifies

that the number of purchases of steel by a clerk under this clause is zero (the count of

132

Prohibitions

results produced by Query501 is 0). This means that no action by them can bring about

a purchase in terms of this clause.

Occurrence Role Participant
counting1 counted Query501
count 0

isAccordingTo | Clause P.1

Query501 = occurrences where a clerk is buyer n occurrences where steel is bought

Table 7: A schema for storing a disability or immunity (inviolable prohibition)

A similar construction can be used to implement Hohfeld’s [Hoh78] notion of
tmmunity: under immunity, no action by any party can bring about a certain state of
affairs (e.g. no party can bring about an occurrence of a particular party being
obliged to do something). The party that benefits from this immunity is said to be
immune. In Table 7, the description (Query501) does not specify the seller; the
implication is that steel purchases by a clerk from any seller may not come about.
This means that, according to this clause, everyone has immunity from entering into

steel purchases with a clerk.

Finally, note that when a policy states ‘clerks may not %}

purchase steel’, this may be intended as implying the | Requirement25 (pg45):

. . . oo .. Physical occurrences must
existence of eher a violable prohibition, an inviolable ’
be distinguished from legal

prohibition, or both. We do not intend the choice to be an | gccusrences. Both must be

either/or choice between the types of prohibition, since recorded.

often the intention is that there is both a violable and an inviolable prohibition in
existence. English specifications of policy are problematic since it is not clear
whether ‘may not’ is intended to imply the existence of a violable prohibition, or an
inviolable prohibition (legal disability or immunity), or both. Our purpose in
distinguishing between violable and inviolable prohibitions is so that we may
disambiguate English specifications of policy and be more particular as to which type

of prohibition is present. In this case, assume we mean for there to be both a

133

Chapter 5 - Representing Provisions

violable prohibition and an inviolable prohibition (legal disability or immunity). If
the clerk indeed proceeds to make a purchase, he violates the violable prohibition and
his purchase is still covered by the inviolable prohibition which prevents it from
having effect. It is tempting to say that the clerk exercised his power in violation of
the prohibition, but this is misleading. In fact, the clerk did not exercise his power in
this case, since he performed a purchase, but not a ‘purchase in terms of Clause P.1°
so no legal power was really exercised in that respect (because the clerk in fact had a
legal disability). He is still guilty of a violation, and perhaps subject to sanctions
against him, since it was purchases of any sort that were forbidden, and even though
he did not perform a ‘purchase in terms of Clause P.1°, he did perform a purchase
according to some other clause. The fact that the purchase is not effectual in terms
of Clause P.1 does not mean that it doesn’t violate a prohibition against all purchases,

since it is still nonetheless a purchase in some other sense.

5.4 Permissions

‘Employees older than 25 may buy steel (Clause P.2)’, from our application scenatio
(§1.2), is also an ambiguous expression. It may refer to employees older than 25
being permitted (allowed) to buy steel, or to employees older than 25 being empowered
(that is, legally capable in terms of a clause) to buy. As pointed out by Jones and
Sergot [JS96], English expressions such as ‘... having authority to...” are vague
between (at least) these two senses of ‘having permission’ versus ‘having power’. A
similar vagueness arises in the English notion of ‘exercising a right’ which may mean
‘doing something that was permitted” or ‘bringing about a state of affairs through use
of a conferred power’. Permission is dealt with here, whilst we leave empowerment

for the next subsection (§5.5).

We distinguish between two types of permissions: violable and inviolable

permissions.

134

Permissions

5.4.1 Violable permissions (vested liberties)

Violable permissions are the Benthamite ‘vested liberties’ referred to by various
authors [Lin77, Mak86, NSJ98], and discussed in §5.1.1. This sense of permission
can be represented as a violable prohibition (§5.3), where the prohibited occurrences
are described as ‘any occurrences of attempting to prevent, or actually preventing, the

permitted occurrences’.

Related to the notion of vested liberties is the legal principal that protects the
right of the beneficiary to receive the intended benefit from the obligation by
prohibiting actual or attempted interference. For instance, an obligation to mail a
letter generally has implicit within it a prohibition against interfering with the letter
being received. The receipt of the letter is the state of affairs that is the intended
effect (benefit) of the obligation. Thus, burning the mailbox that contains the letter
would be implicitly prohibited as it interferes with the intended beneficiary’s right to
receipt. In Abrahams and Kimbrough [AK2002] we show our treatment in event
semantics of what we term “arson’s reduction” or the problem of vacuuming
conjunction. Here the co-existence of an actual interference, or even intention or
attempt to interfere, or simply expectation of action futility, violates a prohibition-
against-interfering-with-intended-effects that is implicitly associated with every

obligation.

5.4.2 Inviolable permissions (privileges)

Inviolable permissions are the sense of permission used by Kimbrough. Inviolable
permissions are not directly comparable to Benthamite ‘naked liberties’ since the
concept of naked liberty entails only that interference by other parties is not
prohibited, but does not explicitly specify that performing the permitted action can
never lead to a violation as Kimbrough [Kim2001] and Lee [Lee88], following
Anderson [And58], suggest. That is, by ‘inviolable permission’ we specifically mean
to capture the notion that performing any action covered by the permission does not
lead to any violation. This subtlety is not captured by the term ‘naked liberty’.

Consider an example. ‘Ewmployees older than 25 are permitted #o buy stee/ embeds the

135

Chapter 5 - Representing Provisions

query ‘select purchases by employees older than 25 of steel’. That is, according to
this clause, any occurrence fitting this query is permitted and does not bring about
any violation. The permission implies the count of violations brought about by
occurrences of this nature is zero. Table 8 illustrates. Inviolable permissions are
comparable in some sense to Hohfeldian privileges; privileges [Hoh78] imply no duty

to refrain exists — i.e. no violation is brought about by indulging in the action.

Occurrence Role Participant

permitting1 permitted Query502

isAccordingTo Clause P.2

counting1 counted Query503

count 0

isAccordingTo | Clause 2.6

Query502 = occurrences where employee older than 25 is buyer n occurrences where steel is bought
Query503 = occurrences of violating brought about by occurrences in Query502

(i.e. occurrences of violating where source_occurrence is in Query502)

Table 8: A schema for storing an inviolable general permission (privilege)

It should be noted that the occurrence, permittingt, is a genera/ permission, and, as
shown in Table 9 below, a function can be defined to generate specific permission

instances for each permitted occurrence.

Occurrence Role Participant

permitting_function1 domain Query502
permitted |Query502|
isAccordingTo | Clause P.2

Table 9: Generation of specific permission instances from general permissions

Finally, as we pointed out for prohibitions above, we do not mean for the terms

‘violable’ and ‘inviolable’ to imply that the two types of permissions cannot co-exist

136

Powers and Liabilities

in relation to a particular set of described occurrences. Nor do we mean that a
particular English sentence implies one or the other. Indeed, violable and inviolable
permissions often do co-exist, and a given English sentence may ambiguously imply
either or both. Consider ‘Employees older than 25 may buy steel (Clause P.2)’. This

may be taken to imply either or both of:

® Anyone who interferes with such an employee’s right to buy steel is in violation (a

violable permission), or,

® Such an employee buying steel does not bring about a violation in terms of this
clause (an inviolable permission). Should another clause prohibit an individual
who is such an employee from buying steel, we can see that this prohibition
conflicts with the permission, since the prohibition implies that violations are
brought about by such purchases, whereas the permission implies that no (zero)

such violations are brought about.

5.5 Powers and Liabilities

In our variation of Jones and Sergot’s usage [JS96]: powers M

.. . qui (pg 70):
encode the ability of an actor to bring about a state-of- Requirement 35 (pe 70
))) Primitives governing
affairs according to a clause. Consider the rule ‘Clause P.2: .
change of legal relations —
Employees older than 25 may buy steel’. The reading of this such as power and

as a power of the employee may be represented as shown in [™Y [Hoh78] - must

be provided.
Table 10.

137

Chapter 5 - Representing Provisions

Occurrence Role Participant

buying_function1 domain Query504

isAccordingTo Clause P.2

buyer Query505
bought Query506
returning_function1 domain Query507

isAccordingTo | Clause C.3

returned Query508

returner Query509

Query504 = (occurrences where an employee older than 25 is buyer m occurrences where steel is bought) —
occurrences where Clause P.2 is isAccordingTo™
Query505 = participants in role buyer in occurrence |Query504|

Query506 = participants in role bought in occurrence |Query504|

Query507 = (occurrences of returning where count of days since (occurrence of purchasing for participant in
role returned) is < 30) — occurrences where Clause C.3 is isAccordingTo
Query508 = participants in role returner in occurrence |Query507|
Query509 = participants in role returned in occurrence |Query507|

Table 10: A schema for storing powers

In Table 10 the function buying_functiont encodes the power to bring about a
purchase. Clearly, the only means of bringing about a purchase in terms of Clanse P.2 is
to insert an occurrence in the domain (Query504) of the function. Assume buying4 is a
purchase of steel by the 40-year old manager Marge. buying4 is covered by Query504
and therefore is in the domain of the function buying_function1(). Substituting buying4 for
Query504 in buying_function1(Query504), the function therefore produces the occurrence
instance identified as buying_functioni(buying?). It should be noted that, as the database
wrapper automatically tags each occurrence with a clause identifier upon addition to
the database, simply adding an occurrence of buying to the database does not make it
a purchase in terms of Clause P.2. So a purchase, say buyings, of gold by an underage
dispatch clerk would not be construed as a purchase in terms of Clause P.2, since buyingé

is not covered by Query504 and therefore is not in the domain of buying_functiont.

13 This third set criterion is necessary in order to prevent infinite recursion: that is, to prevent
purchases according to Clause P.2 from bringing about purchases according to Clause P.2. The
symbol -’ can be read °... but not ...".

138

Powers and Liabilities

Similarly, in Table 10 the function returming_function1 encodes the power to bring
about a valid return, in terms of Clause C.3, through a physical return within 30 days

of the purchase occurrence relating to the return.

Definitions of terms — that is, forced construals — are implemented in a like
manner: we could define functions, with appropriate domains, that bring about
occurrences of being_steel (to implement Clause D.1). As suggested by the appearance
of numbers and units of measure (see analysis guidelines in §4.3), the domain of the
being_steel function would need to refer, inter alia, to occurrences of measuring. An
occurrence of being_steel in terms of Clause D.1 then comes about only when a11'* of
the following occur: there is an occurrence of the item being_Fe360 and this isAccordingTo
Euro-Norm 10025; and there is a measuring where that item is item measured and
quantity_measured is 1600, unit_of_measure is mm, and dimension_measured is height; and there is a
measuring of that item whetre quantity measured is 400, unit_of measure is mm, and

dimension_measured is width; etc.

Notice that the mechanism of using functions to bring about states-of-affairs-
according-to-a-clause implements not just powers, but also labilities, which, according
to Hohfeld [Hoh78], are the correlative of powers. Hohfeld does not here use
‘liability’ in the accounting sense of debt or “having an obligation towards another
party”; rather, he makes use of ‘liability’ in the sense of “being subject to having
one’s legal relationships altered by another party”. As Hohfeld explains, his sense of
liability does not necessarily imply disadvantage to the liable party; liability implies
merely that the party is subject to having their legal relations altered by virtue of an
occurrence. The notion of power implies that an actor is empowered to bring about
a state of affairs" through their own action; what Hohfeld terms ‘volitional control’.
The notion of liability is similar, though it implies that the state of affairs may be
brought about by another party, by an environmental occurrence (such as the passing

of a certain date), or even, as we argue, by an action of the liable party. We contend

14The implementation of the all operator is described in §A1.7 in the Appendix.

15 Often, a deontic state-of-affairs such as being-obliged in terms of a particular clause may be brought
about. However, the state of affairs need not necessarily involve obligations, prohibitions, or
permissions. It may be, for instance, buying or owning in terms of a particular clause. The state of
affairs brought about, though not necessarily deontic, is essentially a /ga/ state of affairs: i.e. one
recognised as such by some clause of a normative system.

139

Chapter 5 - Representing Provisions

that power and liability are in fact best treated using the single function device to
describe how occurrences fitting a convention bring about other occurrences.
Consider that an occurrence of violating a prohibition against interference may,
through a function being_obliged_function2(...), bring about an occurrence of being-obliged (a
so-called ‘secondary’ obligation) to pay damages. Neither Jones and Sergot [JS96]
nor Daskalopulu [Das99] provide examples of cases where violations bring about
obligations, since it would be strange in their terminology for a party to exercise their
power by bringing about a violation, and in so doing bring about a duty upon
themselves. Indeed, even for Hohfeld, this situation is awkward since x is both the
liable (to have his legal relations changed) and the empowered (to change legal
relations) party. Hohfeld says a person holding a ‘power’ has the legal ability by
doing certain acts to alter legal relations; the one whose legal relations will be altered
if the power is exercised is under a ‘liability’. And yet here, x clearly has a power to
alter legal relations (by interfering and violating the prohibition), and a liability to
have his legal relations altered (by interfering). This situation is awkward because
Hohfeld sees legal relations as being “relations of one individual with another”, yet
here x has a relationship with himself. As is evident from our function device, we do
not see it as problematic that any occurrence, whether intentional or not, positive or
negative, can bring about legal relations upon any person. The liable party is often a
passive participant in an occurrence in the domain of the function which encodes the
liability, but he may just as well be an active participant in the occurrence (as in the
case of interfering) or not participate in the occurrence at all (for example, where an

obligation is contingent on the occurrence of an environmental event).

The scope or longevity of rights (e.g. ome-shot versus persistent rights) may be
accounted for by limiting the domain of the function that brings about the legal

consequences, through suitable query definitions:

140

Powers and Liabilities

5.5.1 One-shot (single-use) rights

Otdinal queries (§A1.5) are well suited to capturing so-called 7

‘one-shot’ rights, such as the right to buy a certain quantity | pequirement 34 (pg 70):

of a commodity, which may be exercised only once. In this Both once-off and

. . . istent rights should b
case, it is only the firz (in ascending temporal order) [PESSEHHENE SIOHARE

expressible.

occurrence of purchasing that commodity that counts as a

valid purchase. Formally, the domain of the buying function here is an ordinal query
returning only the first allocated (prima facie) purchase occurrence. ‘One-shot’ rights
are contrasted to ‘persistent’ rights [NSJ98]; this is similar to the distinction between

rights with ‘cardinality’ of actions and ‘standing’ rights (see page 70).

5.5.2 Persistent (multi-use) rights

In a competition that allows multiple entries per person, the right to enter, which may
be exercised many times, is a persistent right. We could capture the right to unlimited
entries using a (non-ordinal) query which returns a// occurrences in the set, as
opposed to an ordinal query which returns only the first #» occurrences. All
occurrences of entering are covered by the (non-ordinal) query, and would count as

: 16
valid entries °.

Cole, Derrick, Milosevic, and Raymond [CDMR2001] leave a treatment of action
cardinality for future work. Norman, Sierra, and Jennings [NSJ98] capture their
distinction between one-shot and persistent rights in a formal theory using dynamic
logic. We implement one-shot rights as ordinal queries. The advantages of this
approach over a dynamic logic mechanism is that ordinal queries generalize
straightforwardly to two-shot, or #-shot rights, and furthermore allow for non-
temporal ordering criteria when choosing which occurrences are covered (§3.3) by the
right. The importance of non-temporal orderings is evident in health insurance

scenarios, where a patient may have the right to two visits to their doctor in a given

16 The right to vote, which some might think of as a persistent right, is actually many once-off rights.
Each official election instantiates a once-off right: the voter is empowered to make only one valid
vote per election. Successive votes do not count, and indeed, under some systems of law, successive
attempts to vote will result in nullification of the first vote.

141

Chapter 5 - Representing Provisions

year. That is, only two visits are regarded as ‘visits in terms of clause x’ by the
scheme. For patients that have undergone four treatments in a given year, generous
commercial health providers might select the most costly visits as qualifying,
irrespective of whether these were temporally the first two visits in the year or not.
Dynamic logic cannot capture non-temporal modes of ordering, whereas ordinal
queries incorporate these easily through specification of alternative comparator

functions for use in ordering.

5.6 Obligations (Duties)

The notion of an obligation, or duty, is complex and multi-faceted. The aspects
requiring treatment include obligation definition and fulfilment, violation and
secondary obligations, obligation directedness, prima facie and all-things-considered
obligations, conditional obligations, ought-to-do and ought-to-be obligations, several

obligations, individual and collective obligations, and termination conditions.

5.6.1 Obligation definition and fulfilment

Take the obligation ‘SkyHi is obliged 7 pay Steelmans $25,000 by 1 September 2007
(Clause C.1 of our application scenario). This embeds the query: ‘select the first
payment, before 1 September 2001, of $25,000 by SkyHi to Steelmans’, since that is
the nature of the obliged occurrence, and only occurrences of that nature can fulfil
the obligation. The query asks for the firs payment because it is exactly one payment
that is obliged. The obliged occurrence may not exist yet, but when it does, we can
determine that it was obliged if it fits the query. The obligation of SkyHi to pay
Steelmans (Clause C.1) is given as being_obligedt in Table 11, where Query19, whose
representation was shown on page 84, is a pointer to a stored query that describes
the set of obliged occurrences in the obligation, being_obligedt. The obligation of
Steelmans to deliver 10 tons of steel to SkyHi (Clause C.2) is being_obliged2 in Table 11.

It should be noticed that, like the obligation to pay, the obligation to deliver here is

142

Obligations (Duties)

an unconditional one, and that Steelmans is obliged to deliver even if SkyHi has not
yet paid"’.

What it means to ‘fulfil’ an obligation was defined in Clause L.1 of the laws
defined in our application scenario. If in the future the query associated with an
obligation is ‘filled” — that is, the count of items fitting the query is the maximum
number of results the query can produce (one result, in our examples) — the
obligation is said to be ‘fulfilled’. Otherwise, the obligation is not (yet) fulfilled.

Representation of obligation fulfilment is also shown in Table 11.

Occurrence Role Participant

being_obliged1 obliged Query19

IsAccordingTo Clause C.1

being_obliged2 obliged Query510

IsAccordingTo | Clause C.2

fulfilling_function1 domain Query511

fulfilled Query512

IsAccordingTo | Clause L.1

Query19 (see page 84) = first (occurrence of SkyHi paying Steelmans $25,000 for the delivery,
where paying is before 1 September 2001)

Query510 = first ((occurrence of delivering where (delivered is steel and participates in role item_measured in
an occurrence of measuring where quantity_measured is 10 and unit_of_measure is tons)), intersection
(occurrences of delivering which are before 1 October 2001))

Query511 = occurrences of count(results of |Query513|) being equal to max-possible-results(|Query513|)
Query512 = occurrences of being_obliged where (query counted in |Query511|) is obliged
Query513 (not shown in table) = queries in role obliged in occurrences of being_obliged

Table 11: Initial schema for storing obligations and their fulfilment conditions

As we shall shortly see, the initial schema in Table 11 for storing obligation
instances requires a little fine-tuning to account for allocation of performances to
obligations. To understand the problem, we now compare the mechanism of using

identified occurrences for representing and assessing obligations, to the conventional

17 Of course, the obligation to deliver may be voided if it is clear that SkyHi has no intention of ever
paying. Voidance is dealt with in §5.6.9.

143

Chapter 5 - Representing Provisions

approach of using propositions and logical operators, and then refine our definition
appropriately.

Standard Deontic Logic or SDL (§2.6) presumes that being obliged to do that
which is prohibited is a logical contradiction. Obligation and prohibition are treated

as operators, typically with the interdefinability axiom:

Pa=,4;-0-
meaning that if a state-of-affairs, ¢, is permitted then it is not obliged that not a.
In contrast, we take as our starting point the assumption that permissions and
obligations are independent entities — variables that are quantified over — and that
conflicting norms can exist. Our view is that being obliged to do that which is
forbidden is not a logical contradiction, but a choice dilemma. The choice may
involve deciding which identified directive to violate, or deciding which to regard as

void in the circumstance (that is, in each case of application by a norm interpreter).

We need to distinguish the notion of an ‘occurrence’ from that of a ‘proposition’.
A proposition may be associated with a truth value: letting A be the proposition
‘Steelmans delivered 10 tons of steel’, we assess that A is true in the case that there
are one or more occurrences of Steelmans having delivered 10 tons of steel. In
contrast, an occurrence is an identified entity, which occupies a moment or interval
of time and takes as its arguments participants in various roles. We might therefore
have deliveringt which takes as its arguments consignment1 (which is measured as 10 tons
of steel) in the role delivered and Steelmans in the role deliverer. Assuming SkyHi ordered
10 tons of steel on two separate occasions, following are two separate occurrences of
Steelmans delivering steel:

delivering1 (on 15 September 2001) = (occurrence instance)

(role) (participant)
delivered: consignment1 (measured as 10 tons of steel)
deliverer: Steelmans

delivering2 (on 20 September 2001) =
delivered: consignment2 (measured as 10 tons of steel)

deliverer: Steelmans

The proposition A (‘Steelmans delivered 10 tons of Steel’) is strictly true from

15" September onwards, since from that moment on it is true that Steelmans has at

144

Obligations (Duties)

some stage delivered the requisite amount of steel. A proposition, then, becomes
true as a result of one or more identified occurrences. Of identified occurrences we
can say only that they happened (or did not): we speak of their existence, rather than
of their ‘truth’. Since occurrences occupy (perhaps unspecified) moments or
intervals of time, they are inherently temporal in nature, whereas propositions — in

the absence of extension to cater for time — are atemporal.

We believe the notion of an occurrence, absent from standard treatments of
deontic logic, is useful for the representation and assessment of obligations. Brown
[Bro2000] speaks of the distinction between simply dischargeable obligations and
standing obligations. The latter have been the traditional purvey of deontic logic. As
we will illustrate here, it seems that Standard Deontic Logic copes poorly with simply
dischargeable obligations. This is problematic since such obligations form a large
portion of the obligations we wish to reason about in commercial contractual
scenarios. Consider the case where SkyHi has ordered 10 tons of steel for the
second time on 1% July 2001 and Steelmans has an obligation — a specific obligation —
to deliver it. Taking A as the proposition that Steelmans delivered 10 tons of steel, in

Standard Deontic Logic we might then say:

OA
meaning ‘Steelmans is obliged to deliver 10 tons of steel’. How though, do we
distinguish this second obligation, from Steelmans’ previous obligation, which arose

when SkyHi first ordered steel? In SDL, the first obligation is also represented as:

OA
Collapsing the obligations together through logical derivation results in
dangerous information loss, since originally we had two obligations, but standard

propositional logic leaves us with one:

OA A OA
(standard propositional logic)

OAZS

18 Similar information loss occurs when we derive such conclusions as OA from O(A4B) in SDL. As
SDL does not identify the particular obligation O(AAB) we have no way of determining that OA is in

145

Chapter 5 - Representing Provisions

SDL fails to distinguish between propositions about norms, and the actual norms
themselves. Makinson [Mak99] comments that simply describing norms as true or
false is insufficient, and that it is a fundamental problem of deontic logic that norms
are simply considered to have truth values. We argue that, since propositions about
norms are derived from the norms themselves, invalid or misleading inferences will
result if we deal merely with the propositions rather than with the identified norms
that make those propositions true or false. Assume, on both occasions, Steelmans

tulfils their obligation to deliver 10 tons of steel (that is, A is true), we have:

OAANAANOANA

(standard propositional logic)
OA NA
The two different fulfilment occurrences are not distinguished here. Most
problematically, it seems that, had Steelmans delivered the steel only the first time we

would still have:

OA AnA
This says that A was obliged and A was done. Using Anderson’s reduction
[And58] of obligation to violation in the case of falsity of the obliged proposition
(OA =44 [(—A—Violation)), Steelmans’ violation of their second obligation is not

evident since A is true by virtue of fulfilment of the first obligation.

To rectify the above problems, it seems that norms (and occurrences which fulfil
or violate those norms) should be individually identified. A treatment of obligations
as entities, rather than as operators on propositions, has been proposed in
Kimbrough [Kim2001]. Kimbrough has recommended identifying both obligation
states (instead of the O operator) and violation states (instead of the insufficiently
specific Violation predicate) to correct some existing deficiencies of SDL. We wish to
justify Kimbrough’s suggestion and, using our own notation, illustrate their

pertinence to the multiple-steel-orders example.

fact a partial description of O(AnB). Maintaining an identifier for the obligation (e.g. using subscripts,
0,(AnB) and 0,(A)) would be useful in a database environment to allow us to look up the full
description of the obligation 0, when we have partial information on it.

146

Obligations (Duties)

In our world of identified norms, the particular obligation of Steelmans to
deliver steel by 1" October may be denoted as being-obliged2, as shown in Table 11

(page 143). The second obligation may be represented similarly as, say, being-obliged20.

Now, using the simplified representation of delivery obligations from Table 11,
our continuous query mechanism (§3.3) determines that deliveringt fulfils both the first
obligation (being-obliged2) and the second (being-obliged20). This is because delivering! fills
the queries associated with both obligations (as both queries only ever return a
maximum of one occurrence — hence the criterion first” in each query) and thereby

fulfils both obligations.

Clearly, an adjustment is required to cater for the fact that the same performance
is not intended to fulfil multiple obligations. Kimbrough [Kim2001] and
Daskalopulu and Sergot [DS2002] recommend the use of a sake_of() predicate to
allocate fulfilment occurrences to the obligations they are intended to fulfil. Since
different allocations are possible over time, and depending on which allocation basis
is used (e.g most-recent-first, least-recent-first, or arbitrarily complex allocation
criteria), we choose to use an occurrence of allocating in place of Kimbrough’s sake_of{()
predicate. We might then represent the two obligations as shown in Table 12 below;

the required amendments to the queries are shown in bold.

147

Chapter 5 - Representing Provisions

Occurrence Role Participant

being-obliged2 obliged Query510

IsAccordingTo Clause C.2

being-obliged20 obliged Query514

IsAccordingTo Clause C.2

Query510 = first ((occurrence of delivering where (delivered is steel and participates in role item_measured in
an occurrence of measuring where quantity_measured is 10 and unit_measured is tons)), intersection
(occurrences of delivering which are before 1 October 2001) intersection (participants in role allocated in
occurrences of allocating where allocatedTo is being obliged2 and allocationBasis is FIFO))
Query514 = first ((occurrence of delivering where (delivered is steel and participates in role item_measured in
an occurrence of measuring where quantity_measured is 10 and unit_measured is tons)), intersection
(occurrences of delivering which are before 1 October 2001) intersection (participants in role allocated in
occurrences of allocating where allocatedTo is being obliged20 and allocationBasis is FIFO))

Table 12: Corrected schema for storing obligations:

with performance allocation constraints added

We then require a rule that each delivery of steel must be allocated, using some
specified basis, to a single obligation. Following application of such a rule, we might

have the following occurrences of allocating:

allocating1
allocated: delivery1
allocatedTo: being_obliged2
allocationBasis: FIFO (first in, first out)
allocating2
allocated: delivery2
allocatedTo: being_obliged20
allocationBasis: FIFO (first in, first out)

We can then ensure that each delivery satisfies only a single obligation. We do
not here deal with assignment of performances to multiple obligations, such as when
a single delivery of 20 tons of steel (or similatly, a single payment of many dollars)
tulfils multiple obligations. In the latter case, each delivered 77 of stee/ (or similarly,
paid dollar) is allocated to an obligation, rather than each defivery of tons of steel
(similarly, payment of dollars). Neither do we deal with the complexities of
accumulation of debts, such as when multiple purchases-on-account during a month

are aggregated at month end into a single obligation to pay during the following

148

Obligations (Duties)

month, and such obligations may accumulate from month to month. Assignment of
payments to purchases, and corresponding conclusions about transfer of ownership
for each item purchased during the period are generally controlled by sophisticated
organization-specific policies, which are outside the scope of this work. We make
the simplifying assumption that each discrete performance occurrence pertains to a
single obligation.

Given our above-specified obligations, and our ability to deduce their fulfilment
by determining whether queries are filled, we can derive the following occurrences

when Steelmans delivers 10 tons of steel on time, on both occasions:

fulfilling1
fulfilled: being_obliged2
fulfiller: delivering1
fulfilling2
fulfilled: being_obliged20
fulfiller: delivering2

To illustrate our definition of obligations graphically, we might think of a
metaphor of eggs and buckets. Each time an observable occurrence happens, create
an egg to describe that occurrence (e.g. deliveringt, paying1). Each time an obligation is
incurred, create a bucket to represent what is obliged under that obligation'”. Only
eggs of a certain description can go into the bucket. Assess each obligation by
checking, before or after the deadline, whether the bucket is full. Using the egg and
bucket metaphor, Figure 9 shows an obligation to deliver that has not yet been

tulfilled or violated, whilst Figure 10 shows an obligation that has been fulfilled.

19 Note that when an obligation is incurred you create both an egg and a bucket since the obligation is
itself an observable occurrence to be recorded, and therefore justifies an egg.

149

Chapter 5 - Representing Provisions

being obliged2

obliged:

Bucket being empty bucket =
(count of query results = 0) query510 =
on or before 1 October —» &€——— first (allocated)
. . . occurrence of
Obligation not yet fulfilled. Steelmans delivering
10 tons of steel
before 1 October 2001.

Figure 9: A not-yet-fulfilled-or-violated obligation

TRAC
o' ¢
(=1
(:\aj’ \ﬂlaSYS
e qene
\)5‘ S 0ﬁ
™ ()\K“} €
L avd
S HeoP®
being obliged2
obliged:
Steelmans delivering bucket =
10 tons of steel ﬁdelivermg’ query510 =
on 15 September 2001. &——— first (allocated)
(count of query results = 1) - ‘ occurrence of
© s . 1 deliveri
Obligation fulfilled! Stesimans delivering

before 1 October 2001.

Figure 10: A fulfilled obligation

The query-based approach is well-suited to the specification of free-choice

obligations such as the obligation to ‘deliver a thick-base pizza or a burrito with extra

cheese’. Such an obligation is awkward for an approach based on matching

prototypical objects (e.g. [[DS2002]): it is unclear what the prototypical object in this

case is, since pizzas and burritos are different object types entirely. A query-based

150

Obligations (Duties)

approach simply states the query as “first of ((delivering a thick-base pizza) union (delivering a burrito
with extra cheese))’. As any appropriate delivery can fill this query, the obligation is

straightforward to express.

It is evident that the identification of obligations and occurrences brings some
benefits over the operator-based account of Standard Deontic Logic: separate
obligations can be uniquely identified, and we can determine which of these several
obligations has been fulfilled, and by which occurrences of delivering, even when the

content of the obligation (e.g. ‘delivering 10 tons of steel’) is similar.

5.6.2 Violations: Primary and secondary obligations

The obligations, being_obliged! and being_obliged2, of SkyHi and Steelmans respectively,
are primary obligations; their appearance is #of contingent on the existence of
violations. In contrast, secondary obligations are brought about by violations.
Secondary obligations typically impose duties upon the violator. Clause L.3 of our
application scenario tells us there are secondary obligations to pay damages for
violation. Often the violator is not personally liable for the violation — for example, in
the case of insurance or other transfer of liability — as the secondary obligations may
fall upon other parties. So, the secondary obligations may describe occurrences
where the agent (i.e. duty-bound party; e.g. payer or deliverer) is the original violator,

or where the agent is some other party.

In order to represent secondary obligations, occurrences of violating must be
stored. According to the definition of ‘violating’ given in Clause L.2 of our
application scenario, if too few items (less than one in our examples) fit the query
after the deadline (1 September 2001 in Clause C.1, 1 October 2001 in Clause C.2),

the obligation is violated®. 'Table 13 gives a representation of how violations are

20 Note that if the count, before the deadline, of items fitting the query is zero, the obligation is not
violated, but rather ‘not (yet) fulfilled’ (which is not to imply that it ever will be fulfilled). The
Disquotation Theory models obligation violation, but not fulfilment, explicitly, and therefore the
subtlety of ‘not violated’ meaning either ‘not yet fulfilled’ or “fulfilled’ is not captured.

It should be pointed out, also, that we see occutrences as being of a single type, implying
obligation states and violation states are distinct entities. Kimbrough argues that an obligation state,
ought(e;), can be the same as a violation state, violating(es). Our contention is that each is an

151

Chapter 5 - Representing Provisions

produced. The table also illustrates that violations bring about liability to damages
(obligations to pay) through a function that creates secondary obligations (Clause
L.3). Figure 11 shows the assessment of obligation violation graphically, using the

egg and bucket metaphor introduced on page 149.

Violations of individual terms may bring about so-called ‘breach of the contract’.
It should be noted that not all violations or breaches are punishable. Even if
secondary obligations are entailed, these secondary obligations may be prima facie

obligations (§5.6.4) that are voided (§5.6.9), thereby forgiving the transgression.

Occurrence Role Participant
violating_function1 domain Query515
violated Query516

IsAccordingTo | Clause L.2

being_obliged_function2 domain Query517

obliged Query518

IsAccordingTo | Clause L.3

Query513 = see page 143

Query515 = occurrences of count(results of |Query513|), after their deadlines,
being < max-possible-results(|Query513|)

Query516 = occurrences of being_obliged where (query counted in |Query515|) is obliged

Query517 = occurrences of successfully instigating prescribed procedure following
occurrences of violation of occurrences of being-obliged

Query518 = first occurrence of paying damages for the violation for which
legal action was instigated in |Query517|

Table 13: A schema for storing violation conditions, and

consequent liability (secondary obligations) to pay damages

independent entity: an occurrence, being_obliged1, and an occurrence, violatingt, where the participant
in the role violated in violating1 is the obligation being_obliged1.

Finally, it is worthwhile to point out here that the law may more generally define violation as
coming about whenever there is an occurrence of the obliged state-of-affairs being impossible., and
the duty-bound party is to blame for this. Violation would then be defined as a function whose
range is relevant occurrences of being_impossible. Occurrences of being_impossible are brought about
by occurrences of counting, where the obliged occurrences are counted, the count is zero, and the
count was made after the deadline. However, occurrences of being_impossible may also be brought
about by other wilful acts or negligence before the deadline. The definition of violation in terms of
occurrences of being_impossible, captures the notion in law that it is possible to violate an obligation
even before the deadline, by doing — or, indeed, omitting — something, and making it impossible to fulfil
the obligation.

152

Obligations (Duties)

1
cO“‘Rpé:‘Z'-
e C-
12 0® s
© ee\“\a(-:ef
518 o e
WU s ©
10 Pyeior®
S\ oo
being obliged2

obliged:

Bucket being empty bucket =

(count of query results = 0)* query510 =
% first (allocated)

after 1 October —
Obligation violated.

occurrence of
Steelmans delivering

10 tons of steel
before 1 October 2001.

Figure 11: A violated obligation

What prohibition is the obligation to pay or deliver by a deadline equivalent to?
It might be tempting to think of the obligation to pay by 1" September 2001 as
equivalent to the prohibition against paying after 1% September 2001. However, we
must be careful of our reading and implementation of this prohibition. We do not
want a prohibition against paying after 1% September 2001, since this would fire a
violation each time a payment is made after 1% September 2001, which is not what we
intend. ‘Better a late payment than no payment’ is not captured by that logic
interpretation. Rather, our prohibition is against the single case where no suitable
payments are made before 1% September, and the violation conditions for this have

been defined already in violating_function.

153

Chapter 5 - Representing Provisions

5.6.3 Directed obligations

With particular reference to the obligation being_obligedt in Table 11 and Table 13, we

have specified the following pertinent parties:

responsibility in surety, empowerment to initiate recourse

party responsible to act (duty-bound party): payer mentioned in Query19 describing

the primary obligation (SkyHi)

party responsible in surety: payer mentioned in Query518 describing the secondary

obligation (happens to be SkyHi again)

party directly benefiting from the obliged action: payee mentioned in Query19

describing the occurrences obliged under the primary obligation (Steelmans)

party empowered to initiate recourse: instigator mentioned in Query517 describing the
occurrence that brings about the secondary obligation (happens to be Steelmans
again)

party entitled to outcome of recourse: payee mentioned in Query518 describing the

secondary obligation (Steelmans, again)

party issuing the norm: the party uttering, or organization or document
associated with, the clause (for example, the Clause C.1 is associated with the

contract between SkyHi and Steelmans)

Disquotation Theory says nothing specific about

|

Requirement 31 (pg 67):

(suggested by Makinson [Mak86]), and entitlement to the | Directed obligations, with

outcome of resource. Simply adding additional thematic or
domain-specific roles to the primary obligation to capture

these role-players is inappropriate. Instead, we specify what

actor, beneficiaty, liable
party, source utterance, and

issuer, must be expressible.

additional obligations and powers come about upon violation of the primary

obligation.

154

Obligations (Duties)

5.6.4 Prima facie (defeasible) and all-things-considered

obligations

As each obligation is according to a particular clanse, these obligations may be considered
as a representation of the notion of prima facie obligations discussed in the deontic
logic literature [PS97]. To avoid confusion, we ought to note at this point the
distinction between primary obligations and prima facie obligations put forth in
Prakken and Sergot [PS97]. There is one contrast between primary and secondary
obligations (the latter coming into being upon violation of the former), and another
contrast between prima facie and all-things-considered obligations (the former being
on-the-surface, if clauses are considered in isolation, and the latter being what is said
by the contract, act, or law as a whole). Our treatment of obligation instances as
being ‘according to a particular clause’ and our selection of particular clauses to void
during conflict resolution (described in detail in Chapter 6) is intended to deal with
the distinction between prima facie (defeasible) and all-things-considered obligations
(see also §5.6.9). The distinction between primary and secondary obligations, we
have seen (Table 13), is dealt with through occurrences of violating and functions

that bring about secondary obligations as a result of those occurrences of violating;

5.6.5 Conditional obligations

Obligations, like other occurrences, are often contingent: they (i.e. occurrences of
being-obliged) may be triggered by some uncertain future occurrences. We have seen
(§5.6.2) that conditional obligations, such as secondary obligations, may be
represented through the function device, where the contingent occurrences are the

domain of the function that produces individual obligation instances.

Consider the contingent obligation, specified in Clause C.4 of our application
scenario, to refund the amount paid upon a return valid in terms of Clause C.3.
Table 14 depicts the representation of this contingent obligation as
being_obliged_function3, which produces an occurrence of being obliged for each

occurrences of ‘returning, according to Clause C.3’.

155

Chapter 5 - Representing Provisions

Occurrence Role Participant

being_obliged_function3 domain Query519
obliged Query520
isAccordingTo | Clause C.4

Query519 = occurrences of returning where participant in role isAccordingTo is Clause C.3
Query520 = first occurrence of refunding where (refunded is SkyHi) and (participant in role refunded_amount is
(total of participants in role paid_amount in (occurrences of paying where (participant in role paid_for is
(participant in role returned in |Query519))))))

Table 14: A schema for storing a conditional obligation

From the schemas in Table 10 (encoding a right to %}

return) and Table 14 (encoding a claim contingent on valid | Requirement 24 (pg 44):

. . We must be able to refer to
returns), it should be evident that an occurrence, returningt,
individual obligations of

which is a physical return within 30 days of purchase, brings | cich party, and trace cach

about a notional return, say retuming1, which is a valid return obligation to the general

. . . rescriptions, and events,
in terms of Clause C.3. retumingtt, in turn, brings about a preserip
that brought it about, or

claim, say being_obliged31, which is an obligation to refund the -

amount paid. The return, returningt1, synonymous with
returning_functioni(returning1), and the Obligatiorl, being_obliged31, synonymous with

being_obliged_function3(returning11), can be stored as follows:

returning11 = (legal consequence)
source_rule: returning_function1 (provenance)
source_occurrence: returning1 (evidence)
returned: steel purchased in purchasing1
returner: SkyHi

being_obliged31 = (legal consequence)
source_rule: being_obliged_function3 (provenance)
source_occurrence: returning11 (evidence)
obliged: Query521

Query521 = first occurrence of refunding total amount paid for purchasing1

156

Obligations (Duties)

As illustrated in Figure 12 and Figure 13 below, the birth of obligation instances
from general obligation policies and specific occurrences, may be seen as analogous
to the birth of a child from parents. In both cases, a genetic marker — DNA for

children, source identifiers for obligations — allows us to trace the product to its

@ 3

q "

\

origin.

IRV
RIS

G

|

E|

Figure 12: Birth of a child from parents

Provenance _ Evidence
General Obligation: 28 Occurrence:
being obliged function3 ‘==

domain:
occurrences of : é
sstuiny Fecusniosi]
Clause C.3

isAccordingTo: SkyHi returns
Clause C.4 purchased steel

A in accordance with

\\‘ Lega| Conseq uence Clause C.3

i Obligation Instance:
% Steelmans is obliged

being obliged3l to refund the total
amount paid

source_rule: beingﬁobligedﬁfunction:%
(inclause C.4)
source_occurrence: returningll

Figure 13: Birth of an obligation instance from policy and evidence

157

Chapter 5 - Representing Provisions

5.6.6 Ought-to-do and ought-to-be obligations

An approach based on the occurrence abstraction provides a M

Requirement 22 (pg 43):

uniform treatment of events and states for obligation
o It must be possible to
fulfilment monitoring. The status of both ought-to-do and .

express and monitor both
ought-to-be obligations can be assessed by counting how | obliged actions and obliged

: : states of affairs.
many occurrences of the desired event or state (e.g. action,

process, or state-of-affairs) have occurred by the deadline, and by triggering
violations when a desired event or state does not obtain. FEatlier policy-based
approaches associate obligations solely with method invocations (see page 42). Such
approaches cater for push-based calls-to-action. However, they neglect the need for
execution components to be able to assess whether desired states-of-affairs have
obtained in a pull-based manner and, by hard-wiring method calls, can restrict
components from pursuing alternative means of obligation fulfilment that were not

originally available.

5.6.7 Several (multiple) obligations

A particular English sentence (clause) may define a single v

obligation, such as the single occurrence of being-obliged (by | Requirement 32 (pe 67):

that clanse) to pay Steelmans $25,000 by 1 September 2001. Olslhigzittom showld b
individually identified.

However, a single clause may also define how multiple

separate obligations are brought about. Consider Clause 1.3 of our application
example, which effectively says that ‘each occurrence of successfully instigating the
prescribed procedure after each violation of an obligation brings about a separate
obligation to pay damages’. Interpreting Clause 1.3 as implying the existence of a
single occurrence of being obliged would be incorrect, as this would imply a joint or
collective obligation by all liable parties together to pay damages to all aggrieved parties
together. Rather what is intended is that there are several, separate obligations. The
several obligations may be formally defined as:

f : occurrences of successfully instigating — occurrences of being-obliged

158

Obligations (Duties)

This reads that a function f maps occurrences of successfully instigating to
occurrences of being obliged. In Table 13, 7 is the identified function
being_obliged_function2. being_obliged_function2 takes as its domain occurrences of
successfully instigating and produces occurrences of being-obliged. ~ For example
instigatingl, a successful instigation, generates the particular obligation
being_obliged_function2(instigatingl) whetre being obliged_function2 was a function defined in
Clause L.3. It should be clear from this discussion that, in the case of clauses that
generate multiple obligations, individual obligations can be identified by combining
the function identifier of the general obligation (e.g. being_obliged_function2) with the
identifier of the occurrence that generated the obligation.
being_obliged_function2(instigatingl) is synonymous with the following specific obligation

instance that may be explicitly stored in the occurrence store:

being_obliged21 = (legal consequence)
source_rule: being_obliged_function2 (provenance)
source_occurrence: instigating1 (evidence)
obliged: Query522

Query522 = first occurrence of paying damages for the violation for which
legal action was instigated in instigating1

being_obliged21 (where 21 is a unique identifier) is another M

Requirement 27 (pg 50):

name for the particular obligation instance brought about
Existence of obligations
from the general obligation policy (being_obliged function2) in must be derived from
the light of specific occurrences (instigatingt). The link | interpretation of law, rather
between an obligation policy (function), a happening, and than from a closed set of
communicative acts or a

the resultant obligation instance is recorded by storing the rigidly defined protocol

sources of the obligation as its source_rule and source_occurrence

attributes.

Query522 was formed through the instantiation of bound variables defined in the
general obligation. In Table 13 (page 152) we have defined the domain of the
function using a query, Query517, and specified the participants in the occurrences in
the range of the function. Bindings from a participant in an output occurrence to a

participant in the corresponding input occurrence that produced that output are

159

Chapter 5 - Representing Provisions

represented using |Query517| embedded in any valid query expression. |Query517| in the
query is then substituted with the corresponding value from the domain of the
function. For example, assume instigatingt is a successful instigation. Then, Query518
(first occurrence of paying damages for the violation for which legal action was instigated in |Query517|),
generates Query522 (first occurrence of paying damages for the violation for which legal action was
instigated in instigating1), for the occurrence being_obliged_function2(instigating1), also known as

being_obliged21, brought about by the occurrence instigating1.

The representation of several obligations is not dealt with in Lee’s augmented
Petri Nets [BLWW95] and Daskalopulu’s state machine based [Das99] approaches to
monitoring obligations, which we reviewed earlier (§2.5.7). In those approaches, the
single obligation of a client, Peter, to pay a supplier, Susan, can be denoted.
However, the approaches are not able to capture more embracing legislative
provisions such as ‘clients are obliged to pay suppliers for purchases’ where a single
sentence defines several obligations. In this case, each occurrence of purchasing
brings about, via a function, an obligation (occurrence of being obliged) to pay for

that purchase.

5.6.8 Impersonal and collective obligations

Functions may be used to represent the generation of v

individual, separable obligations on each member of a | Requirement21 (pg 42):

group. However, equally important, and frequently Tope ol (sellzane)

. obligations must be
mentioned in the deontic logic literature, is the ability to _
expressible and checkable.

represent impersonal and collective obligations, where no
specific individual bears the personal responsibility. Moffett and Sloman [MS93]
mention the notion of collective responsibility, but no implementation is provided in
the subsequent work on Ponder [DDLS2001]. Ponder distributes an obligation to a//
subjects of the obligation — that is, distributes multiple, separate obligations —
whereas a collective obligation is meant to capture the idea that the obligation is one

obligation and any of the members of the group could fulfil the obligation. Only a

160

Obligations (Duties)

single occurrence, by any one of the group members responsible, needs to be

brought about to fulfil the collective obligation.

Consider the obligation, say being_obliged4, of any report-writing component to
generate year-end reports on 30 September 2001. Assume there are many such
components able to fulfil the obligation. In our approach, the obliged occurrence
can be described using the query, say Query523, which returns the first occurrence of
generating, on 30 September 2001, year end reports, by a report-writing component. Certainly, there is
some indeterminacy here, as any of a number of components could fulfil the
obligation”, but this is not problematic since we require only that the obligation be
tulfilled by some member of a group and do not prescribe who specifically must
fulfil it. Our high-level requirement need not be polluted by specific indication of
which particular component is responsible, but can nevertheless meaningfully specify
responsibility of a group. Our representation is able to assess when the group’s
responsibility has been fulfilled by determining when the query, Query523, is filled.

We of course assume that all components are diligent — i.e. that one of them will
take up, or be assigned, the task. And in the event that none do, we are equally able
to assess that the group’s obligation has been violated, since no occurrences fitting

the query described in the obligation have occurred by the deadline.

5.6.9 Life cycle: From birth to termination

We have seen how the function device may be used to]

explain how obligations arise or are incurred (§5.6.2, §5.6.5). | Requirement 33 (pg 70):

Parties may also define arbitrary conditions that specify Obligation life-cycle must

. . . . be modelled. Obligations
when obligations — or indeed other types of legal relations —
must be traceable to the

terminate. These are called ‘termination provisions’ [TB99, events, states, and

pl146]. For example, the obligation to repay a government- LepHlHoneItia Ak ion 0t

. . them about or cancelled
granted student loan typically ceases in the event of death, N
them out.

retirement, or (some types of) disablement. ‘Exclusion’

2 Though we do not deal formally with such matters here, some co-ordination mechanism is
obviously desirable to ensure that no component tries to fulfil the obligation when another
component is busy with it, and looks likely to succeed.

161

Chapter 5 - Representing Provisions

clauses [TB99, p147], amongst which are ‘force majeure’ provisions [TB99, p149],
define the circumstances under which an obligation to pay damages becomes voided,
thereby releasing (excluding) a party from liability. Legislation on ‘frustration’ [TB99,
p152] also defines circumstances under which provisions become voided. An
obligation is ‘frustrated’ when its performance is impossible, illegal, or pointless. Let

us now look in more detail at the end of the life cycle of norm instances.

In Standard Deontic Logic (page 63) it is not clear that Steelmans’ first obligation
to deliver the steel was fulfilled: OA A A should, intuitively, imply —OA since a fulfilled
dischargeable obligation no longer stands. Or more specifically, we should be able to
infer that the obligation, being_obliged2 (Table 11, page 143), once was in force, but is
now fulfilled and no further call to action results. We therefore must be aware of

occurrences of either its fulfilment, violation, or being voided. For example:

fulfilling1

fulfilled: being_obliged2
violating1

violated: being_obliged2
being_void1

voided: being_obliged2

Capturing such occurrences allows us to capture the /fe-cycle of an obligation, and
thereby assess whether it is still active and requires fulfilment. Standard Deontic
Logic allows us to make no such inferences. This is because SDL deals with truth-
valued propositions about general standing obligations, rather than with specific

identified obligations.

162

Obligations (Duties)

As we have seen, there are many ways in which ™

an obligation may terminate: each of the above Requirement 23 (pg 43):

The implementation must allow

occurrences (fulfilling, violating, being-voided)
introduction of broad reaching

counts as a cessation of the obligation”. We can oo (or it R e

define a function — shown in Table 15 below — to and ‘violation’) by a single insertion

anywhere in the specification.

capture this.

Occurrence Role Participant
ceasing_function1 domain Query524
ceased Query525

Query524 = (occurrences of fulfilling) union (occurrences of violating) union (occurrences of being_void)
Query525 = participants in role theme® in |Query524|

Table 15: Defining termination or cessation of an obligation

A fulfilment, fulfilingt, of say being_obliged2, would then produce the following

cessation occurrence:

ceasingl = (legal consequence)
source_rule: ceasing_function1 (provenance)
source_occurrence: fulfilling1 (evidence)
ceased: being_obliged2

22 In contrast, CANDID (page 61) recognizes only fulfilling and reneging as ways in which an
obligation may terminate [Lee80, p97]. As we shall see later (Chapter 6), accepting voidance as a
means of obligation termination is essential for conflict resolution.

23 theme here refers to any of the open set of role names: fulfilled, violated, voided since these domain-
specific roles can be generalized to the semantic role ‘theme’ commonly used in knowledge
representation in artificial intelligence [All95; Sow2000].

163

Chapter 5 - Representing Provisions

The notion of what it means to be a current obligation may be defined by the

following laws pertaining to obligation life cycle:

Commercial Trade Act

A party is only obliged to fulfil obligations that have not ceased. Clause L.4

Using Clause L.4 as our basis, a ‘current obligation’ can then be defined as

illustrated in Table 16 below.

Occurrence Role Participant

being_obliged_function4 domain Query526
obliged Query527
isAccordingTo Clause L.4

Query526 = (occurrences of being_obliged) minus (participants in role ceased in occurrences of ceasing)
Query527 = participants in role obliged in |Query526|

Table 16: Defining ‘current’ (active) obligations

We might take obligation instances generated by being_obliged_functiond as a/l-things-
considered obligations (§5.6.4), since the function takes as its domain prima facie
obligations, but only outputs obligation instances (occurrences of being obliged) that
have not been voided by some other law. It should be noticed that the function
device provides us with a means of selecting appropriate interpretations as to what is

obliged; see also page 105 for discussion of some ways of selecting provisions.

Figure 14 and Figure 15 below depict how the life-cycle of an obligation instance

is in some senses comparable to the life-cycle of an individual person.

164

Obligations (Duties)

1901

===' conceptionl 1975

el 1976
u
u
u
u

h=r being alivel =ssss= sesssrsspesrsssassaenp Observation in 1981
.
—_— -
g% []
u

/, [] R R

hes ool S D) --eseerespesresnesnen Observation in 2076

u

3 u
/ CEEEE TEFTREEEREErs Observation in 2101

Figure 14: Life cycle of a person

Steelmans’ obligations to deliver

According to...

Clause C.2 Clause L.4
(prima facie obligation) (current, all-things- L]
considered obligation) L]
|]
e A PP TT TR TP TV PTY FPPPTTT TS Observation at 1 Feb
|] (No prima facie obligations)
|]
]
being_obliged2 being_obliged 42 ® Observation at 15 August
source_rule: being_obliged functions® (Prima facie obligations according to
source occurrence:geturgingll L] oth clauses. Clause L.4 is the one
m we choose as describing all-things-
- considered obligations.)
Steelmans delivers steel: deliveringl -
Query (bucket) isfilled: £i11ingl .
Obligation is fulfilled: fulfillingl
Obligation ceases: ceasingl :
]
: Observation at 1 November
»+ being_obliged2 - (No all-things-considered obligation:
B The function defined in Clause L.4 does
|] not create an obligation on 1 Nov
» because its domain only contains

obligations that do not participate in
occurrences of ceasing.)

Figure 15: Life cycle of an obligation instance

165

Chapter 5 - Representing Provisions

5.7 Summary

We saw in this chapter how a practical extension of
Kimbrough’s Disquotation Theory provided us with a
means by which provisions could be represented and stored.
We showed how finding the domains an occurrence is in —
what queries cover it — allows us to assess which provisions
are applicable, and generate /Jegal consequences, in a given
situation. We also illustrated how we determine when a
provision is fulfilled or violated. Contractual notions such as
defined terminology, powers, authority, duties, and breaches
were catered for through stored functions, and occurrences
of prohibiting, permitting, obliging, fulfilling, and violating.

Conditional obligations were supported through functions.

|

Requirement 30 (pg 62):

An approach is needed
where provisions are
explicitly captured as data,
and are thus readily
available for inspection and

analysis.

|

Requirement 26 (pg 49):

Provisions (legal relations),
should be explicitly stored,
not implicitly encoded in

process models.

In addition, the function device allowed the expression of provisions where multiple

(several) obligations are brought about by separate occurrences — a problem not

tackled in augmented Petri Net- and state machine-based mechanisms (§2.5.7), which

deal with provisions referring to single obligations.

Subjective interpretations, as

would eventuate from alternative institutional perspectives and systems of law, were

supported through function and clause identifiers.

Importantly, by integrating jurisprudential theories from
Hohfeld, Anderson, Bentham, Kimbrough, Makinson, Jones,
and Sergot, we represented in this chapter various subtleties
of the phrase ‘having a right to ...” in English. We saw that

‘your having a right to ...” may mean that:

® avested liberty exists (5.4.1), where others are prohibited
from interfering with a state of affairs, such as the state

intended to be achieved by an obligation.

|

Requirement 11 32):
Fundamental legal
conceptions — such as
duties, privileges, powers,
and immunities [Hoh78] —
must be natively
incorporated in the

development approach.

® your performing a specified action does not bring about any violations (5.4.2).

166

Summary

® you possess the power to bring about a state of affairs (§5.5).
® you are the party expected to benefit from the performance of an obligation
(§5.0).

® you are the party entitled to the outcome of recourse if the obligation is not

fulfilled (§5.6).

Clearly, a complex web of interleaving provisions is easily |

Requirement 28 (pg 51):

woven. Furthermore, in dynamic environments where
o)]) The model should provide
provisions are frequently added by parties acting semi- fundamental legal
autonomously, it often happens that a situation is covered by conceptions, rather than

multiple, conflicting provisions. Mechanisms for conflict hard-code the constraints of
a particular system of law.

detection and resolution are discussed in the next chapter.

167

Chapter 6

Conflict Expression,

Detection and Resolution

In environments where norms are specified by multiple semi-autonomous norm-
givers, conflicting provisions are inevitable. Advanced facilities for detection and
resolution of conflicts between legal provisions are therefore critical for an
application development approach that relies on the storage of inter-related clauses

from company policies, contracts, and regulations.

We suggest that, for conflict expression (§6.1), individual norms can be seen as
sitnated. they are generated from defined functions and must be tagged with the
context in which they were written or spoken. Conflict between norms can be detected
by determining overlaps between obliged, permitted, and prohibited occurrences
(§6.2). Contlict resolution (§6.3) can be achieved by voiding norm instances of
particular origin and selecting those current obligation, permission, and prohibition
instances that remain. Alternatively, we may simply decide to violate some of the
conflicting norm instances in order to fulfil others. We tag our conclusions with a
time (§6.4), so that, without contradiction, we may non-monotonically conclude
different results about which obligations, prohibitions, or permissions stand

undefeated as cases and norms vary over time.

169

Chapter 6 - Conflict Expression, Detection and Resolution

6.1 Expressing Conflict: Identity & Situation

We have argued (Chapter 5) for a treatment of obligations, permissions, and
prohibitions that differs from the standard treatment of these notions in deontic
logic. We have proposed that instantiated norms be treated as individual, identified
entities — that is, variables that can be quantified over — rather than simply as logical
operators as in Standard Deontic Logic. This allows us to refer to specific instances of
obligations (Table 13, page 152; Table 14, page 156; Table 16, page 164), permissions
(Table 9, page 1306), and prohibitions (Table 6, page 131). We suggested that norms
take, as their arguments, descriptions of sets of occurrences, rather than simply
propositions as in the standard treatment. We provided a detailed account of the /ife-
¢yele of norms (§5.6.9): having explained how individual identified norm-instances are
generated from general norms through functions of occurrences, we looked at how

each such instance’s life may end with its fulfilment, violation, or nullification.

Derivation of specific identified ™|

obligations from general obligations is not Requirement 12 (pg 32):

. . . Rule attributes — such as author, specification
treated in SDL. As deontic logics generally P

time and document or utterance location,

neither capture the provenance of a norm (eg scope, and jurisdiction — should be stored, as

its author, speciﬁcation time, or document should attributes of entities related to rules —

such as authot’s roles over time.

position), nor a unique identifier for each

norm, conflict resolution in formal logic is in many cases untenable as insufficient
information about the policies exists to enable choice amongst them. We can rectify
this by associating each identified norm (function or specific obligation instance)
with a clause that construes that obligation as having come about — this allows us to
express conflict by acknowledging and tracing the different sources of norm
instances. We refer to the origin of the norm instance in a particular function defined

by a particular clause as that norm instances’ situation.

As shown eatlier (e.g. §5.2, §5.0.1) we situate a clause by adding an isAccordingTo
role to each function, obligation, permission, or prohibition, where the participant in

this role is a clause identifier (such as Clause C.4) which identifies the utterance that

170

Expressing Conflict: Identity & Situation

promulgated this clause. Using an occurrence of being_in, the utterance identifier can
then be associated with a document position identifier (e.g. Section 1.1), and a
document heading (Supply Agreement Between SkyHi and Steelmans). Alternatively, the clause
can be associated with an utterer (e.g. Managing Director) or institution that associates
itself with the clause (e.g. Steelmans), and an utterance time and place (e.g. Philadelphia,

February 8" 2002).

Organizing rules into documents (contracts) and structuring documents through
sections, sub-sections, headings, bullet-points and other document formatting or
utterance labelling, is an important device that is helpful for conflict resolution and
is not considered by the rule engines we surveyed earlier (§2.2). The benefit of such
an approach, which makes use of document- or utterance- marker information attached to
provisions, 1s that rule groups could be referenced in a manner similar to that found in
hard-copy specifications. For instance, it is common for contracts to make
document-structure references such as: ‘all terms of the contract dated 1 April 2001 between
Steelmans and SkyHi are null and void’, Ot ‘the provisions of Section 3 shall override (that is, conflicting
provisions are void)’, Ot ‘subject to the conditions listed below ...”. These references are used in
order to select provisions (see Guideline 8, page 105). In the retail trade, it is
common to label a set of provisions using names such as ‘The Meal Deal Offer’, or ‘Summer
Specials’, or ‘Premium Promotion’ and to speak of all provisions attached to those names
being null for sales (cases) where other offers apply. All of these references are
critically dependent on document structure or markers. Exploiting document label
information does not preclude provisions from being stored and interrogated
through other access paths as well (e.g. the time the provision was written, or
semantic contents of provision); document structuring information merely provides
an additional convenient organization and interrogation mechanism. Non-written
utterances, may also be marked with their location or context of utterance. For
example, all offers spoken during a session of ‘without prejudice’ negotiation, may be

void, or all verbal agreements made in international waters may be null.

171

Chapter 6 - Conflict Expression, Detection and Resolution

A mechanism of labelling conclusions with the section of law from which they
were derived was employed by Sergot et al. [SSKK806] in their analysis of the British
Nationality Act. That paper recommends that rules take the form:

[proposition] on [date] by Section [section number] if [conditions]

For example:

x acquires British citizenship on 16 March 1987 by Section 11.1 if ..

Conflict-free specifications are assumed and conflicts are removed by redrafting,
For instance, the addition of Section 11.2 which specifies exclusions to the

conditions of Section 11.1, would require the restatement of Section 11.1 as:

X acquires British citizenship on 16 March 1987 by Section 11.1 if ..

and not [x is prevented by Section 11.2 from acquiring British citizenship]

We see this as problematic because a prima facie provision becomes altered to an
all-things-considered provision, and we are no longer concluding
x acquires British citizenship on 16 March 1987 by Section 11.1
but rather, effectively,

X acquires British citizenship on 16 March 1987 by the law as a whole

The provisions of the section are being confused with the provisions of the law
as a whole, thereby diluting the usefulness of the section identifier. Our approach is
to treat utterances as immutable once uttered and accept that clauses may conflict.
Whereas Sergot et al. employ “contraction-and-revision” [HM97], we opt also for
“restrained application”: rules are left exactly as stated and the norm interpreter
chooses one conclusion above another when application of the rules gives

contradictory results.

We make the distinction, shown in Figure 16, between utterances, which are an
tmmmutable part of history, and document labels. Document labels are attached to
utterances. The separation between utterance provenance and document
provenance is critical: as seen in §5.6.5 and §5.6.9, obligations have their origin in
particular ##terances (identified by occurrence or function identifiers). The utterances,
in turn, are sourced in various named documents. The utterances that make up a

document or document portion (e.g. labelled section or clause) may change over time

172

Expressing Conflict: Identity & Situation

as the document is revised. Figure 17 demonstrates the notion of document

history, giving an example of a document undergoing revision.

7

Document Label
Provenance

VS.

Utterance
Provenance

being obligedl
isAccordingTo: Clause C.

thimukelle

Figure 16: Document vs. utterance provenance

Document v1.1

“Nee“
mﬂ‘&
co™ “ewy

s
e‘ee\ma“

eecc‘o“ ~\.v‘@\5
5 e
5\@2\6‘»\\\\“36‘0\-0
S ”
%‘26.92 (e
v 5‘200\'

Document v1.2

ee
“ﬂxﬁgw
co™ oy
3
Stee““a“

Observations at 1 February

being obligedl
isAccordingTo: Clause C.1
being inl
contents:
container:

Clause C.1
Section 1

Note: EDEE uniquely assigns classe/ utterance
identifiers (e.g. Clause C.1, Clause C.4),
but document labels (e.g. Section 1) are user-
assignable.

Observations at 1 November

being obliged259
isAccordingTo: Clause C.4
being_in2
contents:
container:

Clause C.4
Section 1

Figure 17: Document history: obligations and document labels

173

Chapter 6 - Conflict Expression, Detection and Resolution

6.2 Detecting Conflict

Since provisions (Chapter 5) are associated with queries that v
describe sets of occurrences, conflicts may be detected by Requirement 9 (pg 29):

analytically determining overlap between stored queries. | Analytic conflict detection
is desirable.

Extending some basic suggestions of deontic logic (§2.6)*

and policy management systems (§2.3), Table 17 below defines the rules for detecting

: 25
conflicts™.

Description (A conflict exists when query ovetlap shows that ...) Abbreviation

Rule CD1: | An occurrence is in a set of permitted occurrences and a set | Permitted and

of prohibited occurrences. Prohibited
Rule CD2: | An occurrence is in a set of obliged occurrences and a set of Obliged but
prohibited occurrences (see §6.2.1). Prohibited
Rule CD3: | An occurrence is in a set of obligatory occurrences (implying Liable
that not performing the action produces a violation), but a (to violation)
permission to refrain from performing the occurrence exists but Immune

(implying that no violation arises from not performing the | (from violation)
action) [Lee88; Mak88]. A special case of this rule is the case
of concurrent obligations of different strictness (see §6.2.2

and [AEB2002b]).

Rule CD4: | (The function defined in) Clause x says an occurrence exists Liable but
whereas Clause y counts zero occurrences fitting that Immune
description?.

2 The authors cited here do not make use of a notion of occurrences, but reason at the level of
propositions and contradiction between propositions. We restate their suggestions in terms of sets
of occurrences.

% The level of severity of these conflicts is variable.

26 This is in fact a generalization of the previous rule, which says that a conflict exists when one clause
sees a violation but another counts zero violations.

174

Detecting Conflict

Description (A conflict exists when query ovetlap shows that ...)

Abbreviation

Rule CD5:

An occurrence is in the domain of a function but is in a set
of forbidden occurrences. This principle can be derived
from the principle that a power may conflict with a
prohibition against exercising that power [Mak86; JS96]. This
is because, effectively, functions define powers, through

defining what set of occurrences can bring about, according

to a certain clause, other occurrences.

Empowered

but Forbidden

Rule CD6:

An occurrence is in a set of obliged occurrences but is not in
the range of a function. This can be derived from the
principle that an obligation may conflict with the absence of
a power to fulfil that obligation. The latter includes the case
where another party has immunity against a certain state of

affairs being brought about.

Obliged
but not

Empowered

Rule CD7:

Multiple obligations cannot be fulfilled because of resource
limitations. Hansson and Makinson’s doctor example (op cit,
page 65) is an example of such a conflict. These so-called
‘conflicts of priorities” between obligations [MS94] are
detectable by estimating reserves and production, and
comparing to consumption required to fulfil the identified

obligations.

Obliged but
not Able

Rule CDS:

A function brings about (desirable) occurrences in a range,

but the party has insufficient resources to perform

occurrences in the domain of the function.

Empowered

but not Able

Rule CDO9:

An occurrence is in a set of permitted occurrences, but the
party has insufficient resources to avail themselves of their

permission.

Permitted but

not Able

Table 17: Conflict detection rules

Contflict detection is best illustrated through examples:

175

Chapter 6 - Conflict Expression, Detection and Resolution

6.2.1 Example 1: Obligation conflicts with prohibition

Let us record, in a new and otherwise empty data store, that Steelmans is a supplier
of SkyHi, by inserting an occurrence, being_suppliert, as described in Table 3 (page 80).
Further, assume that a prohibition against paying more than $10,000 to suppliers is

provided by Clause P.3, and stored as illustrated in Table 5 (page 130).

Consider now that SkyHi is obliged, according to Clause C.1, to pay $25,000,
before 1 September 2001, to Steelmans for a delivery. Assume that this payment has
been contemplated, but not effected — i.e. it has not yet occurred; no occurrence of
paying has been added to the data store. As shown in Table 11 (page 143) the
obligation is recorded by storing an occurrence, being obliged1, where the ob/iged (that is,

contemplated) occurrences are described by the query Query19.

Now, applying rule Rule CD2 (page 174), and comparing the description of the
obliged occurrences (Query19) to other queries stored in the database, even in the
absence of payment data, our coverage-checker finds that, given the existence of
being_suppliert, Query19 analytically overlaps with Query10 (§3.3.3). Further, Query10 is a
description of prohibited occurrences (by virtue of Query10’s participation in prohibiting1;

Table 5, page 130).

We have thus shown that what is obliged (the description of the obliged
occurrences) in this context is covered by what is prohibited (the description of the
prohibited occurrences). This indicates a conflict. 'This situation is illustrated

graphically in Figure 18.

176

Detecting Conflict

prohibited:
obliged:
queryl9 = queryl0 =
first (allocated) occurrence of occurrences of paying
paying $25,000 to Steelmans more than $10,000 to suppliers
Clause C.1: Clause P.3:
SkyHi must pay Payments of more than
Steelmans $10,000 to suppliers
$25,000. are prohibited.

Figure 18: Conflict shown by overlap between obliged and prohibited occurrences

This example demonstrates that EDEE’s coverage-detection facility is capable of
detecting the case where a prohibition dynamically comes into conflict with an
obligation: as is evident from §3.3.3 and {3.3.4, the conflict appears when the
occurrence, being_suppliert (indicating that Steelmans is a supplier), is inserted and
brings Query10 (from the prohibition) and Queryt9 (from the obligation) into ovetlap.
Revisiting the covering relations graphs shown eatrlier in Figure 5 and Figure 6 (page
93), let us now highlight Query19 (the occurrences obliged by being_obligedt) and Query10
(the occurrences prohibited by prohibitingt). Figure 19 shows that, before the addition of
being_suppliert, there is no conflict between the obligation and the prohibition, since
there is no route from Query19 to Query10 in the covering relations graph. Figure 20
shows how the addition of being_suppliert introduces a route in the graph from Query19
to Query10 and therefore brings about a conflict between the obligation and the

prohibition.

177

Chapter 6 - Conflict Expression, Detection and Resolution

Steelmans
-—
. ¢
7
q 3

... is covered by ...

Figure 19: Covering relations graph before addition of being_supplier1, highlighting the
obliged and prohibited occurrences, with no route connecting them

Steelmans

Numbers in circles show the
order in which these new
relations are discovered.

q 3

/ is covered by ...

1 >
... is now also covered by ...

Figure 20: Covering relations graph after addition of being_supplier1, highlighting the obliged
and prohibited occurrences, the connecting route, and the dynamically-discovered conflict

178

Detecting Conflict

We can store the conflict as:

conflicting1 =
conflictor: being_obliged1
conflictor: prohibiting1

We will see in §6.3.1 how this recorded conflict can be used to show that an agent
acted outside their authority, and that, in terms of some commercial laws of agency,

the prima facie obligation to pay is therefore not binding.

6.2.2 Example 2: Obligations of different strictness

SkyHi might have a prima facie obligation, according to Clause C.1 (in the Contract
Between SkyHi and Steelmans entered into on 1% August 2001 of §1.2) to pay before 1" September
2001. But, SkyHi may also have another prima facie obligation, according to Clause
C.8 (of their Standard Terms and Conditions) to pay within 30 days of delivery. In the
case where delivery was made on 15" September 2001, the obligation to pay for
deliveringl by 1 September and the obligation to pay for that same delivery by 15"

October (30 days from 15 September) are in conflict.

At first sight, it appears that this conflict could be detected by noticing that the
queries “first of (occurrences of paying for delivering1 before 1% September)’ and first of (occurrences of
paying for delivering1 before 15" October)” — which define what is obliged in each case — have a
subset-superset relationship. Diagrammatically, Figure 21 below seems an intuitive

rendition of the conflict.

179

Chapter 6 - Conflict Expression, Detection and Resolution

beingﬁobligiji—‘——‘——‘—a’ ‘F-~s~‘\\\\iiingobliged209

obliged: obliged:

(first of) (first of)
occurrences of SkyHi occurrences of SkyHi
paying for deliveringl paying for deliveringl
before 1 September by 15 October
Clause C.1: Clause C.8:
SkyHi must pay ... SkyHi must pay
before 15t September. within 30 days of

delivery

Figure 21: Initial view: conflict between obligations of different strictness

In fact, the view given in Figure 21 above is oversimplified. Obligations of
different strictness are more correctly detected through overlap between obligations
and the implicit inviolable permissions (§5.4.2) associated with other obligations. All
obligations in law seem to confer the following implicit privilege: #he duty-bound party is
tmmune (§5.3.2) from being in violation of the obligation as long as he still has opportunity to fulfil
it (and intends to do so). Taking the obligation in Clause C.8, to deliver within 30 days,
this generates an implicit privilege to deliver within those 30 days — that is, non-
delivery at any stage before the end of the 30 days does nof result in violation”. By
Rule CD3 or Rule CD4 (page 174), this clearly conflicts with Clause C.1 which says

that non-delivery by 30" September does result in violation.

27 More formally, there are zero occurrences of violating whose source_occurrence is a counting of zero (0)
deliveries, where the counting occurs before the end of the thirty days (15 October).

180

Resolving Conflict

6.3 Resolving Conflict

In the previous subsection we looked at how conflicts may be detected. We can now

pursue conflict resolution. A variety of contflict resolution options are available to

us:
* Rule Revision: Rules are revised to eliminate conflict. This
approach is taken by Sergot et al. (op cit, page

172).
* Case-specific Voidance: Rules are amended to specify which prima facie

obligation, permission, or prohibition instances
are void for a particular case.

* Acceptance of Violation: In the absence of revision or amendment, it is

accepted that fulfilling one provision may wiolate

others.
In the presence of conflicting provisions, we may wish |
to have one or more of the provisions voided (see [AB2002b, | Requirement 14 (pg 32):

: . Context-specific rule
AEB2002c], §5.6.9), or we may wish simply to guide the fieext-specttic £

precedence must be

decision-maker as to which provisions to wzlate. While we supported.

agree that revisions to the rule-set may be useful in removing
conflict, we see revision alone as insufficient. Supplementation of the rule-set with
additional choice principles for case-based reasoning is a necessary and
complementary conflict resolution mechanism: here we specify which case-specific
obligation, permission, or prohibition instances are voided. The rule-set could also be
supplemented with choice principles for deciding which norms to wwlate in cases

where violations are unavoidable.

The following examples, which follow from our conflict detection examples of

§6.2, clarify the conflict resolution process:

181

Chapter 6 - Conflict Expression, Detection and Resolution

6.3.1 Example 1: Resolving a conflict between an

obligation and a prohibition

In §6.2.1 above, we detected a conflict between an obligation to pay and a
prohibition against paying. We can resolve this conflict by defining a function that
specifies which provision’s construal (i.e. which instantiation of a norm) is void in the
light of conflicting prima facie instances. First, we need to make explicit a number
of laws and social conventions to explain the origin of our obligations and the

justifications for their voidance:

Powers of Agents: Settled Principles of English Law’®

An occurrence of an agent promising something on behalf of their Clause L.5
principal brings about an occurrence of their principal being obliged to
do the promised action.

An occurrence of being aware of a prohibition that conflicts® with an
obligation in that contract, brings about an occurrence of the
obligation being void™. That is, an obligation is void in the event that
the reliant party knew that the agent did not have the authority to
enter into the contract. Clause L.6

28 As pointed out by Dr Roderick Munday, Fellow in Law at Peterhouse, Cambridge, and author of
An Outline of the Law of Agency (1998; 4th ed.; Butterworths), our example case is not covered by any
particular Act of English legislation. The rules mentioned here therefore do not originate from any
promulgated Act in Britain. Rather, the rules attempt to make explicit some basic settled principles
of English case law.

2 We assume that the law applies when the party is aware of the provision that conflicts, even if the
party is not aware of the conflict of provisions. We take it that the law assumes the party derives the
conflict from their awareness of the provision, and even if they do not derive the existence of the
conflict, they would have been reasonably expected to have derived it, since the reasoning system is
able to derive it automatically itself. ‘Reasonable expectation’ in law typically means that some
individual draws that conclusion; taking the objective EDEE reasoning system as the appointed
individual, we might take the fact that EDEE is able to derive the conflict to mean that the party
themselves is reasonably expected to know of the conflict.

30 Technically, we should specify that it is only obligations in contracts entered into affer the
occurrence of being aware that are voided. However, for brevity, we omit this complication from our
example.

182

Social Conventions

Resolving Conflict

An occurrence of a party reading a given clause brings about an

occurrence of that party being aware of the legal relation mentioned

by that clause (that is, the obligation, prohibition, or function

associated with that clause).

Clause S.1

An occurrence of a party P being obliged, in obligation Q, to pay party

R, brings about an occurrence of R being beneficiary of the obligation

Q.

Clause S.2

We posited, in §5.6.1, the existence of being_obligedt (the obligation of Steelmans

to pay), without explanation of its origin in law and circumstance. Clause L.5

explains the source of this obligation: it arose as a result of a particular promise. Let

us assume that the promise to pay was made by John, a clerk at SkyHi. The promise

may be represented as promisingt as depicted in Table 18 below.

Occurrence Role Participant
promising1 promiser John
promised Query19

Query19 (see page 84) = first (occurrence of SkyHi paying Steelmans $25,000 for the delivery,
where paying is before 1 September 2001)

Table 18: Representing a promise by an agent on behalf of a principal

We can represent the rule that a promise by an agent binds their principal (Clause

L..5) using being_obliged_function5 as shown in Table 19 below.

183

Chapter 6 - Conflict Expression, Detection and Resolution

Occurrence Role Participant

being_obliged_function5 domain Query528
obliged Query529
isAccordingTo Clause L.5

Query528 = occurrences of promising
Query529 = participants in role [=promised] in |Query528|

Table 19: Representing the rule that a promise by an agent binds their principal

Looking at being_obliged1 in more detail, we would then see its origin and nature as

follows:
being_obliged1 = (legal consequence)
source_rule: being_obliged_function5 (provenance)
source_occurrence: promising1 (evidence)
obliged: Query19 (see Table 18)

Query19 in being_obliged1 above was obtained by resolving participants in role [=promised] in
promisingl — Le. by resolving the instantiation, for promisingt, of the parameterizable

query, Query529, in Table 19 above.

Clause L.6, Clause S.1, and Clause S.2 (page 182) would be represented as shown
in Table 20, Table 21, and Table 22 respectively.

184

Resolving Conflict

Occurrence Role Participant

being_void_function1 domain Query530
voided Query531
isAccordingTo Clause L.6

Query530 = occurrences of being_aware
Informally, Query531 = obligations that are in conflict with provisions the aware party is aware of which are also
obligations where the aware party benefits
Formally, Query531 = (occurrences of being_obliged) intersection (participants in role [=conflictor] in
occurrences where participants in role [=conflictor] are participants in the role [=aware_of] in |Query530|)
intersection (participants in role [=benefit] in occurrences where participant in role [=beneficiary] is participant in
role [=aware] in |Query530|)

Table 20: Representing the rule that a prima facie obligation on a principal is voided

in the case that the reliant party was aware of lack of authority of the agent

Occurrence Role Participant

being_aware_function1 domain Query532
aware Query533
aware_of Query534
isAccordingTo Clause S.1

Query532 = occurrences of reading
Query533 = participants in role [=reader] of |Query532|
Query534 = occurrences where [participant in role [=read] in |Query532|] is in role [=isAccordingTo]

Table 21: Representing the rule that an occurrence of reading a clause brings about an

occurrence of being aware of the legal relation directly mentioned by the clause

185

Chapter 6 - Conflict Expression, Detection and Resolution

Occurrence Role Participant

being_beneficiary_function1 domain Query535
benefit |Query535|
beneficiary Query536
isAccordingTo | Clause S.2

Query535 = occurrences of being_obliged
Informally, Query536 = ‘payee’ in the obligation in |Query535|
Formally, Query536 = results of the query returned by (Value where CriterionType is [=participant] and QuerylD
is in ((subqueries of the query returned by (participants in role [=obliged] in |Query535|)) intersection (QueryIDs
where CriterionType is [=role] and Value is the query ([=payee]))))
(see Figure 3, page 85, for an example of a stored query)

Table 22: Representing the rule that being payee in an obligation to pay implies
being beneficiary of that obligation

Assume that an employee of Steelmans has browsed SkyHi’s internal regulations
as published on their web-site, and SkyHi’s occurrence store had captured the
occurrence, readingl, which is an occurrence where Clause P.3 (defining the
prohibition against large payments; page 5) was read, and the reader was an agent of
Steelmans, who we record simply as Steelmans. That is, assume the occurrence store

captures the following occurrence:

readingl =
read: Clause P.3
reader: Steelmans

Now;, based on Clause S.2 (Table 22 above), it is easily shown that the existence
of the obligation being_obliged1 (§5.6.1) implies the existence of an occurrence of

being_beneficiary:

being_beneficiary1 = (legal consequence)
source_rule: being_beneficiary_function1 (provenance; see Table 22 above)
source_occurrence: being_obliged1 (evidence)
benefit: being_obliged1
beneficiary: Steelmans (payee in being_obliged1)

186

Resolving Conflict

When the occurrence readingt is added to the occurrence store, the coverage-
checker determines that it is covered by the query Query532 and is therefore in the
domain of the function being_aware_function1 (defined in Table 21 above). Thus reading1

brings about the occurrence:

being_awarel = (legal consequence)
source_rule: being_aware_function1 (provenance; see Table 21, p185)
source_occurrence: readingt (evidence)
aware: Steelmans
aware_of: prohibiting1

To explain how we arrived at the values for being_aware1 above: assuming we have
readingt as defined above, and prohibiting! as defined on page 130, then resolving the
query occurrences where [participant in role [=read] in reading1] is in role [=isAccordingTo] (that is, the
instantiation, for reading1, of Query534 in Table 21 above) produces prohibitingt. prohibiting1
is therefore in the role aware of in being_awaret. Similarly, Steelmans in the role aware in
being_aware1 was obtained by resolution of participants in role [=reader] of reading1 (that is, the
instantiation, for readingt, of Query533 in Table 21 above).

Now, our coverage-checker is able to determine that being_aware1 is covered by
Query530 in Table 20 above. Thus, this occurrence of being_aware is within the domain
of being_void_function1 and generates the being_void occurrence being_void1. It is

being_obliged1 that is in the role voided:

being_void1 = (legal consequence)
source_rule: being_void_function1 (provenance; see Table 20, p185)
source_occurrence: being_aware1 (evidence)
voided: being_obliged1

187

Chapter 6 - Conflict Expression, Detection and Resolution

To summarize, taking the facts:

reading? (see p186) = Steelmans reads Clause P.3
being_obliged1 (sce p184) = SkyHi (prima facie, according to Clause C.1)
being obliged to pay Steelmans $25,000

prohibiting1 (see p130) = payments greater than $10,000 are prohibited

... we are able to infer, respectively:

being_aware1 (see p187) = Steelmans being aware of prohibiting
being_beneficiary1 (scc p186) = Steelmans being beneficiary of being_obliged1
conflicting (see p179) = the prima facie obligation, being_obligedt,

conflicts with prohibiting1 (see §6.2.1).
We are therefore able to deduce:
being_void1 (see p187) = the prima facie obligation, being_obliged1, being
void.

... because Steelmans is a beneficiary of being_obliged1, and was aware of prohibiting1

which is conflicting with being_obliged1.

Clearly, being_obliged1, which participates in role voided in an occurrence of being_void,
no longer falls into the domain of being_obliged_function4 (page 164), which defined all-
things-considered obligations (Clause L.4, page 164). Therefore, a query such as
‘what are the obligations, in terms of Clause L.4, that bind SkyHi?” would return no
results, and we conclude that, all things considered, SkyHi is not bound to make any

payments.

It should be noted here that it is the case-specific instantiation (being_obliged1; see page
184) of the obligation policy that is voided, rather than the policy in general
(being_obliged_function5, page 184). Hence, the general obligation upon principals may
still apply to other occurrences of promising, which continue to bring about prima
facie, and perhaps all-things-considered, obligations. The distinction between case-
specific obligation (similarly, permission and prohibition) instances and the general
obligation (similarly, permission or prohibition) policies from which they are derived

is at the heart of Hansson and Makinson’s [HM97] contrast between “restrained

188

Resolving Conflict

application” and “revision”. In restrained application (typically used by judges in
their application of the law), it is the case-specific obligation instance that is voided.
In revision (typically used by legislators in their revision of the law), it is the general

obligation policy that is voided.

It may be argued at this stage that if we ask the question ‘is payment obliged?” we
get the response ‘yes’, since being_obliged1 is stored in our database. However, the ‘yes’
is actually a qualified ‘yes’ what we really mean is ‘prima facie, according to Clause
L.5 (see page 182), yes’. But looking further we see that being_obligedt is voided, and
does not result in an all-things-considered obligation in terms of Clause L.4 as it

does not fall into the domain of being_obliged_function4 (page 164).

Note that, just as we have defined what it |

means to be a current obligation (using Requirement 13 (pg 32):

Reasoning techniques should emulate legal
being_obliged_function4), we would need to define < b 3
reasoning. Conflict resolution facilities

similar functions to define what it means to be a should allow selection of applicable rules

current permission or prohibition, in order to based on recency, specificity, location,
authority, or other criteria [GLC99].

allow prima facie permission and prohibition

instances to be voided as well. For instance, taking the case where SkyHi’s internal
regulations were not published, and Steelmans was not aware of the absence of
authority of their agent, SkyHi may find itself compelled to void (or violate) the
prohibition against large payments for this case where it must satisfy the undefeated

obligation.

6.3.2 Example 2: Resolving a conflict between obligations

of different strictness

Relating to the conflict detected in §6.2.2 above, we have two prima facie obligations
to pay: the obligation (from the contract) to pay before 1% September and the
obligation (based on SkyHis Standard Terms and Conditions) to pay before 15"
October. It is of course possible to fulfil both obligations by, for instance, paying on
30" August, but it may the case that one of the obligations should be voided.

Conflict resolution involves selecting which of these conflicting prima facie

189

Chapter 6 - Conflict Expression, Detection and Resolution

obligation instances to void; the remaining obligations (produced as output of
being_obliged_function4, which is defined on page 164) are the all-things-considered

obligations.

Voiding obligations produced by conflicting clauses is ™

one possible solution to conflict; another, is to metely accepr | Requirement15 (pg 33):

. The treatment of
that conflict exists and leave both obligations in force. In
obligations — whether to

many cases, it may be that the stricter obligation is intended | eid or violate them in a

to be enforced even when the more lenient obligation also given case — must be user-
definable.

applies. Here one obligation does not void the other; rather

they exist in conflict, and the company must choose which to violate. If SkyHi pays
on 10" October there is then one violation: a violation of their contract with
Steelmans. If SkyHi never pays, they have violated both obligations: there is a

violation of the contract and a violation of their Standard Terms and Conditions.

6.4 Time

In the spirit of Sergot et al. (op cit, page 172), we tag each conclusion with a time to
indicate the moment at which the conclusion was derived. A conclusion derived at
time 7/, might not be derived at time 2. Nonmonotonicity (revision of conclusions)
is supported, as partial information is supplemented over time. A continuous query
mechanism, which monitors how the results of stored queries change over time still
remains applicable here. Occurrences join and leave the domain of functions over
time; consequently, the ranges of the functions change over time. Where necessary,

we can tag the item produced by the function with the time of its production.

We defined, in §5.6.9, a high-level principle (Clause L.4) that said that something
is currently obliged if there is an obligation to do it which has not yet ceased. Now;,
beginning with an empty database, let us trace our unauthorized-agent scenario
(§6.3.1) from its start until the obligation to pay is voided. Figure 22 below gives a
commented transcript: s represents a command prompt with user input, > represents

a system response to a query, and => represents an output from system derivation.

190

Time

For brevity, role-players in each identified occurrence are not indicated; the reader
may consult the respective occurrence identifiers mentioned eatlier in this document
(see page references down the right hand margin of Figure 22) for further details on

the participants in each identified occurrence and their roles.

Date Commentary Session Transcript
1 Jan 2001 A party is only obliged to fulfil % INSERT being_obliged_function4
obligations that have not ceased (pg 164)

(Clause L.4; pg 164)
Is SkyHi obliged to pay, according to

o

SELECT occurrences of being_obliged

Clause L.4? WHERE isAccordingTo=Clause L.4 AND
obliged >= Queryl9 (pg 84)
No (no obligations exist yet). > 0 results.
1 Aug 2001 John promises SkyHi will pay % INSERT promisingl
Steelmans $25,000 (pg 183)
SkyHi is obliged to pay Steelmans => being_obliged_function5 (promisingl)
$25,000 (alias: being_obligedl)
(pg 184)
Is SkyHi obliged to pay, according to (Same SELECT query as above)
Clause L.4?
Yes, they are. > being_obliged_function4

(being_obligedl is in the range of the (being_obligedl)

function being_obliged_function4,
and the function therefore produces a
result.)

10 Aug 2001 Web log evidence now indicates that % INSERT readingl
Steelmans read Clause P.3 prior to (pg 186)
entering into the contract.
Therefore, Steelmans was aware that => being_aware_functionl (readingl)
payments of more than $10,000 were (alias: being_awarel)
against company policy (pg 187)

> 1 result (s).

Therefore, according to Clause L.6 (pg =>

182), the obligation to pay is voided. being_void_functionl (being_obligedl)
(alias: being_voidl)

(pg 187)
Is SkyHi obliged to pay, according to (Same SELECT query as above)
Clause L.4 ?
No, they are not. > 0 results.

Reason: The prima facie obligation is void and has therefore ceased. being_obliged_function4
therefore no longer produces an all-things-considered ‘obligation in terms of Clause L.4’.

Figure 22: Transcript of a session:

adding and querying contracting and workflow occurrences

From the transcript in Figure 22 above, we can see that the question ‘is SkyHi
obliged to pay, according to Clause L.4?” is answered ‘No’ on 1% Jan 2001, “Yes’ after

they enter into the contract on 1% August, and ‘No’ again after we discover (on 10"

191

Chapter 6 - Conflict Expression, Detection and Resolution

August) that they were aware that SkyHi’s agent was acting outside of his authority.

Conclusions are therefore defeasible.

Notice also that, on 15" August 2001, we could ask whether it was the case,
according to what we knew on 2™ August 2001 at 14h00, that SkyHi was obliged to
pay. We could do this by running the serect query from the transcript above, but
instructing the inference engine only to use facts and rules dated on or before 2™
August 2001 at 14h00”. The query, framed on 15" August but using only
information known up until 2 August 2001 at 14h00, would return

being_obliged_functiond (being_obligedl) meaning that, yes, given what we knew as at

2™ August 2001 at 14h00, SkyHi was obliged to pay.

6.5 Summary

We have posed an important and neglected problem for web-services: ensuring that
the business relationship formed when a service is requested conforms with the
changing organizational policies of the businesses concerned. Our conflict detection
and resolution mechanisms present a novel solution to this problem. Such facilities
are an essential requirement in order to maintain the consistency of a dynamically

unfolding e-service ecosystem.

In the previous chapter (Chapter 5), we critically reviewed the traditional
operator-based construal of obligation and permission in deontic logic and illustrated
the usefulness of zentifying specific obligation, permission, and prohibition instances,
which may be generated from norms by functions on occurrences. We showed
(§5.6.9) that the identification of separate case-specific instantiations of obligations
(similarly, permissions and prohibitions) allows us to speak of the /fe-cycle of those

obligation (permission, prohibition) instances, and to specify their origins in evidence.

In this chapter, we explained how the supplementation of deontic specifications

with additional information to capture the sifuation ot provenance of a norm (e.g.

31 Naturally, this discussion requires that we tagged our occurrences with both their occurrence time
(when they happened) and their observation time (when we became aware that they happened).

192

Summary

author, document position, place of utterance, etc.) allows us to express (§6.1), detect
(§6.2), and resolve (§6.3) conflicts between opinions of prima facie provisions.
Through realistic worked examples, we demonstrated the process of reasoning in the
light of conflicting norms, which may be voided or violated. We saw how to reason
about the force of provisions over #me as new information becomes available (§6.4).
Our exposition enlightens aspects of the life and times of identified, situated, and
conflicting instantiations of norms that are not dealt with in current policy-based

systems (§2.3) nor in standard operator-based treatments of norms in deontic logic
(§2.0).

In the next chapter, we look at monitoring and enforcement in the prototype

implementation.

193

Chapter 7

Monitoring and Enforcing

Provisions

A high-level aim of this research is contract-driven applications. A variety of styles
for enforcing and executing contracts are available. This chapter highlights a number
of detection, intervention, and prevention strategies that may be employed to find
(Section 7.1) or avoid (Section 7.2) violations. Section 7.3 reviews the

implementation of our software prototype.

7.1 Provision Monitoring

By contract monitoring we mean that, when workflow occurrences are added to the
database, our software sees to it that the necessary contractual consequences are
inferred. This usually includes the inference of obligations that effectively drive the
system by identifying what it is that capable components ought to perform next.
Coordination and mutual understanding are facilitated as components are able to use
the database to determine which legally-recognized states of affairs hold: for
instance, they may unambiguously determine whether a purchase is valid in terms of

a particular provision stored in the database.

195

Chapter 77 - Monitoring and Enforcing Provisions

Multiple modes of contract provision monitoring are possible. In cases where
third parties bring about occurrences, violation may not be avoidable, and immediate
detection of such violations is required. Often, however, policies are not sufficiently

critical to warrant constant monitoring, and delayed detection may be acceptable.

7.1.1 Immediate detection

Often, detection of a violation is required immediately after an occurrence is added
to the database. The coverage-checking mechanism (§3.3) makes use of covering
relations between queries, and partial re-evaluation of dirtied queries. The intention
is to determine when the results of stored queries change as a new data item is
added. TFor instance, if a new occurrence is covered by a stored query that describes
the occurrences in the prohibited role in a prohibition, this indicates that the occurrence

is prohibited under that prohibition.

Take the policy ‘payments of more than $10,000 to suppliers are prohibited’.
Table 5 of §5.3 represented this by embedding Query10 in a row describing the
occurrences prohibited by prohibitingl. Now, assume that this prohibition and its
associated query (which describes the prohibited occurrences) are stored in an empty
database. Then, assume that we record, in this database, that Steelmans is a supplier
of SkyHi, by inserting an occurrence, being_suppliert (as described in Table 3, page 80)
into the data-store. Upon insertion of the rows for being_suppliert the coverage-
checking algorithm is activated. The coverage-checking algorithm determines that
the new occurrence, being_suppliert, is not prohibited, since the only query that covers
it is [occurrences of [being_supplier]] (see §3.3.2) and this query is not in the prohibited role in
any prohibition. Now assume that the payment, payingt, is inserted. The coverage-
checking algorithm determines that payingt is covered by Queryto. A quick lookup
shows us that Query10 is in the Participant column in a row in the database where
prohibiting1 1s in the Occurrence column. As payingt is covered by Query10, which describes
the set of prohibited occurrences, payingt is therefore prohibited. Figure 23 gives a

high-level illustration of this process.

196

Provision Monitoring

Occurrences in
Memory Queue

Coverage Checker
A & 2 4 o

-

Occurrence Store

Violation

Figure 23: Immediate detection

The computationally-intensive immediate detection algorithm, which checks
which queries cover every incoming occurrence, is sometimes not feasible for large
data volumes. Another alternative, discussed in the next section, is to buffer

occurrences and perform delayed detection.

7.1.2 Delayed detection

The previous section described how the coverage-checking mechanism may be
employed for immediate detection of violation: as each occurrence is added, it is
checked against stored policies. However, some policies do not require such rigid
enforcement. Stationing a full-time security guard at the office supplies cupboard
would likely be a sub-optimal allocation of resources. Similarly, checking all
occurrences against policies is inappropriate for those occurrences that, individually,
are of little consequence. Delays in detecting violation may be traded off against the
computational cost of detecting violation immediately. Periodic or aperiodic
detection, such as ‘at the end of the day’, ‘on every second Tuesday of the month’, or
‘at off-peak times of system utilization’, may be all that is called for. Thus, to reduce

the monitoring burden, configurable evaluation based on the time-criticality of

197

Chapter 77 - Monitoring and Enforcing Provisions

violation detection should be possible, to allow non-critical policies to be assessed

less frequently.

Two primary mechanisms for delayed detection are possible:

1. Top-down query re-evaluation:

The queries associated with selected policies are periodically (or aperiodically)
executed. This would be inefficient if many of the queries were unchanged

during the interval.

2. Bottom-up batched occurrence detection:

Batch checks of unique identifiers across multiple occurrences may reduce
computational cost. In batch checks, unique identifiers added to the database
within an interval are fed into the coverage-checking mechanism after a batch
of occurrences, rather than after a single occurrence (see Figure 24). The
computational saving achievable by this mechanism depends on the
frequency of updates of each particular concept identifier. For concept
identifiers frequently added to the database the saving would be greater as the
concept identifier would be fed into the continuous query mechanism only
once for all updates during the interval. For instance, assuming the addition
of a thousand occurrences of paying, each with roles payer and payee, an
immediate detection mechanism would check which queries mention the role
payer one thousand times, and which mention the role payee one thousand
times. A batch mechanism would check once which queries mention payer
and would check once which queries mention payee. Adelberg, Garcia-Molina
and Widom [AGMW97| illustrate, in a stock market application, that a
mechanism for batching updates and computing the net effect at the end of a

delay window is efficient when data is input in short bursts of similar data.

198

Performance and Enforcement

Occurrences in
Memory Queue

Batching
A 2 0 0 4 o A

Coverage Checker
ve &

Figure 24: Delayed detection with bottom-up batching

7.2 Performance and Enforcement

Performance and enforcement of a contract may be divided into intervention,
prevention by refusal, and prevention by construal. We treat performance and
enforcement together since we view enforcement as overlapping with performance:
part of enforcement is the performance (typically by a supervisory component) of
obligations that arise from violations of a contract. Performance is via intervention: we
take it that components are diligent in attempting to perform their obligations. We
assume that components consult the central active contract database to determine
their current obligations and attempt to fulfil them. Enforcement may, however,
involve not just intervention, but also prevention. In the case of policies where the
consequences of violation are high and control over activity is possible, prevention by
refusal is appropriate. Refusing a request to execute contemplated action avoids
violation. Where control over third-party activity is not possible, prevention by constrnal
can be employed. Here, any occurrence not fitting the ‘rules of the game’ is deemed
not to be an occurrence of a certain type in terms of ‘the game’ (the law), thereby

preventing it from having consequence and effect.

199

Chapter 77 - Monitoring and Enforcing Provisions

7.2.1 Intervention

As we noted earlier (§5.1) our architecture presents a central |

Requirement 16 (pg 34):

database where contractual provisions, workflow
Asynchronous fulfilment of
occurrences, and consequent contractual construals derived o
chosen obligations must be
from those workflow occurrences are stored. The database supported as an

enforcement style

stores both the application’s specification — that is, the

provisions which specify what can, should, and should not happen in various
circumstances — and the operational workflow occurrences. This dynamically
changing contract database is consulted by the various implementation components
to determine what states of affairs hold in terms of the contract, and what
occurrences to perform, or refrain from performing, next based on prevailing

obligations, permissions, and prohibitions.

Ponder (page 36) provides a policy deployment mechanism whereby language-
specific imperative scripts or access control policies are deployed to distributed
components. We provide no such mechanism, which in any event limits
enforceability of the policies to only the specific platforms supported by the script
generators. Instead, we rely on the heterogencous components to consult the
database and determine their obligations, by looking up occurrences of being-obliged
that pertain to them; see Figure 25. They can then attempt to fulfil these obligations.
Alternatively, we allow facilitator components (e.g. a fulfilment scheduler) to do the

consultation and invoke the implementation components.

The process by which diligent components determine and fulfil relevant
obligations is called zntervention, and is one enforcement mechanism. Prevention, in
various modes (by refusal and by construal), is another possible enforcement

mechanism.

200

Performance and Enforcement

Occurrences in Diligent

Memory Queue \ Components
4 .
o966 6¢ ‘,"Q

Coverage Checker

Obligations

5]

(r

Figure 25: Intervention by diligent components

7.2.2 Prevention by refusal

In prevention by refusal, a decision to block undesirable action, or to refuse requests
that might result in prohibited occurrences, avoids violation. Prevention via refusal
requires analytic detection of a conflict between a contemplated (e.g. obliged) set of
occurrences and a prohibition. We have already seen how such a conflict may be
detected (§6.2). If we assume the existence of a choice principle that says the
prohibition overrides the obligation in this case, our prevention by refusal
mechanism tells us that operations that might bring about an occurrence of paying to
fulfil the obligation should not be allowed to execute. That is, if a component is
contemplating executing an operation that would bring about such an occurrence,
and it requests permission to go ahead from some supervisory or control
component, the permission should be refused. We leave it to the implementation
component (e.g. firewall, gateway, or access control layer) to see to it that refusal is
enforced by blocking an invocation request, for example. The intention of our
‘prevention by refusal’ mechanism is merely to illustrate that enforcement decisions
can be made by determining whether the contemplated (obliged) action is covered by

an overriding prohibition.

201

Chapter 77 - Monitoring and Enforcing Provisions

7.2.3 Prevention by construal

It may be the case that the implementation component is somehow able to bypass
controls, flout the refusal, and nevertheless execute a prohibited operation (e.g. a
payment), even when they are not legally empowered to bring about a particular legal
state of affairs with that name. In this case, a prevention by construal mechanism is
necessary as the component has no legal ability to bring about payment-in-some-
particular-sense, even though they can actually execute something and call it, in some
other sense, a payment. The rogue component may succeed in convincing parties
outside the normative system that a payment has occurred but will not be able to
mislead parties that consult the contract database to determine whether a particular
(legally recognized) payment occurs. In prevention by construal, the contract database
ensures that, even though a payment has occurred in some sense, it is not construed
as such by a particular provision stored in the database and is therefore of no legal

consequence.

Forced construals may therefore be used as a preventive mechanism. Here
occurrences are regarded as being of a certain type according to a certain clause. It is
impossible to coax the occurrence to be of a different type as the database wrapper
always appends the clause identifier to the occurrence when it is added to the data
store. We saw, in Table 7 of §5.3, how our representation prevents purchases of steel

by clerks from being construed as purchases in terms of Clause P.1.

202

Edee Implementation

7.3 EDEE Implementation

Many of the concepts described here have been implemented in Java as the
E-commerce Application Development and Execution Environment (EDEE). EDEE
[AB2001c, AB2001d] is a prototype system for representing and enforcing business
policies and contracts. EDEE currently supports immediate detection (§7.1.1),

bottom-up batched detection (§7.1.2), and prevention by construal (§7.2.3).

The expressive power of EDEE is that of a semantic network. Networks are
stored by reducing a general graph structure to a set of triples (named-and-typed-
association, role, participant). Examples of association types are occurrences such as
being-supplier and paying (Table 3, p80), permitting (Table 8, p1306), probibiting, (Table 5,
p130), and so on. The triple store holds the complete representation of the business
application, and is updated whenever relevant occurrences take place; such
occurrences may include both changes to contractual provisions and transactions

such as the payment of a bill or the delivery of an order.

The simple occurrence-role-participant structure of all occurrences enables us to
use a broad variety of back-end data stores to uniformly record occurrences, and
consequently queries and policies. EDEE is a platform-independent active database
wrapper that implements triggers atop arbitrary JDBC-compliant data stores. The
ability to uniformly store queries and policies in a vendor-independent manner
provides greater platform-independence than proprietary stored-procedures and
triggers; furthermore databases that do not support stored procedures and triggers
can still be used for active contract storage and enforcement. Contractual provisions
can be distributed across heterogeneous remote sites. Simple active databases can be
extended with multi-table triggers that can monitor for complex conditions involving
multiple abstract data types, rather than simply detecting updates to a single relation

as is conventional [PD99].

EDEE incorporates a parser, implemented using the [Flex lexical analyser and
Princeton Universitys CUP Parser Generator for Java. The parser accepts text

containing occurrences and provisions, with embedded queries, from any text stream

203

Chapter 77 - Monitoring and Enforcing Provisions

(e.g. file read or method invocation) and inserts the relevant tuples into the
underlying occurrence store (rablestore). When queries are parsed, a check is
performed for sub-expressions shared in common with existing stored queries, and
semantically identical sub-queries are assigned the same identifier (see Rule A2.2.3,
page 262). This reduces the number of stored queries and improves coverage
checking performance for data sets where the provisions in the database substantially
overlap. While policy languages such as Ponder (page 36) provide a clearly defined
and readable syntax, EDEE provides simple interfaces for adding contractual
provisions and workflow occurrences. Instances of the occurrence class are
instantiated, and roles and participants added. Tablestore.addoccurrence(..) adds the
occurrence to the occurrence store in a single transaction. The implementation of a

readable contract definition language has been identified as an area for future work

(§8.4.2).

Undetlying occurrence stores may be a relational database (accessed using the
DBTablestore class) or in-memory table (accessed using the MemoryTablestore class).
As both peTablestore and MemoryTablestore implement the Tablestore interface, both
persistent and in-memory data are accessible via the same uniform language,

EDEEQL, or via method invocations on the Tablestore intetrface.

The resolve(string EdeeoL) method of EDEE’ Taplestore interface is able to
resolve queries specified in EDEEQL against relational or in-memory tables.
Relational queries are converted to SQL, and may benefit from optimization by the
query optimizer of the underlying database. In-memory queries are resolved directly,

without optimization, using Java’s HashMap.get () Operators.

In comparison, traditional relational or object-oriented development approaches
would require the use of native programming language code (e.g. Java, C++, or
VBScript) to access in-memory data, and either SQL or OQL to access persistent
data. In traditional approaches, access to in-memory data is therefore via pre-defined
access paths, such as following object-pointers, and advanced ad-hoc queries are not

available unless the data is persisted.

204

Edee Implementation

EDEEs coveragechecker class is responsible for v

determining the set of queries that cover a particular item or | Requirement 19 (pg 39):

query. EDEE can express and represent patterns which can

be matched against the contents of the triple store. Patterns

Policy environments require
a coverage detection service

and interface that would

are implemented by queries; these queries are themselves | allow objects to determine

stored. Contracts are represented by establishing their
structure and defining queries to correspond to their

provisions. EDEE’ coveragechecker component has been

which of a changing set of
descriptions they, or other

objects, fall under.

supplied to researchers at the University of Aachen, where it is being used for the

monitoring of contracts in a business-to-business electronic marketplace [Sta2002].

Our choice of Java as an implementation approach (over logic programming and

theorem proving approaches such as Prolog, PVS, and Isabelle) was driven by a

number of factors:

Java provides platform independence and is standard and pervasively available in

industry.

Query-based reasoning may be more efficient than proof-oriented approaches for
large data volumes, as the former takes into account data profiles (predicate

selectivity) when executing queries.

We saw the need to store rules, and not just facts, in a database, rather than
merely leaving rules in unmanageable and non-queryable text files. For conflict-
detection purposes it is necessary to store queryable contents of the rule (to
analytically check for overlap). For conflict-resolution we need to store all rule
attributes such as author, creation date, unique identifier of provision and its
case-based instantiations. Many Prolog implementations do not support rule
storage, and we envisaged that storage of and reasoning with rule attributes and
contents, and selecting rules to apply in a circumstance, would require as much

effort in Prolog as in Java.

We preferred a set-based semantics (sets of occurrences) rather than a truth-
value-based approach. Query-based reasoning seemed more suited to union,

intersection, count, ordering, and other set-based operations on occurrences.

205

Chapter 77 - Monitoring and Enforcing Provisions

® Data pre-processors, written in efficient imperative languages, were in any event

necessary to delay inferencing to cope with spikes in update rates (§7.1.2).

Our system has not yet, however, been tested on actual contracts of any significant
size, and scalability beyond toy examples therefore remains to be demonstrated in an

extension of our proof-of-concept implementation (see §8.4).

7.4 Summary

This chapter has reviewed the software capabilities of the EDEE prototype
environment. We are satisfied that the basic mechanisms are in place to store
occurrences (Chapter 3) and provisions (Chapter 5), assess which provisions apply to
an occurrence (§3.3.2 and this chapter), and analytically detect a range of static and
dynamic conflicts through checking for overlap between stored queries (§3.3.3 and
Chapter 0).

In brief, an occurrence-based system performs and enforces contracts by:

* determining currently applicable obligations, by finding (diagnosis)
descriptions of obliged occurrences associated with

occurrences of being-obliged (§5.6.1)

* fulfilling its own obligations by triggering occurrences (liveness)
which it is capable of that fit the descriptions specified in its

obligations (§7.2.1)

* avoiding the violation of prohibitions which cover it, by (safety)
flagging the potential violation to management or by
refusing to allow occurrences that fit the descriptions

specified in such prohibitions (§7.2.2 and §7.2.3)

206

Summary

* monitoring fulfilment of obligations and violation of (detection)
prohibitions by users, through the determination of
covering-queries and creation of instances of violation

occurrences (§5.3.1, §5.6.2)

" bringing about new occurrences appropriately according to (prevention
defined norms, thereby causing certain types of occurrences / immunity)
in line with powers (§5.5) and suppressing certain types of

occurrences (§5.3.2)

* fulfilling any secondary obligations ({5.0.2) arising from (correction

unavoidable violations / cure)

The next chapter evaluates the EDEE prototype environment and the proposals

contained in this dissertation.

207

Chapter 8
Analysis

This chapter provides a qualitative synopsis of the features of our approach, and
discusses its merits (§8.1) and shortfalls (§8.2). A guantitative evaluation of EDEE’s
performance is also provided (§8.3). Finally, we highlight directions for future

research (§8.4).

8.1 Strengths

The major strengths of the approach we propose can be categorized into those that
] g pp prop g
pertain to the occurrence-based representation and those that pertain to the

implementation.

A strength of the EDEE system is its semantic power. The generic store used to
represent business applications models a semantic network directly as a set of triples.
An occurrence-based representation provides a number of benefits over
conventional models: capacity to allow associational queries (§3.1), enhanced schema
and code stability through reification of attributes (§8.1.1), a fine-grained dynamic
classification facility (§8.1.2), inbuilt support for temporal data and histories (§8.1.3),
both object-pattern and pattern-pattern matching (§8.1.4), ability to cater for

variable-attribute entities (§8.1.5), and expressive interface advertisements (§8.1.06).

209

Chapter 8 - Analysis

Strengths of the proposed implementation environment include a database
independent active wrapper (§8.1.7), multi-table triggers (§8.1.8), and exploitation of

query optimization technology (§8.1.9).

8.1.1 Enhanced schema and code stability by reifying

attributes

Embley et al. [ELW94] argue that attributes should be eliminated from data models
as they introduce unnecessary rigidity, and recommend instead the use of
‘relationship sets’. Empirical evidence from Goldstein and Storey in [ELW94] reveals
that analysts often mistakenly encode relationships as attributes, making it impossible
to state further properties of the attribute without reifying it to a first class object.
Halpin [Hal98] explains that schemas often evolve as assumptions about the
cardinality of relationships are invalidated. For instance, the assumption that Manager
is an attribute of Employee may be invalidated if the company introduces a matrix-
management organizational structure with multiple managers per employee. Such an
alteration would require changes to the schema, and rewriting of all SQL queries —
potentially distributed across vast numbers of source code files — that refer to the
original schema. For example, a change in cardinality relationship between
employees and managers requires that the query:
SELECT manager_ID FROM Employee WHERE Employee.salary > 10000
becomes

SELECT manager_id FROM EmployeeManager, Employee

WHERE EmployeeManager.employee_ID = Employee.employee_ID

AND Employee.salary > 10000.
Halpin’s approach is to define a stable high-level language, Conceptual Queries
(ConQuer), and to use an algorithm, RMAP, to convert the high-level language to

the necessary SQL statements as the underlying schema changes.

In our occurrence-centric approach, cardinality constraints do not impact upon
the schema: converting from One manager manages each employee to Many managers

manage each Employee involves merely the introduction of further occurrences of

210

Strengths

managing, and the alteration of an integrity constraint that checks the number of
managers per employee. The absence of a need to alter the schema, or dependent
queries, as cardinality assumptions change, indicates that the occurrence-centric
schema, and programming code accessing the schema, may enjoy greater stability

than traditional approaches in this respect.

8.1.2 Fine-grained dynamic classification facility

Fowler [Fow98] explains that major object-oriented programming languages support
only single, static classification, which is unsuitable for the modelling of dynamic
roles. Static classification means that an object cannot change its type. In standard
object-oriented modelling, Employee and Manager are typically modelled as sub-classes
of person. Discovering that an employee can become a Manager requires a tedious
object transformation to be coded, frequently resulting in loss of historical
information as to the previous status as Manager. Even more troublesome is the fact
that a person can simultaneously be both an Employee and a Manager. The creation of
a ManagerEmployee class may be required to capture this special case, as such a hybrid
cannot simply inherit behaviour from both Employee and Manager. Standard object-
oriented models cater pootly for cases where objects play multiple and/or changing

roles.

Kappel et al. [KRR2000] echo Fowler’s criticism, explaining that traditional class-
based object-oriented systems are characterized by an immutable linkage between an
object and its class, making it difficult to change the behaviour of an object over
time. Any changes would require the creation of a new instance and the
transformation of attribute values from instances in the old class to those in the new
one. Role classes are proposed as a mechanism for allowing run-time object

evolution, enabling objects to play multiple roles simultaneously or over time.

The occurrence-centric approach caters naturally for roles: it is straightforward
for a person to participate both in occurrences of being_employed (thereby, being an
employee) and of managing (thereby, being a manager). While object-oriented

development requires a manual disentanglement of conflicting responsibilities, an

211

Chapter 8 - Analysis

occurrence-centric approach allows automated detection of many conflicts between

provisions, which can be flagged for resolution.

To give a concrete example in the object-oriented paradigm, TenuredEmployee
would typically be a class, and object instance migration would occur from Employee
to TenuredEmployee, perhaps using a periodic batch run or an ongoing daemon
process. In contrast, in the occurrence-based approach the individual would
participate in an occurrence of being_tenured. Type determination is a posteriori as
classification and consequent behaviour determination can occur at run-time. The
rules, such as pension and leave entitlement provisions, applying to tenured
employees, may be different to — and may conflict with — those defined for non-
tenured employees. Conflict-detection and determination of the applicable rules can
be system-assisted, rather than left to the programmer who would need, in an object-
oriented environment, to manually sift through Employee, Tenuredemployee, and other

classes looking for conflicting rules.

Object-oriented classes provide only static, hard-wired ontologies, whereas set
descriptions provide dynamic classification facilities. In our approach, we can refer
to all items fitting a description. The occurrence-centric model described in this
thesis provides powerful knowledge representation capabilities through its ability to
specify sets (classes) using queries rather than static class hierarchies. Using
intensional queries, rather than extensional sets, improves maintainability, by shielding

policies from changes in group membership [Dam2002].

8.1.3 Inbuilt support for temporal data and histories

Continuing the example of employees and managers from §8.1.1 and §8.1.2, it is
clear that employees may have multiple managers over time. Encoding manager as an
attribute of Employee would be a potentially poor design, as this would preclude the
firm from storing the history of managers for each employee. Storing this
information in a textual log would not suffice, as such a representation is not easily

queryable. Recording multiple occurrences of managing, each uniquely identified, and

212

Strengths

with distinct participants in the roles manager and managed, is a natural approach to

maintaining historical information.

8.1.4 Pattern-pattern matching for conflict detection

RETE (page 26) and TREAT (page 27) are capable of matching constant valued
objects to patterns, but are unable to infer the relationships between patterns. For
instance, RETE and TREAT are unable to determine that x <= 4 covers x < 3, nor
that 2 U B covers B n c. EDEE’s coverage-checker supports analytical determination
of superset, subset, overlap, and disjointedness relationships between dynamically
added queries. The ability to determine which policies speak of overlapping sets of
occurrences or individuals provides a powerful mechanism for detecting and

resolving conflicts.

To our knowledge, our mechanism is the first continuous query or publish-
subscribe mechanism to be developed for deontic applications. Previous approaches
to checking for permission and prohibition applicability, and for obligation
applicability and fulfilment, have been based on Petri Nets or Finite State Machines
(§2.5.7). Petri Nets and Finite State Machines do not maintain an event history,
require manual re-derivation when new provisions are added, and (as shown in

§5.6.7) deal with single but not several, separable obligations.

8.1.5 Ability to cater for variable-attribute entities

Mass customisation, one-to-one marketing, and Customer Relationship Management
share a common demand for personalization data, which records the rapidly
changing attributes of customers and website content. A company’s demands for
demographic data, stock-item details, and other facts and beliefs cannot be fixed at
application design time. Companies frequently decide to collect and match new
information, and find it necessary to extend their database representations of
Customer, Product, Of other types with new attributes. Traditional relational schemas
are ill-suited to variable attribute storage; sparsely populated tables require repeated

renormalization to eliminate null-valued fields. Mainstream content management

213

Chapter 8 - Analysis

solutions, such as Microsoft Site Server [Mic2001a], therefore employ a
combination of Lightweight Directory Access Protocol (LDAP), HTML <neta> tags,
XML tags, and indexing services to tag individual users and content with a subset of
attributes defined as pertinent to their types. XML databases such as Ipedo’s XML
Database [Ipe2001] and Software AG’s Tamino [Sof2001] are targeted at storing
content where instances of single types may have varying attributes, and different
types may share similar attributes. An occurrence-centric representation shares this
suitability to sparse data, allowing entities to participate in any number of

occurrences subject, of course, to the defined provisions.

8.1.6 Expressive interface advertisements

Simple interface advertisements in conventional trader services employ Interface
Definition Languages such as the Object Management Group’s IDL [ISO99b].
These interface definitions advertise only single, independent methods. The protocol
for accessing the methods is implicit and there is no indication of commitments that
come into being as a result of each service invocation. Our paradigm rectifies this
with explicit representation of the deontic effects of occurrences brought about by

invocations.

8.1.7 Database independent active wrapper

Traditional Event-Condition-Action rule languages (page 15) are implemented as
proprietary, database dependent triggers (often based on SQL or OQL) above
specific DBMSs and therefore cannot be used as active wrappers for arbitrary
relational stores, as is the case with EDEE. Here, and in [AB2001c, AB2001d,
AB2002a, AB2002b], we described an active database wrapper capable of running
atop any JDBC- and SQL-92-compliant relational datastore™. Our architecture

therefore provides a platform-independent triggering mechanism.

32 The database must allow nested SELECT queries. mySQL 4.0, for instance, while JDBC-compliant,
does not yet have facilities for resolving nested SELECTs and therefore will not support EDEE.

214

Weaknesses

8.1.8 Multi-table triggers

Unlike regular SQL triggers (page 15), which must be associated with a single table
(relation), we are able to define triggers that pertain to multiple relations

(occurrences).

8.1.9 Exploitation of query optimization technology

Fixed inferencing strategies, such as those employed by vanilla versions of Prolog,
use a search strategy that remains unchanged despite changes in data-set
characteristics. This works well for small, in memory data stores but becomes
untenable when data volumes grow to thousands of records. An inferencing
approach based on database query execution may benefit from indexing, clustering,
meta-information, association rules, and other techniques employed by database

query optimizers.

8.2 Weaknesses

The weaknesses of the approach adopted can also be categorized into those that
pertain to the representation, and those that pertain to the implementation. The
main weaknesses of the proposed representation are increased storage space
requirements (§8.2.1), and inefficiency caused by frequent, deep graph traversal

(§8.2.2). A weakness of the current implementation is its performance (§8.3).

8.2.1 Storage space inefficiency

Repetition of occurrence-, role-, and participant-identifiers in the current schema
means that data consumes more space than is strictly necessary. This is partially a
product of having attempted to fit our occurrence-centric schema to the constraints
of a relational data model. Compression or clustering of data may yield significant

reductions in space usage.

215

Chapter 8 - Analysis

8.2.2 Inefficiency of graph traversal

The storage of a semantic network in relational form is sub-optimal, as most simple
lookups require multiple queries. For instance, determination of SkyHi’s supplier
requires two queries: first the occurrences of being_supplier which have SkyHi as supplied
must be found, and then the participants in the role supplier must be determined. For
transitive data, such as stored occurrences of Query1 (properly) covering Query4, and Query4
(properly) covering Query10, the data structure is particularly inept: determining which
queries cover Query10 using these stored occurrences requires first the determination
of the occurrences of covering with Query10 as covered, then the determination of the
coverers in these coverings, and so on. For optimization purposes, therefore, we have
employed an Edeecoverer table with covered and coverer columns, to record ‘properly
covers’ relations (see pages 89 and 95). However, this is still a very inefficient

manner of storing these irreflexive, asymmetric, transitive relations.

8.2.3 Slower performance of generic database wrapper

The ability of the EDEE active wrapper to run atop arbitrary relational data stores
brings with it performance disadvantages. A major reason for this is the additional
overhead of repeatedly parsing queries through JDBC, which introduces an

additional processing layer atop the database.

8.3 Performance

EDEE’s performance can be reviewed from both a theoretical (§8.3.1) and a practical
(§8.3.2) perspective. Direct comparative analysis against other systems (§8.3.3) is

difficult owing to the novelty of EDEE’s execution paradigm.

8.3.1 Theoretical complexity analysis
Complexity analysis of the coverage determination algorithm shows a polynomial
worst-case space complexity of order O(n’) where n is the number of unique

identifiers (including occurrence, role, participant, query, query-criterion, and query-

216

Performance

criterion-value identifiers) in the database. Specifically, the transitive covering
relations between concepts and queries, and between queries themselves, is a partial
ordering — a directed, acyclic graph — that can be stored (inefficiently) as a matrix in
tabular form. For example, to store the transitive covering relation Query10 C Query4 C
Queryl (from the example in §3.3.4) as tuples that capture the covering relations
directly, we could use tuples in the form <covered, coverer> to artive at the 3 tuples:
<queryl0, queryd>, <queryl0, queryl>, <queryd, queryl>. It is easily shown that the
number of such tuples required to store the transitive covering relationships between
n queties is (nx(n-1))+2, giving a space complexity of O(n’) for the storage of these
covering relations.

The time complexity of the algorithm is also polynomial, with the number of
overlaps between provisions being more critical to speed than the number of

provisions or occurtrences per se.

8.3.2 Practical experiments
The goal of our experiments was to validate whether our algorithms could, in

practice, scale to large contracts on long-running systems.

Parameters
In our experiments, we were able to control the following parameters:
(1) the number of operational workflow occurrences (see §3.1) in the history

(2) the number of legal provisions (see Chapter 5) against which occurrences
were to be assessed. Each provision embedded a query composed of

approximately 10 nested subqueries (see §3.2).

(3) the size of the batches in which provisions and occurrences were coverage-

checked (see §7.1.1 and §7.1.2).

217

Chapter 8 - Analysis

Experimental Setup: Hardware and Software

We undertook multiple runs on diverse platforms. Our algorithm was implemented
in Java, and compiled to byte-code, for interpretation on Sun Java Virtual Machines.
Table 23 provides the detailed hardware and software specifications of the machines

used for our tests.

Machine Name Operating System Database Java CPU(s) Memory
teme Microsoft Windows Microsoft Access 1.3.0 800 Mhz AMD | 256 MB
2000 Professional 2000 Athlon
citadel Microsoft Windows Microsoft Access 1.4.0_01 500 Mhz 256 MB
XP Professional 2002 Pentium IlI
jetset Microsoft Windows Microsoft Access 1.3.1 500 Mhz 256 MB
2000 2000 Pentium Il1
All Windows platforms employed Sun’s JDBC-ODBC driver, included with their respective Java distributions.
flute Red Hat Linux 7.2 PostgreSQL 7.2.1 1.4.0_01 1.4 Ghz AMD 512 MB
Athlon
hot-spare-00 (elbe) | Red Hat Linux 7.1 PostgreSQL 7.0.3 1.4.0_01 2x1.4Ghz 25GB
AMD Athlon
hot-spare-01 (nidd) | Red Hat Linux 7.1 PostgreSQL 7.0.3 1.4.0_01 2x1.4Ghz 512 MB
AMD Athlon
hot-spare-02 (loire) Red Hat Linux 7.2 PostgreSQL 7.2.1 1.4.0_01 2x1.4 Ghz 882 MB
AMD Athlon
hot-spare-03 (lyd) Red Hat Linux 7.1 PostgreSQL 7.0.3 1.4.0_01 1.4 Ghz AMD 878 MB
Athlon
gargantubrain Red Hat Linux 7.1 PostgreSQL 7.1.3-3 1.4.1beta 4 x 800 Mhz 16 GB
(bastardised); Linux Intel ltanium
2.4.9-18smp kernel (IA-64)

All Unix platforms employed the Postgres JDBC driver that is included with the PostgreSQL 7.1 distribution.

Table 23: Software and hardware specifications of machines used for experiments

Tables and indices in each of the database were set up using a common script,

written in Java, with the only variance being that Microsoft Access required the use

of the pouble data-type in the zdeenumber table, whereas Postgres expected the rioat

data-type to be used.

218

Performance

Methodology

We made use of a biased quasi-random provision, occurrence, and participant

generator to generate provisions with a high probability of conflict, so as to exercise

our conflict detector (see §3.3, and Chapter 6) quite strenuously. We controlled the

generation of occurrence types, participant types, and provision types in order to

achieve this. The randomizer ensured that:

1.

approximately 50% of provisions were obligations, and 50% were
prohibitions. Obligations were generated following the general schema of
the obligation, being_obligedt, and the prohibition, prohibiting1, from §6.2.1. That
is, obligations were “to (some occurrence) (some amount) to (some participant)”
instead of simply “to pay $25,000 to Steelmans”. Similarly, prohibitions were
““against (more-than/less-than) (some amount) (some role) to (some role)”’, which is
more varied than simply “against more-than $10,000 paid to a supplier”. Roughly
half of the prohibitions (that is, 25% of provisions) were generated in order
to produce what might be termed ‘dead-end garden paths’, where most child

sub-queries overlapped but one was disjoint and therefore guaranteed that the

parent queries did not overlap.

approximately 20% of occurrences were one of 2 types (modelled on
being_supplier and paying of §3.1), 20% of occurrences were one of 4 types, a
further 20% of occurrence were one of 4 additional types, another 20% of
occurrences were also one of 4 further types, and the final 20% of
occurrences were one of a million types.

roughly half of occurrences had two roles (e.g occurrence type-er and
occurrence_type-ed, as in suppli-er, suppli-ed), and the remaining half had three roles
(e.g. occurrence_type-er, occurrence_type-ee, and occurrence_type-ent, as in pay-er, pay-ee,
paym:-ent).

approximately 20% of participants were one of 2 individuals (modelled on

SkyHi and Steelmans of §3.1), 20% of participants were one of 4 individuals, a

219

Chapter 8 - Analysis

further 20% of participants were one of 4 additional individuals, another
20% of participants were also one of 4 further individuals, and the final 20%

of participants were one of a million individuals.

5. approximately 50% of comparison queries were more-than and 50% were less-

than.

6. numbers (amounts) were arbitrarily chosen floating point numbers, between 0

and 1,000,000.

This ensured an interesting mix of provisions, and a good spread of occurrence and
participant types, with some common types predominating, as would be expected in

real business scenarios.

All experimental runs were generated with the same parameters. The same seed
(Seed A = 1029353288745) was used to propagate the random generator in all cases, aside
from the tests on the machines citadel and jetset where a different seed (Seed B =

1029273107527) was used for variety.

Figure 26 and Table 24 below show the number of unique identifiers stored in
the database for various numbers of provisions and occurrences in all tests that used
Seed A. As expected, the number of unique identifiers increases linearly with respect
to the total number of provisions and occurrences. The number of unique
identifiers (n) is important as the overall space utilization is polynomial, specifically n’,

with respect to this (see §8.3.1).

220

Performance

5,000

4,000 @ 5,000-6,000
Unique Identifiers In 3.000- 1l 4,000-5,000
Database ’ 03,000-4,000
2,000 002,000-3,000
H 1,000-2,000

m0-1,000

- 301
Provisions

350
450

Figure 26: Number of unique identifiers (), as number of provisions and occurrences vary

Number of Occurrences

1,508 1,612 1,723 1,843 1,968 2,099 2,212 2,334 2,446 2,568
2,200 2,304 2,403 2,506 2,631 2,762 2,875 2,997 3,109 3,231
2,869 2,973 3,072 3,167 3,287 3,418 3,531 3,653 3,765 3,887
3,559 3,663 3,762 3,857 3,970 4,085 4,198 4,320 4,432 4,554
4,195 4,299 4,398 4,493 4,606 4,716 4,822 4,944 5,056 5,178
4,855 4,959 5,058 5,153 5,266 5,376 5,482 5,602 5,713 5,835

Number of
Provisions

Table 24: Number of unique identifiers (), as number of provisions and occurrences vary

221

Chapter 8 - Analysis

In each experiment, we first inserted the desired number of provisions, and then

inserted the requisite number of workflow occurrences. The time of coverage-

checking depended on the batch-size: for a batch-size of 1, coverage-checking was

immediate, whereas for a batch-size of 50, coverage-checking was delayed until a

group of 50 provisions or occurrences had been added (see §7.1.1 and §7.1.2).

Raw Results

In all cases, we recorded:

Time

1.

the time taken to insert and coverage-check provisions in seconds. Figure 27
and Table 25 below compare the #s7a/ time to input provisions across various
machines. The trend-lines overlaid on the data points in Figure 27 are
consistent with the polynomial time complexity anticipated in §8.3.1. Figure
28 and Table 26 give the average time in seconds per provision. All results

here pertain to a batch-size of 1.

the time taken to insert and coverage-check occurrences, in seconds. Figure 29
(and Table 27) shows the %7/ time to input occurrences, as the number of
provisions varies, for the best-performing machine, teme. Figure 30 (which is
based on Table 27 and Table 28) shows the total time to insert occurrences
with 251 stored provisions, comparing batch-size 1 to batch-size 50. Figure
31 (and Table 29) shows the average time to input occurrences, as the number
of provisions varies, for the best-performing machine, teme. Figure 32 (which
is based on Table 29 and Table 30) shows the average time to insert

occurrences with 251 stored provisions, comparing batch-size 1 to batch-size

50.

222

Performance

Space

3.

the space used by the coverage-checker for provisions, calculated as the number
of rows added to the edeecoverer table. Figure 33 and Table 31 show the #ota/
space utilization for provisions, for all experiments using Seed A. Figure 34
and Table 32 show the average space utilization per provision, for varying

numbers of provisions.

the space used by the coverage-checker for occurrences, calculated as the
number of rows added to the edeecoverer table. Figure 35 and Table 33
shows the #zal/ space utilization for occurrences, for all experiments using
Seed A. Note that these graphs show actnal performance figures, and that the
theoretical worst-case figures can be computed using the square of the number
of unique concepts in the database (see §8.3.1, and Figure 26 on page 221).
Though not depicted in the graph, we also periodically recorded size-on-disk
for the Microsoft Access databases and found: 0.25MB for an empty
database, 0.5MB for 10 provisions and 10 occurrences, and 95MB for 351

provisions and 200 occurrences.

Conflicts

5.

the conflicts detected between individual obligations and prohibitions. Figure
36 shows the total conflicts detected, for all experiments using Seed A, as the
number of provisions and occurrences vary. Figure 37 (which draws its data
from Table 34 and Table 35) shows the total conflicts detected, comparing
batch-size 1 to batch-size 50. For Figure 37, 251 stored provisions were

created, and occurrences were then added.

223

Chapter 8 - Analysis

Thousands
350
300 —
flute: y = 129.79x* - 574.09x° + 10702 - 86.167x - 684.8 ® teme
250 W citadel
. 4
§ hot-spare-02: y = 127.24x* - 580.81x% + 1115.2¢ - 677.94x - 39.169 jotset
82004 . flute
8 jetset: y = 43.4x* - 69.753x% + 1405.5x° - 4630x + 3532.6
c + hot-spare-02
= 150 1
2 citadel: y = 18.976x" + 314.5¢° - 847,20 + 446.03x + 177.58 fiute (trend)
= 100 e hot-spare-02 (trend)
£ teme: y = 6.4935x* + 190.5x° - 475.14x2 + 574.63x - 287 jetset (trend)
= 50 e citadel (trend)
e teme (trend)
0 —
1 51 101 151 201 251 301 351
-50

Number of Provisions

Figure 27: Total time, in seconds, to insert and coverage-check provisions,

for best performing installations, with trend-lines fitted

Machine Name
hot-spare-00 hot-spare-01

flute hot-spare-02 hot-spare-03 gargantubrain

4.1 2.8 2.3 1.8 1.8 1.0 2.0 2.5

794.3 768.7 493.2 1,072.3 1,053.3 251.7 1,066.7 5,978.7

B 2 3,872.1 3,885.1 3,792.3 38,436.2 38,275.1 2,712.9 38,402.6 235,319.5

g % 12,908.7 13,042.7 13,159.4 330,584.8 328,217.0 10,946.2 328,737.1
3 § 32,606.8 33,748.6 34,852.2 30,414.0
Za 65,416.0 69,879.0 80,641.8 76,281.1
114,650.3 118,250.7 166,717.8 155,840.9
188,430.7 199,033.4 304,569.4 289,757.6
Blank cells appear because tests on poorly-performing configurations were manually terminated at an early stage.

Table 25: Total time, in seconds, to insert and coverage-check provisions,

comparing various installations

224

Performance

2500
E —o—teme
3 2000 1 —— citadel
= .
S jetset
@ S 1500 1 flute
£ g’ —¥— hot-spare-00
@ o
E & 1000 —@— hot-spare-01
|_
o —+— hot-spare-02
g 500 | —=— hot-spare-03
3: gargantubrain

0 n

151 201 251 301 351

Provisions

Figure 28: Average time, in seconds per provision, to insert and coverage-check provisions,

comparing various installations

Machine Name
citadel jetset flute hot-spare-00 hot-spare-01 hot-spare-02 hot-spare-03 gargantubrain

. . . . 1.8
12.0 15.6 15.1 9.7 21.0 20.7 4.9 20.9 117.2
G 2 27.8 38.3 38.5 37.5 380.6 379.0 26.9 380.2 2329.9
g :g 54.8 85.5 86.4 87.1 2189.3 2173.6 72.5 21771
g 5 92.3 162.2 167.9 173.4] 151.3
Zao 142.2 260.6 278.4 321.3 303.9
203.8 380.9 392.9 553.9 517.7
279.3 536.8 567.0 867.7 825.5
Blank cells appear because tests on poorly-performing configurations were manually terminated at an early stage.

Table 26: Average time, in seconds per provision, to insert and coverage-check provisions,

comparing various installations

225

Chapter 8 - Analysis

Thousands %\

7OW
60-
50,

H60-70

. . 050-60

Total Time in B 40-50

Seconds

30- 030-40

020-30

20 H10-20

104 oo-10
301
151 Provisions
0 300 350
400 450
Occurrences 500

Figure 29: Total time, in seconds, to insert and coverage-check occurrences,

on machine teme, for a varying number of stored provisions, and batch-size = 1

Thousands
40

—&— Batch Size 1

20 - —ill— Batch Size 50

15 1

Total Time in Seconds

10

50 100 150 200 250 300 350 400 450 500

Occurrences

Figure 30: Total time, in seconds, to insert and coverage-check occurrences,

on machine teme, for 251 stored provisions, and different batch-sizes

226

Number of
Provisions

Performance

Number of Occurrences

20 37 74 94 117 140 164 193
232 389 587 863 1,092 1,339 1,579 1,793 2,113 2,412
659 1,108 1,626 2,411 3,051 3,736 4,405 4,990 5,884 6,715
1,522 2,527 3,407 4,748 6,082 7,536 8,866 10,118 11,955 13,591
2,771 4,574 6,086 8,152 10,155 12,694 14,941 17,164 20,370 23,181
4,343 7,207 9,618 12,788 15,686 18,609 22,032 25,313 30,233 34,459
6,124 10,104 13,624 18,227 22,478 26,472 31,031 35,621 42,797 48,932
8,577 14,463 19,382 25,860 31,956 37,627 43,884 49,989 59,647 68,285

Number of

Table 27: Total time, in seconds, to insert and coverage-check occurrences,

on machine teme, for batch-size = 1

Shaded figures in Table 27 and Table 28 were used to plot Figure 30.

Provisions

Number of Occurrences

20 45 78 95 111 131
10 244 401 598 865 1,100 1,344 1,564 1,777 2,097
12 664 1,119 1,671 2,486 3,197 3,932 4,582 5,206 6,076
14 1,527 2,497 3,382 4,689 6,023 7,474 8,714 9,986 11,712
16 2,789 4,556 6,116 8,104 10,149 12,682 14,794 17,028 20,061
19 4,324 6,935 9,379 12,410 15,300 18,301 21,387 24,615 29,331

Table 28: Total time, in seconds, to insert and coverage-check occurrences,

on machine teme, for batch-size = 50

227

Chapter 8 - Analysis

m 160.0-180.0
0 140.0-160.0
m 120.0-140.0
0 100.0-120.0
m 80.0-100.0
0 60.0-80.0
040.0-60.0

201 m20.0-40.0
Provisions [0.0-20.0

Average Time in 100
Seconds Per
QOccurrence

QOccurrences

Figure 31: Average time, in seconds per occurrence, to insert and coverage-check

occurrences, on machine teme, for a varying number of stored provisions, and batch-size = 1

100
90

80 1
70 1
60 -

—&— Batch Size 1
—l— Batch Size 50

50
40

30 /
ol

10

Average Time in Seconds Per Occurrence

0 a T T T T T T T T T
50 100 150 200 250 300 350 400 450 500

Occurrences

Figure 32: Average time, in seconds per occurrence, to insert and coverage-check

occurrences, on machine teme, with 251 stored provisions, and varying batch-sizes

228

Performance

Number of Occurrences

200 250 300
S 2 13.2 11.1 10.8 12.1 12.2 12.5 12.6 12.5 13.1 13.4
g % 30.4 25.3 22.7 23.7 24.3 251 25.3 25.3 26.6 27.2
g § 55.4 45.7 40.6 40.8 40.6 42.3 42.7 42.9 45.3 46.4
Zao 86.9 721 64.1 63.9 62.7 62.0 62.9 63.3 67.2 68.9
122.5 101.0 90.8 91.1 89.9 88.2 88.7 89.1 95.1 97.9
171.5 144.6 129.2 129.3 127.8 125.4 125.4 125.0 132.5 136.6

Table 29: Average time, in seconds per occurrence, to insert and coverage-check

occurrences, on machine teme, for batch-size = 1

Shaded figures in Table 29 and Table 30 were used to plot Figure 32.

Number of Occurrences
250 300

Number of
Provisions

Table 30: Average time, in seconds per occurrence, to insert and coverage-check

occurrences, on machine teme, for batch-size = 50

229

Chapter 8 - Analysis

Thousands
160

140 /
120

o
Q
>
S 100 /
[)]
3
w80
£
7]
2 ® /./
<)
o 40
s
2 20
0 %
1 51 101 151 201 251 301 351
Provisions

Figure 33: Total space for provisions, in rows of EdeeCoverer table

(theoretical limit = n” where n = number of unique identifiers in database)

Total Space
7
2,972
5 2 12,572
33 28,031
g § 49,007
Z o 75,563
107,949
146,659

Table 31: Total space for provisions, in rows of EdeeCoverer table

230

Performance

_ 450
[}]
2 400
(]
o 350
>
[e]
O 300
85
2 g 250
£ 3 200 |
‘nh
;D.
3 150
o
2 100
g
$ 50
=

O,

51

101

151 201 251 301 351

Provisions

Figure 34: Average space for provisions, in rows of EdeeCoverer table

(theoretical limit = » where n = number of unique identifiers in database)

Number of
Provisions

Average Space
Per Provision

58

124

186

244

301

359

418

Table 32: Average space for provisions, in rows of EdeeCoverer table

231

Chapter 8 - Analysis

Thousands /‘\
45w
40-
35- W 40-45
30- 035-40
- op] W 30-35
Total Rows in @25-30
EdeeCoverer 20 B20.05
154 015-20
104 010-15
E5-10
301 @05

151 Provisions

Figure 35: Total space for occurrences, in rows of EdeeCoverer table,
for varying numbers of provisions

(theoretical limit = n” where n = number of unique identifiers in database)

Number of Occurrences

26 45 64 75 101 120

687 1,183 1,717 2,423 2,972 3,544 4,115 4,595 5,308 5,921
1,433 2,620 3,699 5,272 6,500 7,766 8,990 10,053 11,514 12,816
2,331 4,326 5,578 7,325 9,036 10,832 12,559 14,109 16,217 18,043
3,276 6,276 7,911 10,050 12,075 14,488 16,721 18,811 21,637 24,010
4,150 7,913 10,200 12,781 15,051 17,390 20,169 22,708 26,174 29,030
5,125 9,873 12,699 15,753 18,570 21,279 24,316 27,326 31,387 34,727
6,502 12,969 16,325 19,925 23,451 26,780 30,351 33,838 38,556 42,486

Number of
Provisions

Table 33: Total space for occurrences, in rows of EdeeCoverer table,

for varying numbers of provisions

232

Performance

-
30()} M
2501
2001 m250-300
Total Conflicts | B 200250
Detected 0150-200
100-] 00100-150
“ m50-100
301 [05

Provisions

Figure 36: Total conflicts detected between individual prohibitions and obligations, for

varying numbers of provisions and occurrences

160

140

120 -

100

—&—Batch Size 1
—ill— Batch Size 50

80 1

Total Conflicts Detected

07 T T T T T T T T T
50 100 150 200 250 300 350 400 450 500

Occurrences

Figure 37: Total conflicts detected between individual prohibitions and obligations,

for 251 stored provisions, comparing different batch-sizes

233

Chapter 8 - Analysis

Number of Occurrences

Number of
Provisions

37 94 119 132 143 152 167 176 185

57 151 179 197 217 231 250 264 273

Table 34: Total conflicts detected between individual prohibitions and obligations,

for batch-size =1

Shaded figures in Table 34 and Table 35 were used to plot Figure 37.

Number of Occurrences

Number of
Provisions

Table 35: Total conflicts detected between individual prohibitions and obligations,

for batch-size = 50

234

Performance

Analysis of Results

Our experiments illustrate that our algorithm supports small event histories, of a few
hundred occurrences, in conjunction with a few hundred highly-conflicting legal
provisions. Figure 36 above shows that EDEE successfully detects provisions coming

into conflict with each other at run-time as new occurrences are added.

On the best performing machine, teme, it took an average of 280 seconds (almost
5 minutes) to individually insert and coverage-check a provision, when there were
351 provisions in the database. Similarly, it took an average of 136 seconds (just over
2 minutes) to insert and coverage check an occurrence, for 351 provisions and 500
stored occurrences. For less-conflicting sets of provisions, performance is likely to

be substantially better than this.

As expected, Figure 30 (and, similarly, Figure 32) demonstrates that large batch
sizes improve performance, but lead to a lag in the detection of contflicts (Figure 37),

when compared to coverage-checking of each provision or occurrence individually.

Figure 27 indicates that our implementation scales better on Windows machines
running Microsoft Access than on Linux machines running Postgres, and that tests
executing on newer versions of Linux and Postgres yield better performance than
those run on older releases of these products. It can be noticed from Figure 27 that
no performance improvement was achieved through the use of multi-processor
machines. Analysis of CPU usage, using Unix’s top utility, revealed that this was
because only one of the available processors would be employed (with typically 99%
utilization), whereas the remaining processors experienced less than 0.5% utilization.
Furthermore, on Unix, the database server (postmaster) accounted for more than
98% of CPU time, whilst the Java processes (with less than 2% usage) were mostly

idle, waiting for results from the database.

While our results indicate that the current implementation is at present ill-suited
to the real-time, high-throughput workflow applications for which it is intended, the
approach is nevertheless clearly feasible for off-line, background performance and

consistency assessment on medium-scale problems.

235

Chapter 8 - Analysis

8.3.3 Comparative evaluation
Comparative evaluation of EDEE’s occurrence monitor against similar systems is
difficult, since EDEE’s conceptual paradigm is markedly different from existing

approaches.

EDEE underperforms against existing event monitoring and active database
systems (§2.1) which monitor for low-level system and database events. The most
efficient of these approaches may detect up to 600 events per second against 6
million subscriptions held in RAM [FJLP2001]. Such approaches treat events as
transient, held in memory rather than stored in a database as in EDEE, with event
attributes being simple string values. Event monitors are less expressive than expert
systems and rule engine approaches (§2.2), which perform slowly as they indulge in

more complex inferencing,

In the database view literature, the MiniCon containment-checking algorithm —
demonstrably more scalable than the Bucket and Inverse-Rules approaches [PL2000]
—is able to check a query against 1000 views (named queries) in less than one second.
MiniCon is targeted at the data integration problem, and rewrites queries in terms of

a maximal union of conjunctive queries over available views.

Expert system benchmarks use artificial intelligence problems with small, static
rule sets. Typical commercial rule engines (page 26) use tests such as the NASA
Monkeys & Bananas example as their benchmark. ILOG claims to solve this
problem in less than 10 minutes [ILOG2001]. Problems mentioned in the academic
expert systems literature include finding optimal seating arrangements for guests at a
dinner party (‘Manners’ benchmark), labelling lines for simple scenes (‘Waltz’),
designing computer chip circuitry (‘Weaver’), or determining the lowest-cost route
plan for an aeroplane (‘ARP’) [BGLM91]. The basic ‘Manners’ benchmark uses only
8 rules, while the ‘Waltz> benchmark uses 33 rules. The most complex of the
benchmarks, ‘Weaver’, uses 1831 facts and 637 rules; it compiles to a rigid constraint
network in 2-3 hours and executes in just over 11 minutes (on a SPARC Station 1+
with SunOS v4.0.3, using the OPS5c v1.09 compiler). Commercial contract

evaluation scenarios, with large numbers of dynamic and conflicting rules cannot be

236

Performance

meaningfully assessed against these fixed object-pattern matching application
benchmarks, which bear scant relation to workflow scenarios. For contract
monitoring and checking, both object-pattern and dynamic pattern-pattern matching
is required (§2.2.3, §8.1.4). In commercial trade environments, occurrences must be
assessed against a large and periodically changing number of applicable provisions,
and in the light of complex historical circumstances. While we are not yet close to
the millisecond response times desired, we have demonstrated turnarounds of only a
few minutes per provision or occurrence on complex contract assessment problems

(§8.3.2).

Previous contract assessment work has been based on small, single contracts.
Lee and co-workers [BLWW95, Lee88] have implemented a Petri-Net-based trade
procedure executor, whilst Daskalopulu and colleagues [Das99, DDM2001] provide a
conceptual framework for assessment of a small number of obligations (i.e. 2 or 3).
Previous work has focused on developing small scale conceptual solutions to the

problem, rather than on studying actual performance of implementations.

In the field of legal expert systems, Sergot et al. (op cit, page 172), using the
relatively limited computing resources available at the time, showed in Prolog (see
§2.2, §7.3) that the citizenship of an individual could be determined on the basis of

approximately 500 rules of legislation. Performance figures were not provided.

We are not aware of any experimental studies of algorithms for ascertaining
contract status or for determining the implications of business occurrences on
contract consistency during workflow execution. We believe our experimental
evaluation is itself a significant contribution that fills a void in previous work on this
topic. We have shown for the first time that contract performance assessment and
dynamic validation is viable on medium-scale problems with hundreds of provisions,

small event histories, and a high proportion of run-time conflicts (§8.3.2).

237

Chapter 8 - Analysis

8.4 Future Work

The previous section identified a variety of weaknesses in the current approach that
highlight avenues for further exploration. In particular, performance improvements
must be investigated (§8.4.1). Future work should also address usability concerns
with the current approach — such as providing a simple user interface (§8.4.2) and
automated completeness checks (§8.4.3) — as well as extending the approach to a

distributed setting (§8.4.4 and §8.4.5).

8.4.1 Improving time and space efficiency

Our future work will look at improving the performance of the coverage-
determination algorithm, with the eventual goal of assessing tens of thousands of

occurrences against thousands of provisions within milliseconds.

Implementation of a native active database layer within the database kernel
should yield significantly better performance (see §8.2.3), and will need to be

examined.

Mechanisms for reducing the storage space requirement for covering relations
(see §8.3.1), while preserving occurrence-semantics, should be investigated. A
possibility is to tag transitively related data with sequence numbers as the data is
added to the database; this would allow determination of the transitive closure to be
achieved through a single query looking for data items tagged with greater, or lesser,
values. This approach is suitable for totally-ordered data, but not for partially-
ordered data. We will need to reconsider the triple store in search of a more efficient

implementation with appropriate data structures.

8.4.2 Creating a user-friendly contract definition language

We have illustrated, at a storage level, the detailed undertlying representation of
occurrences, which are used to store workflow events (Chapter 3) and policies

(Chapter 5). It should be remembered though that, for reasons of usability, the

238

Future Work

interface to the system which stores the contracts and policies is more likely to be a
constraining menu-driven interface or a simple English-like language which allows

the user to work with the policies in a convenient and readable manner.

A contract definition language needs to be provided to allow business developers
to input contract specifications. The mechanisms prototyped in EDEE can be
exploited to store contracts and to determine when provisions apply and when a
contract is fulfilled. However, these should be supplemented with simple contract
presentations in order to express machine-parsable contracts in a form that humans

can easily read and modify.

8.4.3 Assessing the completeness of contracts

An extension of EDEE would include algorithms and tools to ensure that contracts
are fully specified. These tools would be applied automatically when a contract is

defined or extended. Basic completeness checks include:

® cnsuring all role-players are specified
One mechanism for ensuring policy completeness is to detect unspecified role-
players. For instance, in the specification “user privileges may change”, the modal
auxiliary “may” implies an occurrence of authorizing. As the authorized party is
unspecified it appears that the policy is incomplete — the policy specifier has not
specified who is authorized to change user privileges. To complete the
specification, the policy specifier must therefore assign responsibility for this role.
Similarly, occurrences implied by deverbative nouns in specifications must be
bound to roles — the absence of necessary information associated with these
occurrences may indicate incompleteness of the specification in that regard. For
example, in “upon confirmation of registration, members will be able to log-in to a member’s
area of the site” the deverbative noun “confirmation” implies an occurrence of
confirming whose actor should probably be specified for completeness (e.g

“confirmation by a customer services representative”).

239

Chapter 8 - Analysis

o specification of consequences of violation
In cases where obligations and prohibitions are specified, the consequences of
violation must generally be described. The analyst should be prompted to input
such information. Such information should not, however, be mandatory as it is
often the case that consequences of violation are to be decided only in the event
of violation, as a party may not wish to minutely detail all penalties at the

contracting stage.

8.4.4 Distributing contract and occurrence data to

specialist nodes

The complexity of distributed organizations makes it difficult to enforce all
organizational contracts centrally. Partitioning of related policies into stores
monitored by specialist agents, and distribution of occurrences to interested and
applicable specialist monitors, is a further optimization needed to exploit the
principle of specialization and division of computational effort for contract
management in medium and large enterprises. Specialist nodes should manage
contracts for particular business units. Nodes must be aware of applicable specialist
monitors so that they are able to forward relevant business occurrences to nodes
interested in, and responsible for, assessing contract conformance in that sub-area of

business.

8.4.5 Collating contracts from distributed nodes

The contracts governing the behaviour of an organisation and its agents constitute a
dynamically changing set. Semi-autonomous subdivisions may independently define
contracts with provisions that are mutually inconsistent, or that conflict with
organisational or departmental goals. Independently specified policies must be

collated from remote locations, analysed, and reconciled.

240

Summary

8.5 Summary

This chapter has summarized the strengths and weaknesses of our representation

and implementation and identified opportunities for further research.

We gave a qualitative review of benefits (§8.1) and shortfalls (§8.2). In addition,
we presented what we believe to be the first experimental evaluation of a contract
performance assessment and dynamic validation algorithm (§8.3). It was established
that, while performance is comparatively slow, our algorithm nonetheless is able to

attend to complex, medium-scale problems within minutes.

As future work ({8.4), we will explore performance improvements.
Implementation of the software in a distributed setting remains to be addressed, by
providing facilities for distributing and collating provisions and occurrences;
currently we store this information in a centralized database. We also plan to
enhance usability by defining high-level business contract definition templates at

user-interface level, and providing completeness checks.

This dissertation concludes with a summary of the contributions of the research.

241

Chapter 9

Conclusion: Contribution

This dissertation has proposed a method of approach for structuring the analysis and
development of electronic commerce workflow applications. It has employed a new
conceptual framework based on occurrences, and provided accompanying guidelines,
information models, implementation structures, and algorithms. The work has
highlighted the deficiencies of existing approaches to e-commerce application

development (Chapter 2). It has addressed these issues by contributing:

9.1 A generic schema for storing and
monitoring a history of business events

and states (Chapter 3)

Traditional event monitors (§2.1) and policy-based systems (§2.3) monitor for recent,
low-level events (§2.1.2, §2.1.3, §2.3.1). Events take constant values (typically strings,

integers, Of dates) as parametets.

We have defined a novel schema that affords uniformity of storage, detection,
and querying for a history of occurrences of business events and states (§3.1). Our schema is
able to represent sentences with embedded propositions including deontic sentences such as

b

‘it is obliged / permitted / prohibited that ...”. Such representation is achieved by

243

Chapter 9 - Conclusion: Contribution

using stored queries (§3.2) that specify the criteria for the items and occurrences
described in the embedded sentence. Our EDEE prototype permits parameter values
(occurrence participants) to be described using queries, and provides coverage-checking
Sacilities (§3.3) to analytically determine static and dynamic overlap between recorded

queries.

9.2 A seamless application development
approach catering for both analysis and

implementation (Chapter 4)

Integration between the analysis and implementation phases of development has not
been addressed by classical policy management systems (§2.3) and business contract
architectures (§2.5), which focus almost entirely on technical facilities without regard

for requirements analysis and formalization (§2.3.3).

The new techniques and tools we provide take account of both the analysis and
implementation phases of the system development life cycle. To support the
modelling process, we have described a set of analytic guidelines (§4.1-§4.6) that
allow business analysts to systematically identify business workflow occurrences as
well as normative occurrences such as the obligations, prohibitions, and powers
imposed by a contract or user requirements specification. Development and
deployment is achieved by storing the provisions identified from the analysis of user
requirements, contracts, and regulations in an active database that is used to control

workflow execution.

244

9.3 A representation schema for provisions of

contracts, policies, and law (Chapter 5)

Current workflow systems (§2.4) take a task-dependency perspective (§2.4.1) and
assume a rigid system of law for obligation creation (§2.4.2). Similarly, ‘contracting’
implementations (§2.5) do not explicitly represent or reason about the changing legal
relations between parties. Policy-based approaches (§2.3) are limited to expressing
action-based obligations; they omit treatment of several and collective obligations;
they provide only synchronous invocation; and they hard-wire violation assessment
conditions (§2.3.4). As with deontic logics (§2.6), obligation instances are neither
individually identified nor distinguished from general obligation policies (§2.3.4,
§2.0.4).

Our contribution has been to describe a valuable practical extension of
Kimbrough’s formal Disquotation Theory (§2.1.1), for the purpose of workflow
automation. We made a number of revisions to Kimbrough’s suggestions in the
process: domain-specific roles replaced more ambiguous thematic roles (§3.1);
provisions were relativized to an utterance (clause), rather than to the norm system as
a whole (§5.1.1); occurrences of allocating supplanted the Sake(...) predicate which did
not specify the allocation basis (§3.1, §5.6.1); violation states and obligation states
were treated as separate entities (§5.0.2); permissions were extended to include the
sense of vested liberty (§5.4); Hohfeld’s notions of legal power, liability, disability,
and immunity were added (§5.5, §5.3.2); a “fulfilled’ obligation was distinguished from
a ‘not violated’ obligation (§5.6.1, §5.6.2); and, for obligations, we explicitly
differentiated the party responsible to act from the party standing in surety, and the
parties entitled to instigate or to receive recourse (§5.6.3).

Our approach looked at subjective assertions (§5.2), prohibitions (§5.3),
permissions (§5.4), powers and liabilities (§5.5), and obligations (§5.6). One-shot and
persistent rights were investigated (§5.5.1, §5.5.2). A consistent treatment of events

and states for obligation fulfilment monitoring allowed the representation and

245

Chapter 9 - Conclusion: Contribution

monitoring of both ought-to-do and ought-to-be obligations (§5.6.6). We accounted
for conditional (§5.6.5) and secondary (§5.6.2), prima-facie and all-things-considered
(§5.6.4, §5.60.9), and joint (§5.6.8) and several (§5.6.7) obligations.

9.4 A sophisticated mechanism for conflict

detection and resolution (Chapter 6)

In some circumstances, more than one provision may be applicable, especially if
contracts are modified. New provisions and data may introduce inconsistency. Rule-
based approaches (§2.2) are often targeted at managing small, static rule-sets (§2.2.2).
Conflict detection facilities are limited (§2.2.3) and only priority-based conflict
resolution is provided (§2.2.4). Policy management systems (§2.3) attend to conflict
avoidance rather than configurable resolution (§2.3.5). Deontic logics (§2.6) aim for
consistent, conflict-free specifications (§2.6.2), and employ an idealistic notion of
‘ought’ (§2.6.1) that focuses on the standing obligations of the moral world, rather

than the individual, dischargeable obligations found in business (§2.6.5).

We described a case-based policy instantiation mechanism that accounts for each
individual norm instance’s life cycle: creation and fulfilment, violation, or nullification
(§5.6.9). Contradictory provisions were dynamically detected by analytically looking for
overlap between occurrence descriptions (§3.3, §6.2). Our conflict resolution approach
(§6.3) involved voiding identified obligation and prohibition instances, in accordance
with specific clauses; it used defeasible, time-tagged conclusions (§6.4). The
approach was able to make use of document structure information (such as position
of a clause in a headed document or document-section) to locate sifuated clauses

(§6.1) and select unambiguous clausal consequences in order to resolve conflicts.

246

9.5 An architecture for monitoring and
enforcing a dynamically changing set of

requirements (Chapter 7)

An important innovation was employing an incremental continuous query evaluation
mechanism (§3.3) for the monitoring of occurrences against contractual provisions
stored in tabular data schemas, using pervasive industrial technology (Java and
relational databases). Reasoning about provision applicability and fulfilment or
violation was done in the light of long-lived persistent occurrence histories. We
specified a number of contract provision monitoring mechanisms — immediate (§7.1.1)
and delayed (§7.1.2) detection — and performance and enforcement mechanisms —
intervention (§7.2.1), prevention by refusal (§7.2.2), and prevention by construal
(§7.2.3). The design proposed was verified through a prototype implementation,
EDEE (§7.3). This implemented state-of-the-art support for legal-provision-based
workflow automation that is not, to our knowledge, provided by any other

application development infrastructure.

9.6 Summary of contribution

Embedding rules in opaque procedural code is untenable in enterprise scenarios
where rules need to be externalized: that is, made observable, queryable, and
modifiable. Requirements evolve rapidly and rules are volatile; the ability to update
rules and determine which rules are applicable in cases where multiple rules pertain

over time is crucial.

We have outlined an approach that caters for modelling, development, and
deployment of business requirements in terms of contractual and regulatory
provisions. A novel database representation and software wrapper were specified

using a practical application scenario (§1.2): we demonstrated how to implement a

247

Chapter 9 - Conclusion: Contribution

computational environment for electronic contract modelling, storage, analysis, and
execution. Our approach was to store provisions in a database, and thereby exploit
DBMS mechanisms for updating, locating, querying, and organizing provisions. This
permits dynamic workflow configuration: the ability to adapt the workflow without
stopping the application. Leveraging DBMS technology also gives the advantages of
support for concurrent update, recovery, and replication. Business users are
provided with facilities to determine, via database interrogation, which rules apply to
a given component; this gives focused insights into the internal workings of complex
applications. Effectively, the user requirements specification is stored in a database,
can be modified and queried at run-time, and directly drives the workflow. Faster
time-to-market and higher quality software can be expected, as specification and

implementation share a common representation.

Contract-aware, occurrence-driven execution is an emerging paradigm for the
automation of commercial organizational activities. It subsumes the notion of
workflow, which has traditionally been the focus of computer science research in this
general area. The ability to explicitly store, reason about, distribute and enforce
contractual terms and provisions introduces synchronization between business
requirements and application implementation. This realignment promises to advance
the application development process by providing software primitives that mirror the
fundamental conceptions of corporate law; the output of the formal analysis of
business policies, contracts, and regulations then becomes usable for direct software
implementation. The benefits of more correct and efficient business processes are
far-reaching and potentially of great importance. Though much further work
remains before we have an industrial-strength application, we believe our novel
occurrence-based method, architecture, and software prototype implementation, have

advanced the state-of-the-art in executable specification for e-commerce applications.

248

Appendix 1

Query Storage

This appendix gives details of the structure and syntax of stored queries (see §3.2).
Table 36 below summarizes the query types, examples, and syntax. The various

subsections of this appendix explore the major query types in more detail.

| Name | Examples | Syntax in EDEEQL grammar™

Algebraic, Alphabetic, and Date Queries

<10 Nov 2001 | <
> 10 Nov 2001 | >

(less—-than)
(greater—-than)

Greater than, Less than, Equalto | <10 < ‘Jeff’
>10 > ‘Jeff

=10 =‘Jeff =10Nov 2001 | = (equal-to)
Set-Theoretic Queries
Concept Identification = Steelmans = (identified-concept)
Union Qu...uQ, (uniand) UNION (uniand) UNION .. (uniand)
Intersection QinNn..nQ, (intersectand) INTERSECTION (intersectand)
INTERSECTION .. (intersectand)
Difference Qi -Q: or (differor) - (differand) or
Q; but not Q» (differor) BUT_NOT (differand)
Empty Set %] EMPTY_SET
Universal Set U UNIVERSE
Not / Complement (U -Ay) UNIVERSE - (differand)
Triplet Queries
Participant Query | participants in role payer in PARTICIPANTS IN ROLE (role)
paying1 IN (occurrence)
Occurrence occurrences of paying where OCCURRENCES OF (type)
Query $25,000 is paid WHERE (participant) IS/ARE (role)
Role Query roles of Steelmans in paying1 ROLES (participant) IN (occurrence)
Ordinal Queries
ltem in 1% of [occurrences of paying where $25,000is | (position) OF (set) IN ASCENDING /
Position paid] in ascending temporal order DESCENDING (sequence) ORDER
Inbuilt and User-Defined Operations
Various | count(occurrences of paying where $25,000 is paid), (operation-name) (set)
max-possible-results(first of occurrences of paying),
average(...), sum(...), min(...), max(...), ...
Table 36: Types of query
33 CriterionTypes are shown in round brackets, terminal symbols in CAPITALS. <, >, =, and - are also

terminals. All queries are enclosed in square brackets ‘[... 1’

249

Appendix 1 - Query Storage

Note that, for queries that look up other stored queries, we use the syntax for Triplet
Queries but we use the lexical item oueryips in place of the lexical item occurrencEs,
CRITERIONTYPE in place of rore, and varues in place of parricreants. This is because,
as shown in Figure 2 and Figure 3 (page 85), queries are stored in QueryID-CriterionType-

Value tables rather than in the Occurrence-Role-Participant tables used to store occurrences.

Al.l Algebraic Queries

Three basic types of algebraic query are catered for: equality, strictly less than, and
strictly greater than. The three basic types of algebraic query are represented as
shown in Table 37 below, which depicts the algebraic queries x = 6.2°, x < 7’, and
x > 9 respectively (where x is the solution of the query). query901, query902, and

query903 are identifiers for the three queries’“.

QuerylD CriterionType Value

query901 | equal-to 6.2 (n1)*®
query902 | less-than 7 (n2)
query903 | greater-than 9 (n3)

Table 37: Representation of basic algebraic queries:

equality, strictly less than, and strictly greater than

Queries of the form ‘greater than or equal’, ‘less than or equal’, ‘between’ (with
inclusive or exclusive upper and lower limits), and discontinuous ranges are
represented using combinations of basic algebraic queries and set-theoretic queries
described below. For example ‘greater than or equal to’ is represented as a union of a
strictly greater than query and an equal to query, and a ‘between’ query with exclusive
upper and lower limits is represented as the intersection of a strictly less than query

involving the upper limit and a strictly greater than query involving the lower limit.

3 As a convention in this Appendix, query numbers in the 900’s are arbitrarily chosen, whereas other
query numbers refer to queries mentioned in the main body of this document.

% As mentioned earlier, due to data-type restrictions, numbers are stored in the separate EdeeNumber
table (see page 95). For readability we show the numbers directly; however, what appears in this
column is really the number identifier: e.g. n1, n2, n3 where n1=6.2, n2=7, n3=9.

250

Alphabetic Queries

Al.2 Alphabetic Queries

Alphabetic queries are catered for in a similar manner to algebraic queries, though

alphabetic queries of course cater for alphabetic comparison rather than numeric

comparison. The three basic types of alphabetic query are represented as shown in

Table 38 below, which depicts the queries x = Brian’, ‘x < Niki’, and ‘x > Peter’

respectively (where x is the solution of the query).

QuerylD CriterionType Value
query904 | equal-to ‘Brian’ (s4)*
query905 less-than ‘Niki’ (s5)
query906 greater-than ‘Peter (s6)

Table 38: Representation of basic alphabetic queries:

equality, strictly less than, and strictly greater than

As for algebraic queries ({A1.1), the basic types of alphabetic queries can be

composed using set-theoretic queries.

A1.3 Set-Theoretic Queries

Set-theoretic queries for union, intersection, difference, identification, universal set,

empty set, identification, negation, and cardinality (counting) are supported.

Union

Union queries return the items in azy of the queries in the
union. The criteria (arguments) to the union query can be
referred to as ‘uniands’. The representation of a general

union query is as shown in Table 39 below:

3 Again, due to data-type restrictions, symbols are stored in the separate EdeeSymbol table (see page
95). For readability we show the symbols directly; however, what appears in this column is really the
symbol identifier: e.g. s4, s5, s6 where s4="Brian’, s5='Niki’, s6="Peter’.

251

Appendix 1 - Query Storage

QuerylD CriterionType | Value

query907 uniand query601

uniand query602

Table 39: Representation of a union query

Intersection Intersection queries return the items in // of the queries in
the intersection. The criteria (arguments) to the
intersection query can be referred to as ‘intersectands’. The
representation of a general intersection query is as shown

in Table 40 below:

QuerylD CriterionType | Value

query908 intersectand query601

intersectand query602

Table 40: Representation of an intersection query

Difference Difference queries returns the items in first query buz not in (L.e.
excluding those items in) the second query set. The criteria
(arguments) to the difference query can be referred to as the
‘differor’ and ‘differand’. The representation of a general

difference query is as shown in Table 41 below:

QuerylD CriterionType | Value

query909 differor query601

differand query602

Table 41: Representation of a difference query

252

Universal Set

Empty Set

Identification

Set-Theoretic Queries

A special query that returns all the concepts in the database.
The universal set is represented simply by a specially

assigned identifier.

A special query that returns nothing. The empty set is

represented simply by a specially assigned identifier.

An identification query with the criterion c1 returns the item
identified as c1 if that item exists in the database, and the
empty set otherwise. Identification queries are used to allow
identifiers to be wrapped inside queries so as to be nestable
inside other queries. The representation of an identification

query is as shown in Table 42 below:

QuerylD CriterionType Value

query910 identified-concept ci

Table 42: Representation of an identification query that returns c1 if c1 is in the database

Negation A negation (‘not’) query can be represented using the universal

set as the differor and the negated set as the differand.

Cardinality A cardinality (counting) query is used to count the number of

items fitting a description. A cardinality query takes a single

criterion, which is a set of items to be counted; this set is

generally specified using a query which describes the criteria

for items falling into the set. This can be represented as

shown in Table 43 below:

QuerylD | CriterionType | Value

query911 | counted query601

Table 43: Representation of a query that counts the results of another query.

253

Appendix 1 - Query Storage

Al1.4 Occurrence-Related Queries

Occurrence-related queries are queries that are solved by specifying any two of the
occurrence, role, and participant columns and solving for the third. Occurrence-
related queries look for identifiers in matching occurrence-role-participant triples; the
values (or set or range of values) of two columns are specified in the criteria and the
results are the contents of the third column in all rows where the two specified

columns match. There are naturally three types of occurrence-related query:

Occurrence query An occurrence query specifies the occurrence type as well
as the participant and its roles in that occurrence; all
occurrence-identifiers of this type with this
participant in that role are returned. Table 44 below

shows an example.

QuerylD CriterionType | Value
query1 type paying
query4 occurrence query1
participant query2
role query3

Table 44: Representation of an occurrence query

Graphically, the ‘search window’ used to resolve an occurrence query looks like

that shown in Table 45 below:

Occurrence Role Participant

Table 45: A graphical representation of the ‘search window’ used to

resolve an occurrence query

254

Participant query

Occurrence-Related Queries

A participant query specifies the occurrence and role
and can be represented as shown in Table 46 below;
all participant-identifiers in this occurrence with this

role are returned.

QuerylD CriterionType | Value

query7 occurrence query5

role query6

Table 46: Representation of a participant query

Graphically, the ‘search window’ used to resolve a participant query looks like

that shown in Table 47 below:

Occurrence

Role Participant

Table 47: A graphical representation of the ‘search window’ used to

Role query

resolve a participant query

A role query specifies the occurrence and participant and can
be represented as shown in Table 48 below; all role-identifiers

for the participant in the occurrence are returned.

QuerylD CriterionType | Value
query914 participant query912
occurrence query913

Table 48: Representation of a role query

Graphically, the ‘search window’ used to resolve a role query looks like that

shown in Table 49 below:

255

Appendix 1 - Query Storage

Occurrence Role

Participant

Table 49: A graphical representation of the ‘search window’ used to resolve a role query

A1.5 Ordinal Queries

Ordinal queries are used to determine which item is in a certain position in a
sequence, or to determine the position of an item in a certain sequence. In the
former case (Table 50 below) the position number, set to search in, lookup direction,
and sequence identifier (comparator function) must be specified; item identifiers are
returned. In the latter case (not shown), the item identifier, set to search in, lookup

direction, and sequence identifier must be specified; the position number is returned.

QuerylD CriterionType | Value
query915 position 1
set query914
direction ascending
sequence temporal

Table 50: Representation of an ordinal item-in-position query

A1.6 Nested Queries

Queries can be nested within each other. Nesting queries allows us to combine
queries in order to specify complex criteria that are not otherwise expressible. Set-
theoretic queries, occurrence-related, and conditional queries can nest queries of any
other type within them. The values in the criteria used for set-theoretic, occurrence-

related, and conditional queries are query identifiers.

256

The Evaluation of Conditions

Al.7 The Evaluation of Conditions

Complex conditions may be constructed using the operators not, and, or, any-x (L.e.
cardinality / some specified number &), a11, of none. These operators are not
implemented in the usual truth-functional way of classical propositional logic since
we are not dealing with propositions. Rather, they are implemented in a set-theoretic
way since we are dealing with sets of occurrences, which are more fine-grained than
propositions”. To evaluate conditions we select event occurrences and count them
and then check if the count is correct (i.e. so-to-speak ‘true’ or false). This
evaluation can be achieved using the various query types defined eatlier; e.g
occurrence-related queries are used for selecting occurrences and cardinality queries
are used for counting. Table 51 below demonstrates how a variety of complex

conditions are evaluated in a set-theoretic, occurrence-centric mannetr.

37 For example, instead of having merely the proposition P as in classical propositional logic, in an
occurrence-centric view we have an identified occurrence (e.g. paying?) classified as being in the class
P.

257

Appendix 1 - Query Storage

Example
Condition

Set-Theoretic, Occurrence-Centric Evaluation
(Implemented using the Occurrence-Centric Queries and Cardinality Queries defined earlier)

“you pay late”

If the count of its results is
greater than or equal to one, the condition is true, otherwise it is false.

Resolve “select ‘late payings by you’ occurrences”.

“you do not®
pay the
correct
person”

If the count of “select ‘payments to the correct person’ occurrences” yields zero
(i.e. such an occurrence does not exist), the condition is true, otherwise it is false.

“you pay late
and you atre a
regular
customer”

Resolve “select ‘you pay late’ occurrences” and “select ‘you are a regular customer’
occurrences”. Count the number of results of each of the selects. If none of the
selects yield zero (i.e. zero of the selects yield zero results), the condition is true,
otherwise it is false. Notice here that we are counting the count events (i.e. counting
the count events that yield zero).

“you pay late
ot you pay too
little”

If counting the results of the union of “select ‘you pay late’ occurrences” and “select
‘you pay too little’ occurrences” yields one or more, the condition is true, otherwise it
is false.

“you do any
two or more

of”: pay late,

At first glance “counting the results of (select the union of (select ‘you pay late’
occurrences and select ‘you change your travel date’ occurrences and select ‘you miss
your flight’ occurrences)) yields 2 or more results” would seem the obvious way to
evaluate this condition, but is not correct because it would not yield the correct result
if you, for instance, changed your travel date twice but do neither of the other two
things (i.e. did not pay late nor did you miss your flight). The correct
implementation is: “counting the number of (selects which yield one or more results)
yields 2 or more results”, where the selects that are counted are “select ‘you pay late’
occurrences” and “select ‘you change your travel date’ occurrences” and “select ‘you
miss your flight” occurrences”. Again, notice that you have to count your count
events (i.e. count the counts that yield more than one) here; and then check that this
count of counts yields two or more (as specified in the original condition “any two
or more of..”). Notice that this condition would be difficult and very inefficient
to implement in a traditional truth-theoretic manner, as propositional logic does not
cater for counting and furthermore does not reify (individuate) occurrences so would
not allow for the counting of occurrences; the condition would have to be
implemented as a combination of “(you pay late and you change your travel date) or
(you pay late and you miss your flight) or (you change your travel date and you miss
your flight)” which is impractical for two reasons:

- it would lead to a combinatorial explosion for large numbers of k, in ‘any-k

of’ expressions, and
- it does not allow you to easily specify conditions like ‘any X of: ...” where
X is a variable computed at run-time.

change your
travel date, or
miss your
flight”

you do

all/none of:

As for any-k, but replace k with the count of the number of different event-types
listed (in the case of all) or with zero (in the case of none).

Table 51: Evaluating truth conditions in a set-theoretic, occurrence-centric manner

¥ Words shown in Courier font (e.g. not, and, or, any-k, etc.) are connectives for complex

conditions.

% Notice that, because an any-k can be combined with an algebraic greater-than or less-than query,

we can easily implement ‘any k or more’and ‘any k or less’.

258

Appendix 2

Coverage Checking Rules

This appendix describes in detail the rules for determining the relationships between
queries. These rules themselves are effectively queries as they return results: the
results are sets of queries which cover, are covered by, dirty, vacuum, are disjoint
from, or partially overlap the specified query or described item. The following sub-
sections define what is meant by the covering, dirtying, and vacuuming relationships
between queries, and how to determine these relationships. Determination of

disjointedness and partial-overlap relationships proceeds similarly.

259

Appendix 2 - Coverage Checking Rules

A2.1 Relationships between queries

Queries may completely cover, dirty, vacuum, be disjoint from, or partially overlap

other queries. These relationships are defined as follows:

A query, A, completely covers (is a superset of) a query, B, if the appearance
of any item x in the results of query B causes the appearance of that item x
(which may be termed ‘output dirt) in the results of the query A. The
appearance of the item x in query B does not necessitate the partial re-evaluation
of A since we can immediately conclude that a new result of A is x. Similarly,
the disappearance of an item from the results of B causes its disappearance from
A. The inverse of the covering (superset) relationship is the covered (subset)
relationship. The ‘completely covering’ relationship is often referred to as query
containment in the database literature. A query Q, is contained in the query Q,,
if the answer to Q, is a subset of the answer to Q, for azy database instance
[PL2000]. Query containment determination algorithms — such as Bucket,
Inverse-Rules, and MiniCon — have previously been applied to the problems of
view maintenance, query optimization, and data integration [PL2000]. As far as
we are aware, ours is the first application of such techniques to contract

assessment and analysis.

A query is dirtied by an item if, when the item is added to the database, the item
changes the aiteria of the query, and therefore alters the results of the query.
Dirtying, caused by the addition of application data, may bring two queries into
or out of overlap at run-time. For example, upon the addition of the new clerks,
John and Jeff, to the database, the query “salaries of clerks” is dirtied (and
should be re-evaluated) as it must now also return “salaries of John and Jeff”. A
query, A, dirties a query, B, if the appearance of any item x (input dirt) in the
results of query A alters the criteria of B and causes the appearance of an item y
(where y may or may not be equal to x) or set of items Y (output dirt) in the
results of the query B. To determine the new results of the dirtied query,

substitute the input dirt for the dirtied criterion, to yield a partial re-evaluation

260

Relationships between queries

query. Then evaluate this partial re-evaluation query to obtain output dirt. See
the applications of Rule A2.3.2 on page 88 for examples of the use of this
technique.

® A query, A, vacuums a query, B, if the appearance of any item x in the results of
query A may cause the disappearance of an item y (where y may or may not be
equal to x) or set of items Y from the results of the query B. Again, a process of
substitution and partial re-evaluation allows us to arrive at the changes in the
results of B.

® A query, A, is disjoint from a query, B, if the appearance of any item x in the
results of query A will certainly not cause the appearance of that item x in the
results of the query B.

® A query, A, partially overlaps a query, B, if the appearance of an item x in a
common subset of query A and query B, causes the appearance of that item x in
the results of the query B, whilst the appearance of any item x in a subset of
query A and query B which is not common to them both, will not cause the

appearance of that item x in the results of the query B.

We say that an occurrence (or indeed any item) fits a description if it is covered by a stored
guery. Any new occurrence inserted in the occurrence store may be covered by a
query, or may, via dirtying relationships, cause an existing occurrence or query to
become covered by a query. For queries dirtied by another query, we need to do an
incremental evaluation (partial re-evaluation) of the dirtied query to determine
what new results and queries the dirtied query now covers. Since, for instance,
queries may define a set of prohibited occurrences (§5.3), it is important to be able to
determine the changes in query results as new occurrences are added, so that we may
determine what occurrences become prohibited, and bring about violations, under a

prohibition (§7.1.1).

261

Appendix 2 - Coverage Checking Rules

A2.2 Determining which queries cover an item

or query

Rule A2.2.1°

Rule A2.2.2
Rule A2.2.3

Rule A2.2.4

Rule A2.2.5

Rule A2.2.6

Rule A2.2.7

Rule A2.2.8

An item or query (of any type) is covered by the universal set query
(universe).

An item is covered by queries with matching type criteria.

Any query is covered by any query that is semantically identical to
itself (i.e. contains the same criteria but different query identifiers).
In order to factor out common sub-expressions and improve
performance, a new query added to the database should be assigned
the same query identifier as a semantically identical one already
stored.

A query (of any type) is covered by any union query that has the
query as one of its uniands.

Transitively, a query is covered by any query that covers any of the
coverers of the query.

As covering relationships may also be stored, a query Q is covered by
any query that is in the coverer column in any row in the edeecoverer
table (see pages 89, 95, and 2106) in which Q is in the covered column.
Any item or query is covered by any intersection query whose
intersectands all cover the item or query; that is, the item or query is
covered if no intersectands do not cover the item or query.

A number is covered by: numeric equal-to queries where the equal-to
criterion equals the number; numeric less-than queries, where the less-
than criterion is greater than number; and, numeric greater-than
queries where the greater-than criterion is less than the number.

Similarly for symbols and alphabetic queries.

40 The query types and CriterionTypes mentioned in these rules are defined in Appendix 1.

262

Rule A2.2.9

Rule A2.2.10

Rule A2.2.11

Rule A2.2.12

Rule A2.2.13

Determining which queries cover an item or query

A numeric equal-to query, Q, is covered by: numeric equal-to queries,
where the equalto criterion equals the equal-to criterion of Q; by
numeric less-than queries where the less-than criterion is greater than
the equal-to criterion of Q; and, by numeric greater-than queries where
the greaterthan criterion is less than the equalto criterion of Q. A
numeric less-than query, Q, is covered by numeric less-than queries
where the less-than criterion is greater than the less-than criterion of Q.
A numeric greater-than query, Q, is covered by numeric greater-than
queries where the greaterthan criterion is less than the greater-than
criterion of Q. And similarly for alphabetic queries.

Any item (occurrence, role, or participant) is covered by concept-
identification queries where the identified-concept criterion is identical to
the occurrence-, role-, or participant-identifier. An identified concept
is identical to another if their concept-identifiers are identical strings,
or if a stored occurrence of being-identical relates the different
identifiers for the concept. A concept-identification query is covered
by another concept-identification query, if the identified-concept criteria
of both queries are identical by either string-comparison or explicitly-
stored being-identical relationships.

A concept-identification query is covered by any query that covers its
identified-concept ctiterion.

A difference query is covered by its differor arguments. e.g. payments but
not large payments is covered by payments.

An intersection query is covered by any of the queries in its intersectand
set. e.g. full payments intersection large payments intersection late payments 18

covered by full payments, and by large payments, and by late payments.

263

Appendix 2 - Coverage Checking Rules

Rule A2.2.14

Rule A2.2.15

Rule A2.2.16

Rule A2.2.17
Rule A2.2.18

Rule A2.2.19

An intersection query, Q, is also covered by any intersection query, P,
if each of P’ intersectands covers at least one of Qs intersectands. e.g. full
payments intersection large payments intersection late payments is covered by full
payments intersection large payments and by full payments intersection late payments
and by large payments intersection late payments.

A union query is covered by any other queries that cover all of the
uniands of the union query.

A participant query, Q, is covered by a participant query, P, if P’
occurrence criterion covers Q’s occurrence criterion, and P’s role criterion
covers Qs role criterion. Similarly for occurrence queries, and role
queries.

An occurrence query is covered by its occurrence criterion.

An ordinal (sequence) query is covered by its set criterion. e.g. 1%
[persons] in descending height order is covered by persons.

An item, y, in the range (i.e. output) of a programming language
operation, Q, is covered by Q(Q'(y)), where Q' is the inverse
operation of Q. For example, consider the Java operation (in this
case a uset-defined abstract method) symbolsstartingwith() which
maps a first letter to (the infinite set of) strings that start with that
letter. This has the inverse operation firstLetterof () which maps a
string to its first letter'. Assume the item, y, we wish to coverage-
check is the string ‘Brian’. We notice that, being a string, it is in the
domain (input) of the inverse operation firstLetterof() and,
therefore, it is in the range (output) of the operation

symbolsStartingWith (). Applying the inverse operation

Notice that, because symbolsStartingWith () produces an infinite number of results per input in
its domain, it cannot have a physical Java implementation, but it could be defined as an abstract
method. In contrast, its inverse mapping method, firstLetterOf (), which produces only one
result per input, can have a physical Java implementation. In general, computing the inverse
operation for a given operation is non-trivial, and we provide no facilities for automated generation
of operation inverses. It is assumed that the developer manually specifies the name and definition of
the inverse operation when defining an operation, and that the system provides a commonly used set
of operations and their inverses. Automatic determination of inverse methods is a potential area of

future research.

264

Determining which queries or items are dirtied by a query

firstLetterof () to ‘Brian’ we get the result ‘8. We therefore know
that the operation symbolsStartingwith() when invoked using the
specific parameter ‘B’, covers (among other things) the string ‘Brian’.
That is, we have used the inverse operation, firstLetterof (), to show
that ‘Brian’ is covered by the description symbolsstartingwith('B’). This
method of using inverse operations to find descriptions (operations
and the specific parameter values) that cover an item can be generally
applied. Furthermore, as far as we are aware, this is a novel

mechanism of finding descriptions for items.

Notice that the coverage-determination process is the reverse of the traditional

query-resolution process used by query executors. Query execution can be

implemented through the is-covered-by (i.e. is-a-subset-of) relationship, which is the inverse

relationship of covers (i.e. is-a-superset-of).

A2.3 Determining which queries or items are

dirtied by a query

Rule A2.3.1

Rule A2.3.2

Rule A2.3.3

A query, Q, dirties any difference queries that have the query, Q, as
its differor.

A query, Q, dirties any triplet query that has the query, Q, as its
occurrence criterion, role criterion, ot participant criterion.

A query, Q, dirties any intersection query that has the query, Q, as its

intersectand critetion.

265

Appendix 2 - Coverage Checking Rules

Rule A2.3.4 An ordinal query or an inbuilt or user-defined operation is dirtied by
any changes to the set criterion defining its input set. Incremental re-
evaluation mechanisms vary depending on the operation: a count
may be incrementally re-evaluated by adding the total number of new
items to the last count, thereby saving a full recount. Similarly for a
sum, where the sum of new values is added to the last total. An
average can be incrementally re-evaluated by the formula: ((last_average

x last_count)+total_of_new_values)+(last_count+number_of_new_values).

A2.4 Determining which queries or items are

vacuumed by a query

Difference queries are vacuumed by their differands — that is, when a differand becomes
dirty, the parent difference query is immediately sacuumed as it no longer contains the
results that are newly produced in its differand argument. So, when the differand of a
difference query becomes dirty, the dirt is removed (i.e. concepts are sucked out
from) the results of the parent difference query, which is then said to be vacuumed.
This leaves a vacuum because some of the results that used to be in the result set of
the vacuumed query are no longer there. This vacuum propagates to queries which

cover the vacuumed query — i.e. those queries no longer cover items in the vacuum.

266

[AAD97] - [Bac86] Bibliography

Bibliography

Self-references

([AB2000], [AB2001a], [AB2001b], [AB2001c], [AB2001d],

[AB2002a], [AB2002b], [AEB2002a], [AEB2002b], [AEB2002c], [AK2002],

[DA99]) are listed in the Publications section on page xi.

[AAD97]

[AGMW97]

[AK96]

[A1195]

[And58]

[And62]
[ATG2001]

[Aus76]

[Bac86]

Allwood J, Andersson L-G, and Dahl O. Laogi in Linguistics. Cambridge
University Press. Cambridge, UK. 1997.

Adelberg B, Garcia-Molina H, and Widom J. The STRIP Rule System for
Efficiently Maintaining Derived Data. Proceedings of the ACM SIGMOD
International Conference on Management of Data. pp. 147-158. Tucson, AZ.
May 1997.

Ayres R and King PJH. Querying Graph Databases Using a Functional
Language Extended with Second Order Facilities. In Morrison R and
Kennedy] (eds): _Advances in Databases Systems, Proceedings of 14% British
National Conference on Databases (BNCOD14). pp. 189-203. Edinburgh,
United Kingdom. July 3-5, 1996.

Allen J. Natural Langnage Understanding. 2°4 Edition. Benjamin Cummings.
Menlo Park, CA. 1995.

Anderson AR. A Reduction of Deontic Logic to Alethic Modal Logic.
Mind 67. pp. 100-103. 1958.

Anderson AR. Logic, Norms, and Roles. Razo. 4(36). pp. 36-49. 1962.
ATG Dynamo. http:/iwww.atg.com/. 2001.

Austin JL. How to do things with words. 204 Edition. Oxford University Press.
1976.

Bach E. The Algebra of Events. Linguistics and Philosophy. 9. pp. 5-16.
1986.

267

Bibliography [BBH97] - [BHMM2001]

[BBHY7]

[BBHMY5]

[BDLT2000]

[BEA2001]

[Ben8s]

[BFA99]

[BFL96]

[BGLMY1]

[BHBY6]

[BHMM2001]

Bacon], Bates J, and Halls D. Location oriented multimedia. [EEE
Personal Communications. 4(5). pp. 48-57. October 1997.

Bacon], Bates J, Hayton R, and Moody K. Using events to build
distributed applications. Proceedings of the 27 International Workshop on Services
in Distributed and Network Environments. Whistler, BC. pp. 148-155. 1995.

Bons RWH, Dignum F, Lee RM, and Tan Y-H. A Formal Analysis of
Auditing Principles for Electronic Trade Procedures. Infernational Journal of

Electronic Commerce. 5(1). Fall 2000.
BEA WebLogic Server. http://www.bea.com/products/weblogic/server/index.shtml. 2001.

Bennett |. Events and their Names. Oxford University Press. Oxford, UK.
1988.

Bertino E, Ferrari E, and Atluri V. The Specification and Enforcement of
Authorization Constraints in Workflow Management Systems. _ACM
Transactions on Information and Systems Security. 2(1). pp. 65-104. February
1999.

Blaze M, Feigenbaum J, and Lacy J. Decentralized Trust Management.
Proceedings of the IEEE Conference on Security and Privacy. Oakland, CA. 1996.

Brant DA, Grose T, Lofaso B, and Miranker DP. Effects of Database Size
on Rule System Performance: Five Case Studies. Proceedings of the 17
International Conference on Very Large Data Bases. 1991.

See also: http://www.cs.utexas.edu/ftp/pub/ops5-benchmark-suite/ HOW.TO.USE.

Bates J, Halls D, and Bacon J. A Framework to Support Mobile Users of
Multimedia Applications. ACM Mobile Networks and Nomadic Applications
(NOMAD,). 1(4). pp.409-419. 1996.

Bacon J, Hombrecher A, Ma C, Moody K, and Yao W. Event Storage and
Federation using ODMG. 9% International Workshop on Persistent Object
Systems, Design, Implementation and Use (POS9). Lillechammer, Norway.
September 2000. Lecture Notes in Computer Science 2135. pp. 265 — 281.
Springer-Verlag. Berlin, Germany. 2001.

268

[BHMM2002]

[BJPW99]

[B1a2000]

[B1a2001]

[BLM2001]

[BLWW95]

[BM93]

[BMBH2000]

[Bro96]

[Br02000]

[Bro2001]

[BHMM2002] - [Bro2001] Bibliography

Bacon J, Hombrecher A, Ma C, Moody K, and Pietzuch P. Building Event
Services on Standard Middleware. Soffware Practice and Experience. John
Wiley & Sons. To appear.

Beugnard A, Jézéquel J-M, Plouzeau N, and Watkins D. Making
Components Contract Aware. IEEE Computer. pp. 38-45. July 1999.

Blaze Software. Blaze Advisor Technical White Paper.

Awvailable from: http://www.blazesoft.com/products/docrequest.html

Accessed on: 1 March 2000.

Blaze M. Using the KeyNote Trust Management System. March 2001.
http://www.crypto.com/trustmgt/kn.html.

Bacon J, Lloyd M, and Moody K. Translating role-based access control
policy within context. In [SLL2001]. pp. 107-119.

Bons RWH, Lee RM, Wagenaar RW, and Wrigley CD. Modelling Inter-
organizational Trade Procedures Using Documentary Petri Nets. Proceedings
of the Hamwaii International Conference on System Sciences. 1995.

Brant DA and Miranker DP. Index Support for Rule Activation. Proceedings
of the 1993 ACM SIGMOD International Conference on Management of Data.
pp- 42 —48. 1993.

Bacon J, Moody K, Bates], Hayton R, Ma C, McNeil A, Seidel O, and
Spiteri M. Generic support for distributed applications. IEEE Computer.
33(3). pp. 68=77. March 2000.

Brown MA. Doing As We Ought: Towards a Logic of Simply
Dischargeable Obligations. In Brown MA and Carmo] (eds): Deontic Logic,
Agency, and Normative Systems: Proceedings of the Third International Workshop on
Deontic Logic In Computer Science (DEON’96). Sesimbra, Portugal. Springer.
1996.

Brown MA. Conditional Obligation and Positive Permission for Agents in

Time. Nordic Journal of Philosophy. 5(2). pp. 83-112. 2000.
Brokat Technologies AG. White Papers about Brokat Advisor. August 2001.

http://www.brokat.com/cgi-bin/wpnav.cgi

269

Bibliography [BRS2001] - [CCS97]

[BRS2001]

[BSHBYS]

[BvdR95]

[Cam2001]

[CCY5]

[CC98]

[CCS94]

[CCS97]

Business Rules Solutions, LLC. BRS RuleSpeak and BRS RuleTrack.

August 2001. Available at: http://www.brsolutions.com/{rulespeak_download,
ruletrack}.shtml

Bates J, Spiteri MD, Halls D, and Bacon J. Integrating Real-World and
Computer-Supported Collaboration in the Presence of Mobility. Proceedings
of IEEE Workshops on Emerging Technologies in Collaborative Environments
WETICE 1998) Workshop on Collaboration in the Presence of Mobility.
Stanford, CA. June 1998.

Burg JFM and van de Riet RP. COLOR-X: Object Modelling Profits from
Linguistics. In Proceedings of the 2% International Conference on Building and
Sharing of Very Large-Scale Knowledge Bases (KB&»KS’95). Enschede, The
Netherlands. 1995.

Cameron GD. The Legal Infrastructure for E-commerce: What do we have
and what do we need? International Conference on Advances in Infrastructure for
Electronic Business, Science, and Education on the Internet (SSGRR2007). 1”Auqila,
Ttaly. ISBN:88-85280-61-7. August 2001.

Cholvy L and Cuppens F. Solving Normative Conflicts by Merging Roles.
Proceedings of the Fifth International Conference on Artificial Intelligence and the Law
(ICAIL’95). Washington, DC. pp. 201-209. May 1995.

Cholvy L and Cuppens F. Reasoning about norms provided by conflicting
regulations’. In Prakken H and McNamara P (eds): Norws, Logic, and
Information Systems: ~ New Studies in Deontic Logic and Computer Science.
Amsterdam. 1OS Press. pp. 247-264. 1998.

Collet C, Coupaye T, and Svensen T. NAOS: Efficient and modular
reactive capabilities in an Object-Oriented Database System. 20"
International Conference on Very Large Databases. Santiago, Chile. September
1994.

Cholvy L, Cuppens F, and Saurel C. Towards a logical formalization of
responsibility. Proceedings of the Sixth International Conference on Aprtificial
Intelligence and the Law. Melbourne, Australia. ACM Press. pp. 233-242.
1997.

270

[CDDF98]

[CDMR2001]

[CDNF2001]

[CDTW2000]

[Che80]

[CG89]

[CIDE95]

[CKAK93]

[CL2001]

[CLN2000]

[CDDF98] - [CLN2000] Bibliography

Ceri S, Di Nitto E, Discenza A, Fuggetta A, and Valetto G. DERPA: A
Generic Distributed Event-based Reactive Processing Architecture. Technical Report.
CEFRIEL - Politecnico di Milano. March 1998.

Cole J, Derrick], Milosevic Z, and Raymond K. Author Obliged to Submit
Paper before 4t July: Policies in an Enterprise Specification. In [SLL2001].

pp. 1-17.

Cugola G, Di Nitto E, and Fuggetta A. The JEDI event-based
infrastructure and its application to the development of the OPSS WEFMS.
IEEE Transactions on Software Engineering. 27(9). pp. 827-850. September
2001.

Chen J, DeWitt D, Tian F, and Wang Y. NiagarCQ: A Scalable Continuous
Query System for Internet Databases. Proceedings of the 2000 ACM SIGMOD
International Conference on the Management of Data. Dallas, TX. pp. 379-390.
May 2000.

Chellas BF. Deontic Logic and Conditional Logic. Chapters in Chellas BF.
Modal Logic: An Introduction. Cambridge University Press. pp. 190-203, 268-
277. 1980.

Carriero N and Gelernter D. Linda in context. Communications of the ACM.

32(4). pp. 444-458. April 1989.

Cambridge International Dictionary of English. Cambridge University Press.
1995.

Chakravarthy S, Krishnaprasad V, Anwar E, and Kim S-K. Anatomy of a
Composite Event Detector. Technical Report UF-CIS-TR-93-039.

Department of Computer and Information Sciences, University of Florida.

Gainesville, FL.. December 1993.

Chomicki] and Lobo J. Monitors for History-Based Policies. In
[SLL2001]. pp. 107-119.

Chomicki], Lobo J, and Naqvi S. A Logic Programming Approach to
Contflict Resolution in Policy Management. Proceedings of the 7% International
Conference on Principles of Knowledge Representation and Reasoning (KR’2000).
Breckenridge, CO. Morgan Kaufman. pp. 121-132. April 2000.

271

Bibliography [CLZ2000] - [CTVR98]

[CLZ2000]

[CM94a]

[CM94b]

[CP2000]

[Cru2000]

[CRW98]

[CSvdR99]

[CT96a]

[CT96b]

[CTVR9S]

Cabri G, Leonardi L, Zambonelli F. Mobile-Agent Coordination Models
for Internet Applications. IEEE Computer. pp. 82-89. February 2000.

Chakravarthy S and Mishra D. Snoop: An Expressive Event Specification
Language for Active Databases. Data and Knowledge Engineering. 14(1).
November 1994,

Clocksin WF and Mellish CS. Programming in Prolog. 4™ Edition. Springer-
Verlag. Berlin, Germany. 1994.

Carmo] and Pacheco O. Logics for Modelling Businesses and Agents
Interaction. International Conference on Advances in Infrastructure for Electronic
Business, Science, and Education on the Internet (SSGRR2000). 1’Audila, Italy,
ISBN 88-85280-52-8. July-August 2000.

Cruse A. Meaning in Language: An Introduction to Semantics and Pragmatics.

Oxford University Press. Oxford, UK. Chapter 16, pp. 331-346. 2000.

Carzaniga A, Rosenblum DS, and Wolf AL. Design of a Scalable Event
Notification Service: Interface and Architecture. Technical Report CU-CS-
863-98. Department of Computer Science, University of Colorado.

Boulder, CO. August 1998.

Caminada MWA, Steuten AAG, and van de Riet RP. An Evaluation of
Linguistically Based Modelling Approaches on the Basis of the EANCOM
EDI Standard. The Language Action Perspective. 1999.

Checkland PB and Tsouvalis C. Reflecting on the SSM: The Dividing Line
Between Real World” And Systems Thinking World. Working Paper Number 3.
The Centre for Systems and Information Sciences. University of
Humberside. 19906.

Checkland PB and Tsouvalis C. Reflecting on the SSM: The Link Between Root
Definitions and Conceptnal Models. Working Paper Number 5. The Centre for
Systems and Information Sciences. University of Humberside. 1996.
Ciancarini P, Tolksdorf R, Vitali F, Rossi D, and Knoche A. Coordinating
Multi-agent Applications on the WWW: A Reference Architecture. IEEE
Transactions on Software Engineering. 24(5). pp. 362-375. May 1998.

272

[Dam2002]

[dAMW96]

[Das97]

[Das98]

[Das99]

[Das2000]

[Dat2000]

[Dav80]
[Dav96]

[DB2001]

[DDKL2001]

[Dam2002] - [DDKL2001] Bibliography

Damianou NC. A Policy Framework for Management of Distributed Systems. PhD
Thesis. Department of Computing, Imperial College, University of

London. 2002.

d’Altan P, Meyer JJCh, and Wieringa RJ. An integrated framework for
ought-to-be and ought-to-do constraints. Artificial Intelligence and Law. 4.

pp. 77-111. 1996. Follow-on version as at 22 January 1998.

Daskalopulu A. Logic-based Tools for Legal Contract Drafting: Prospects
and Problems. Proceedings of the 1# Logic Symposinm. University of Cyprus
Press. pp. 213-222. 1997.

Daskalopulu A. Legal Contract Drafting at the Micro Level. Law in the
Information Society: 5" International Conference of the Institute of 1egal Documentation
(IDG) of the Italian National Research Council. Florence, Italy. December 1998.
Daskalopulu A. Logic-Based Tools for the Analysis and Representation of 1egal
Contracts. PhD Thesis. Department of Computing, Imperial College,
University of London. 1999.

Daskalopulu A. Modelling Legal Contracts as Processes. DEXA Workshop
on Legal Information Systems Applications (ILISA200). Greenwhich. September
2000.

Date CJ. What Not How: The Business Rules Approach to Application
Development. Addison-Wesley. Reading, MA. 2000.

Davidson D. Essays on Actions and Events. Clarendon Press, Oxford. 1980.
Davis T. Lexical Semantics and Linking in the Hierarchical Lexicon. PhD Thesis.
Stanford University, Department of Linguistics. pp. 17-69. 1996.

Dimitrakos T and Bicarregui J. Towards a Framework for Managing Trust
in e-Services. Proceedings of the Fourth International Conference on Electronic
Commerce Research. Volume 2. Dallas, TX. ATSMA, IFIP, INFORMS.
pp- 360-381. 2001.

Dan A, Dias DM, Kearney R, Lau TC, Nguyen TN, Parr FN, Sachs MW,
and Shaick HH. Business-to-business integration with tpaML and a

business-to-business protocol framework. IBM Systenss Journal. 40(1). 2001.

273

Bibliography [DDLS2001] - [DM2001]

[DDLS2001]

[DDM2001]

[Del2000]

[DFGG2000]

[DK97]

[DK98]

[DK99]

[DLSD2001]

[DM2001]

Damianou N, Dulay N, Lupu E, and Sloman N. The Ponder Policy
Specification Language. In [SLL2001]. pp. 18-38.

Daskalopulu A, Dimitrakos T, and Maibaum TSE. E-Contract Fulfilment
and Agents’ Attitudes. Proceedings ERCIM WG E-Commerce Workshop on the
Role of Trust in E-Business. Zurich. October 2001.

Dellarocas C. Contractual Agent Societies: Negotiated shared context and
social control in open multi-agent systems. Workshop on Norms and
Institutions in Multi-Agent Systems at the 4% International Conference on Multi-Agent
Systems (Agents-2000). Barcelona, Spain. June 2000.

Dittrich KR, Fritschi H, Gatziu S, Geppert A, and Vaduva A. SAMOS in
Hindsight: Experiences in Building an Active Object-Oriented DBMS.
Technical Report 2000.05. Database Technology Research Group.

Department of Information Technology, University of Zurich. 2000.

Dignum F and Kuiper R. Combining Dynamic Deontic Logic and
Temporal Logic for the Specification of Deadlines. In Proceedings of the 30%
Hawaii International Conference on Systems Sciences (HICSS’97). Hawaii. 1997,

Dignum F and Kuiper R. Specifying Deadlines with Dense Time Using
Deontic and Temporal Logic. International Journal of Electronic Commerce. 3(2).
pp. 67-86. Winter 1998-99.

Dellarocas C and Klein M. Designing robust, open electronic marketplaces
of Contract Net agents. Proceedings of the 20" International Conference on
Information Systems (ICLS). Chatlotte, NC. December 1999.

Dulay N, Lupu E, Sloman N, and Damianou N. A Policy Deployment
Model for the Ponder Language. Proceedings of the IEEE/IFIP International
Symposinm on Integrated Network Management (IM°2001). Seattle, WA. May
2001.

Daskalopulu A and Maibaum TSE. Towards Electronic Contract
Performance. Legal Information Systems and Applications (LISA), 12 Conference
and Workshop on Database and Expert Systems Applications. 1EEE CS Press.
pp. 771-777. 2001.

274

[Dow87]

[DS95]

[DS97]

[DS2002]

[DSvdR2000]

[DW95]

[DWV96]

[ELW94]

[ESP99]

[FF94]

[Dow87] - [FF94] Bibliography

Dowson M. ISTAR and the Contractual Approach. Proceedings of the 9
International Conference on Software Engineering (ICSE 1987). Association for
Computing Machinery. Monterey, CA. pp. 287-288. 1987.

Daskalopulu A and Sergot M. A Constraint-Driven System for Contract
Assembly. Proceedings of the 5 ACM International Conference on Al and Law
(ACAIL-95). ACM Press. pp. 62-70. 1995.

Daskalopulu A and Sergot MJ. The Representation of Legal Contracts. Al
and Society. 11 (1/2). pp. 6-17. 1997.

Daskalopulu A and Sergot MJ. Computational Aspects of the FLBC
Framework. Decision Support Systems. 33(3). Special Issue on Formal
Modelling in E-Commerce. pp. 267-290. July 2002.

Dehne F, Steuten AAF, and van de Riet RP. WordNet++: A Lexicon
Supporting the Color-X Method. Iz Proceedings of the 5% International Conference
on Application of Natural Language to Information Systems (NLDB’2000).
Versailles, France. 2000.

Dignum F and Weigand H. Communication and deontic logic. In Wieringa
R and Feenstra R (eds): Information Systems, Correctness and Reusability.
World Scientific. Singapore. pp. 242-260. 1995.

Dignum F, Weigand H, and Verharen E. Meeting the deadline: on the
formal specification of temporal deontic constraints. Proceedings of the
International Symposinm on Methodologies for Intelligent Systems. pp. 243-252.
1996.

Embley DW, Liddle SW, and Woodfield SN. Attributes: Should We
Eliminate Them from Semantic and Object-Oriented Data Models?
Proceedings of the Computer Science Conference. ACM Press. New York, NY.
pp. 340-347. 1994.

Eiter T, Subrahmanian VS, and Pick G. Heterogeneous Active Agents, I:
Semantics. Artificial Intelligence. 108(1-2). pp. 179-255. 1999.

Fromherz MP] and Fuchs N. Software Development Based on Executable
Specifications and Transformations. Report 94.07. Institut fir Informatik,

Universitat Zirich. 1994.

275

Bibliography [FH2001] - [GD93]

[FH2001]

[(FJ91]

[FJLP2001]

[FK2001]

[For82]

[Fow98]

[Fuc92]

[FSS98]

[FSS99]

[GDY3]

Friedman-Hill EJ. Jess, the Expert System Shell for the Java Platform. SAND98-
8206. Sandia National Laboratories. Livermore, CA. August 2001.

Available at: http:/herzberg.ca.sandia.gov/jess/

Flood RL and Jackson MC. Creative Problem Solving: Total System Intervention.
John Wiley. Chichester, UK. 1991.

Fabret F, Jacobsen HA, Llirbat F, Pereira J, Ross KA, and Shasha D.
Filtering Algorithms and Implementation for Very Fast Publish/Subscribe.
Proceedings of the 2001 SIGMOD Conference. May 2001.

Flores RA and Kremer RC. Bringing Coherence to Agent Conversations.
In Woodridge M, Ciancarini P, and Weiss G (eds): _Agent-Oriented Software
Engineering II. Lecture Notes in Computer Science 2222. Springer-Verlag,
Berlin, Germany. pp. 50-67. 2001.

Forgy CL. RETE: A fast algorithm for the many pattern / many object
pattern match problem. _Artificial Intelligence . 19(1). pp. 17-37. September
1982.

Fowler M. Dealing with Roles. Supplement to Analysis Patterns: reusable
object models. Addison-Wesley. Reading, MA. 1998.

Available at: http://www.aw.com/cseng/titles/0-201-89542-0/apsupp/roles2-1.html

Fuchs NE. Specifications are (Preferably) Executable. Software Engineering
Journal. 7(5). pp. 323-334. September 1992.

Fuchs NE, Schwertel U, and Schwitter R. Attempto Controlled English —
Not Just Another Logic Specification Language. In P.Flener (ed.): Logi-
Based Program Synthesis and Transformation, Eighth International Workshop
(LOPSTR ’98). Manchester, UK. June 1998. Lecture Notes in Computer
Science 1559. Springer-Verlag. Berlin, Germany. 1999.

Fuchs NE, Schwertel U, and Schwitter R. _A#tempto Controlled English (ACE)
Language Manunal, Version 3.0. Institut fur Informatik der Universitat Zurich.
August 1999.

Gatziu S and Dittrich KR. Events in an Active Object-Oriented Database
System. Proceedings of the 1+ International Workshop on Rules in Database Systems.
Edinburgh, UK. August 1993.

276

[GDY4]

[G]S92a]

[GJS92b]

[GLCY9]

[GM95]

[Goh97]

[GR2000]

[Gri94]

[GSSS2000]

[GT98]

[GD94] - [GT98] Bibliography

Gatziu S and Dittrich KR. Detective Composite Events in Active Database
Systems Using Petri Nets. Proceedings of the 4% International Workshop on
Research Issues in Data Engineering: Active Database Systems. Houston, Texas.

February 1994.

Gehani N, Jagadish HV, and Shmueli O. Composite event specification in
active databases: Model and implementation. Proceedings of the 18"
International Conference on V'ery Large Data Bases (1’LDB’92). Vancouver,
Canada. August 1992.

Gehani NH, Jagadish HV, and Shmueli O. Event specification in an active
object-oriented database. Proceedings of the International Conference on

Management of Data (SIGMOD). San Diego, CA. pp. 81-90. 1992.

Grosof BN, Labrou Y, and Chan HY. A Declarative Approach to Business
Rules in Contracts: Courteous Logic Programs in XML. In Wellman MP
(ed.): Proceedings 1¢ ACM Conference on Electronic Commerce (EC-99). Denver,
CO. ACM Press. New York, NY. November 1999.

Gupta A, and Mumick IS. Maintenance of materialized views: Problems,
techniques, and applications. Data Engineering Bulletin. 18(2). pp. 3-18.
1995.

Goh C. A Generic Approach to Policy Description in System Management. HP
Laboratories Technical Report HPL-97-82. Bristol, UK. July 1997.

Green P and Rosemann M. Integrated Process Modelling: An Ontological
Evaluation. Information Systems. 25(2). pp. 73-87. 2000.

Grishman R. Computational Linguistics: An Introduction. Cambridge University
Press. Cambridge, UK. p. 97. 1994.

Greunz M, Schopp B, and Stanoevska-Slabeva K. Supporting Market
Transactions through XML Contracting Containers. Proceedings of the Sixth
Americas Conference on Information Systems (AMCILS 2000). Long Beach, CA.
August 2000.

Geppert A and Tombros D. Event-based Distributed Workflow Execution
with EVE. In Davies N, Raymond K, and Seitz | (eds): Proceedings of the
IFIP International Conference on Distributed Systems Platforms and Open Distributed
Processing: Middleware *98. Springer. 1998.

277

Bibliography [Halg8] - [Hoh78]

[Hal98]

[Hal2001]
[Han92]

[Hay95]

[HBBMY6]

[Hay96]

[HBC97]

[HH97]

[HK93]

[HKNPV98]

[HM97]

[Hoh78]

Halpin T. Object-Role Modelling (ORM/NIAM). Chapter 4 in: Bernus P,
Mertins K, and Schmidt G (eds): Handbook on Architectures of Information
Systems. Springer. 1998,

Haley Enterprises. Eclipse and Café Rete. August 2001. http://www.haley.com/

Hanson EN. Rule Condition Testing and Action Execution in Ariel.

Proceedings of the ACM SIGMOD Conference. pp. 49-58. June 1992.

Hayes PJ. A Catalog of Temporal Theories. Technical report UIUC-BI-AI-96-
07. Beckman Institute and Departments of Philosophy and Computer

Science, University of Illinois. Chicago, IL. 1995.

Hayton R, Bacon |, Bates J, and Moody K. Using Events to Build Large
Scale Distributed Applications. Proceedings of the ACM SIGOPS European
Workshop *96. Connemara, Ireland. 1996.

Hayton R. OASIS: An Open Architecture for Secure Interworking Services. PhD
Thesis. University of Cambridge Computer Laboratory. March 1996.
Hanson EN, Bodagala S, and Chadaga U. Optimized Trigger Condition
Testing in Ariel using Gator Networks. Technical Report UF-CIS-TR-97-021.
CISE Department, University of Florida. Gainesville, FL. November 1997.
Hay D and Healy KA. GUIDE Business Rules Project. Final Report. Revision
7.2. October 1997. Available from: http:/www.businessrulesgroup.org/

Accessed on: 5 May 2000.

Herrestad H and Krogh C. The Right Direction. Towards a Global Expert
System of Law. MEDLAR 1II Deliverable V.2—3 243.
December 1993.

Florence, Italy.

Hanson EN, Konyala M, Noronha L, Park JB, and Vernon A. Scalable
Trigger Processing in TriggerMan. Technical Report 98-008. University of
Florida CISE Department. Gainesville, FL. July 1998.

Hansson SO and Makinson D. Applying Normative Rules with Restraint.
In Dalla ML (ed.): Logic and Scientific Methods. Kluwer. Dordrecht, The
Netherlands. pp. 313-332. 1997.

Hohfeld WN. Fundamental Legal Conceptions as Applied in [udicial Reasoning.
Edited by Cook WW. Greenwood Press Publishers. Westport, CT. 1978.

278

[Hol92]

[HPL99]

[HPV2000]

[HS98]

[HV2001]

[HvdVH97]

[IASC89]

[IASCY7]

[IASC98]

[IBM2001]
[ILOG2001]

[Ipe2001]

[Holg2] - [Ipe2001] Bibliography

Holland IM. Specitying reusable components using contracts. Proceedings of
the 6" European Conference on Olbject Oriented Programming (ECOOP’92).
Springer-Verlag. Berlin. pp. 287-308. 1992.

Hoagland JA, Pandey R, and Levitt KN. Specifying and Enforcing Policies
using LaSCO: the Language for Security Constraints on Objects. Po/igy
Workshop. HP Laboratories, Bristol, UK. November 1999.

Higginbotham J, Pianesi I, and Varzi A. Oxford

University Press. Oxford, UK. 2000.

Speaking of Events.

Huhns MN and Singh MP. Agent Jurisprudence. IEEE Internet Computing.
2(2). pp. 90-91. March-April 1998.

Hitchens M and Varadharahan V. Tower: A Language for Role Based
Access Control. In [SLL2001]. pp. 88-106.

Hoppenbrouwers], van der Vos B, and Hoppenbrouwers S. NL Structures
and Conceptual Modelling: Grammalizing for KISS. Data and Knowledge
Engineering. 23(1).
(Workshop 1996).
Netherlands. pp. 79-92. June 1997.

Special Issue: Natural Language for Data Bases

Elsevier Science Publishers. Amsterdam, The

International Accounting Standards Committee. Framework for the Preparation

and Presentation of Financial Statements. London, UK. 1989. http:/www.iasc.org.uk/

International Accounting Standards Committee. International Accounting

Standards: 1LAS 33 (Earnings Per Share). London, UK. 1997. Available at:

http://www.iasc.org.uk/

International Accounting Standards Committee. International Accounting

Standards: 1AS 37 (Provisions, Contingent Liabilities, and Contingent Assets).
London, UK. 1998. Available at: http:/www.iasc.org.uk/

IBM CommonRules. http:/www.research.ibm.com/rules/home.html

ILOG Inc. ILOG Business Rule Components. August 2001.
http://www.ilog.com/products/rules/rules_2001.pdf

Ipedo XML Data Management Platform. 2001. http://www.ipedo.com/

279

Bibliography [ISO95] - [JSS97]

[1S095]

[1S099a]

[1SO99b]

[JFN2000]

[Jon2002]

[JM2000]

[JS93]

[JS96]

[JS2000]

[JSS97]

International Standards Organization (ISO/IEC JTC1/SC21/WG7). Open
Distributed Processing — Reference Model — Part 2: Foundations. International
Standard 10746-2 / ITU-T Recommendation X.902. 1995.

International Standards Organization. Database Langnage SQL.. Document
ISO/IEC 9075. 1999.

International Standards Organization. Information Technology — Open
Distributed Processing — Interface Definition Langnage. Document ISO/IEC
14750. 1999.

Jennings NR, Faratin P, Norman TJ, O’Brien P, and Odgers, B.
Autonomous Agents for Business Process Management. [nternational Jonrnal

of Applied Artificial Intelligence. 14(2). pp. 145-189. 2000.

Jones AJL. Conventional Signalling Acts. Presented at the 24 Meeting of the
Foundation for Intelligent Physical Agents (FIPA). Lausanne, Switzerland.
2002.

Jurafsky DS and Martin JH. Speech and Langnage Processing. Prentice Hall.
New Jersey. pp. 499-543, 607-629. 2000.

Jones AJI and Sergot M. On the Characterization of Law and Computer
Systems: The Normative Systems Perspective. Chapter 12 in Meyer J-JCh
and Wieringa R] (eds): Deontic Logic in Computer Science: Normative System
Specification. Kluwer Academic Publishers. 1993.

Jones AJI and Sergot M. A formal characterisation of institutionalised
powet. Journal of the Interest Group in Pure and Applied Logic. 4(3). pp. 427-
443, 1996.

Jones AJI and Sergot M. On Power in e-Institutions. Second International
Workshop on Formal Models of Electronic Commerce (FMEC'00). Wharton
School, University of Pennsylvania. Philadelphia, PA. 2000.

Jajodia S, Samarati P, and Subrahmanian VS. A Logical Language for
Expressing Authorisations. Proceedings of the IEEE Symposium on Security and
Pripagy. Oakland, CA. pp. 164-174. May 1997.

280

[KCK2001]

[KGV99]

[Kim98a]

[Kim98b]

[Kim2001]

[KM93]

[KM97]

[Koc97]

[KR93]

[KCK2001] - [KR93] Bibliography

Kafeza E, Chiu DKW, and Kafeza I. View-Based Contracts in an E-Service
Cross-Organizational Workflow Environment. Proceedings of the Second
International Workshop on Technologies for E-Services (IES07). Rome, Italy.
Lecture Notes in Computer Science 2193. Springer-Verlag. Berlin,
Germany. pp. 74-88. 2001.

Koetsier M, Grefen P, and Vonk |. Cross-Organisational Workflow: CrossElow
ESPRIT E/28635 Contract Model, Deliverable D4b. 1999.

Kimbrough SO. Sketch of a Basic Theory for a Formal Language for
Business Communication. Proceedings of the 31 Annual Hawaii International
Conference on Systems Sciences (HICSS98). Kohalo Coast, Hawaii. January
1998.

Kimbrough SO. On ES® Theory and the Logic of the X12 Date/Time
Qualifiers. Proceedings of the 31¢ Hawaii International Conference on System Sciences
(HICSS98). Kohalo Coast, Hawaii. IEEE Computer Society Press.
pp. 176-185. January 1998.

Kimbrough SO. Reasoning about the Objects of Attitudes and Operators:
Towards a Disquotation Theory for the Representation of Propositional
Content. Eijght International Conference on Artificial Intelligence and the Law
(ICAIL 2007). St Louis, MO. ACM Press. pp. 188-195. May 2001.

Kimbrough SO and Moore SA. On Obligation, Time, and Defeasibility in
Systems for Electronic Commerce. Proceedings of the 26" Hawaii International

Conference on Systems Sciences. Kauai, Hawaii. IEEE Computer Society Press.
pp. 493-502. January 1993.

Kimbrough SO and Moore SA. On Automated Message Processing in
Electronic Commerce and Work Support Systems: Speech Act Theory and
Expressive Felicity. ACM Transactions on Information Systems. 15(4). ACM
Press. New York, NY. pp. 321-367. October 1997.

Koch T. Automated Management of Distributed Systems. Dissertation for
the Degree of Doktor-Ingenienr at the Fachbereich fur Elektrotechnik der
FernUniversitat. Shaker Verlag. Hagen, Germany. 1997.

Kamp H and Reyle U. From Disconrse to Logic. Kluwer Academic Publishers.
1993.

281

Bibliography [KRo95] - [KT2000]

[KR95]

[Kra98]

[K1097]

[KRRY7]

[KRRYS8]

[KRR2000]

[KRRS2001]

[KRRV94]

[KS86]

[KT2000]

Krishnamurthy B and Rosenblum DS. Yeast: A General Purpose Event-
Action System. IEEFE Transactions on Software Engineering. 21(10). October
1995.

Kramer R. iContract — The Java Design By Contract Tool. In Proceedings of
the Technology of Object Oriented Languages and Systems (TOOLS26). 1EEE.
1998.

Krogh C. Current Issues in the Field of Deontic Logic. Doctor Philosophiae
Lecture. SINTEF Report. Oslo, Norway. June 1997.

Kappel G, Rausch-Schott S, and Retschitzegger W. Implementing Business
Rules on a Framework of Rule Patterns. Technical Report 8/97. Department of

Information Systems, University of Linz. 1997.

Kappel G, Rausch-Schott S, and Retschitzegger W. Coordination in
Workflow Management Systems — A Rule-based Approach. In Conen W,
Neumann G (eds): Coordination Technology for Collaborative Applications —
Organizations, Processes, and Agents. Lecture Notes in Computer Science 1364.

Springer-Verlag. Berlin, Germany. pp. 99-120. 1998.

Kappel G, Rausch-Schott S, and Retschitzegger W: A framework for
workflow management systems based on objects, rules and roles. .ACM
Computing Surveys. 32(1es). March 2000.

Kappel G, Rausch-Scott S, Retschitzegger W, and Sakkinen M. Bottom-up
Design of Active Object-Oriented Databases. Communications of the ACM.
44(4). pp. 99-104. April 2001.

Kappel G, Rausch-Schott S, Retschitzegger W, and Vieweg S. TriGS:
Making a Passive Object-Oriented Database System Active. Journal of Object-
Oriented Programming. 4. 1994.

Kowalski R and Sergot M. A Logic-based Calculus of Events. New
Generation Computing. 4. OHMSHA, LTD and Springer-Verlag. pp. 67-95.
1986.

Kimbrough SO and Tan Y-H. On Lean Messaging with Unfolding and

Unwrapping for Electronic Commerce. International Journal of Electronic

Commerce. 5(1). Fall 2000.

282

[Lam2001]

[LBN99]

[LD92]

[Lee80]

[Lee88]

[Lee98]

[Lin77]

[Liu2000]

[L102000]

[LO99]

[LSDM2001]

[LPT99]

[Lam2001] - [LPT99] Bibliography

van Lamsweerde A. Goal-Oriented Requirements Engineering: A Guided
Tour. 5% IEEE International Symposinm on Requirements Engineering (RE01).
Toronto, Canada. pp. 249-263. August 2001.

Lobo J, Bhatia R, and Naqvi S. A Policy Description Language. Proceedings
of the 6" National Conference on Artificial Intelligence (AAAI-99). MIT Press.
Cambridge, MA. pp. 291-298. July 1999.

Lee RM and Dewitz SD. Facilitating International Contracting: Al

Extensions to EDL. International Information Systems. January 1992.

Lee RM. CANDID: A Logical Calenlus for Describing Financial Contracts. PhD
Thesis. Department of Decision Sciences (now Department of Operations
and Information Management), The Wharton School, University of

Pennsylvania. Philadelphia, PA. June 1980.

Lee RM. Bureaucracies as Deontic Systems. ACM Transactions on Office
Information Systems 6(2). pp. 87-108. April 1988.

Lee RM. Towards Open Electronic Contracting. Journal of Electronic
Markets, Special Issue on Electronic Contracting. 8(3). pp. 3-8. 1998.

Lindahl L. Position and Change — A Study in Law and Logi.
Publishing Company. Dordrecht, The Netherlands. 1977.

D Reidel

Liuv K. Semiotics in Information Systems Engineering. Cambridge University

Press. 2000.

Lloyd MS. Conversion of Access Control Policy to Formal Logic. MPhil Thesis.
University of Cambridge Computer Laboratory. 2000.

Liu K and Ong T. A Modelling Approach for Handling Business Rules and
Exceptions. The Computer Journal. 42(3). pp. 221-231. 1999.

Liu K, Sun L, Dix A, and Mohan N. Norm Based Agency for Designing
Collaborative Systems. Information Systems Journal. 11(3). Blackwell Science.
Oxford, UK. pp. 229-247. 2001.

Liu L, Pu C, and Tang W. Continual Queries for Internet Scale Event-

Driven Information Delivery. IEEE Transactions on Knowledge and Data
Engineering. 11(4). July/August 1999.

283

Bibliography [LR94] - [MDBS69]

[LR94]

[LS97]

[LS99]

[Mak86]

[Mak88]

[Mak99]

[MB98]

[MBBRY5]

[MC92]

[MDBS69]

Lee RM and Ryu YU. DX: A Deontic Expert System. Journal of Management
Information Systems. 12(1). pp. 145-169. 1995.

Lupu E and Sloman M. A Policy Based Role Object Model. Proceedings of
the 17 IEEE Enterprise Distributed Object Computing Workshop (EDOC’97).
Gold Coast, Australia. pp. 36-47. October 1997.

Lupu E and Sloman M. Conflicts in Policy-Based Distributed Systems
Management. IEEE Transactions on Software Engineering. Special Issue on
Inconsistency Management. 25(6). pp. 852-869. November/December
1999.

Makinson D. On the Formal Representation of Rights Relations. Journal of
Philosophical Logic. 15. pp. 403-425. 1986.

Makinson D. Rights of Peoples: Point of View of a Logician. In Crawford
J (ed.): The Rights of Peoples. Oxtord University Press. Oxford, UK. pp. 69-
92. 1988.

Makinson D. On a Fundamental Problem of Deontic Logic. In McNamara
P and Prakken H (eds): Normms, Logics and Information Systems. New Studies in
Deontic Logic and Computer Science. 10S Press. Amsterdam, The Netherlands.
pp- 29-53. 1999.

Ma C and Bacon J. COBEA: A CORBA-Based Event Architecture.
Proceedings USENILX COOTS98. Santa Fe, NM. pp. 117-131. April 1998.

Milosevic Z, Berry A, Bond A, and Raymond K. Supporting Business
Contracts in Open Distributed Systems. 2% International Workshop on Services
in Distributed and Networked Environments (SDNE95). Whistler, Canada. June
1995.

Masullo M] and Calo SB. Policy Management: An architecture and approach.
Research Report RC 18505 (80943) 11/10/92. IBM Research Division.
November 1992.

Martin RM, Davidson D, Butler RJ, and Salmon WC. Proceedings of the
Symposium on Events and Event-Descriptions at the University of Western
Ontario Philosophy Colloquium 1966. In Margolis | (ed.): Fact and Existence.
Basil Blackwell. Oxford, UK. 1969.

284

[Me198]

[MESW2001]

[Mey97]

[Mey99]

[MGTMOY8]

[Mic2001a]
[Mic2001b]
[Mil95]

[Mir87]

[Mo002000]

[MOR2001]

[Merg8] - [MOR2001] Bibliography

Merz M. Electronic Contracting with COSMOS — How to Establish,
Negotiate, and Execute Contracts on the Internet. In Kobryn C, Atkinson
C, and Milosevic Z (eds): Proceedings of the 2% International Enterprise
Distributed Object Computing Workshop (EDOC’98). IEEE. November 1998.
Moore B, Elleson E, Strassner], and Westerinen A. Policy Core Information
Model — Version 1 Specification. IETEF REC 3060. 2001.

Available at: http://www.ietf.org/rfc/rfc3060.txt?number=3060

Meyer B. Object-Oriented Software Construction. 24 Edition. Prentice Hall.
New Jersey. 1997.

Meyer B. Building Bug-Free OO Software: An Introduction to Design By Contract.
Available at: http://www.eiffel.com/doc/manuals/technology/contract/

Merz M, Griffel E, Tu T, Muller-Wilken S, Weinreich H, Boger M, and
Lamersdorf W. Supporting Electronic Commerce Transactions with
Contracting Services. International Journal of Cooperative Information Systems.
7(4). World Scientific Publishing Company. pp. 249-274. December 1998.
Microsoft Site Server. http://www.microsoft.com/siteserver/. 2001.

Microsoft Commerce Server. http://www.microsoft.com/commerceserver/. 2001.

Milosevic Z. Enterprise Aspects of Open Distributed Systems. PhD Thesis.
Department of Computer Science, University of Queensland. pp. 154-248.
October 1995.

Miranker DP. TREAT: A better match algorithm for Al production
systems. Proceedings Sixth National Conference on Artificial Intelligence (AAAI-
87). Morgan Kaufmann. San Francisco, CA. August 1987.

Moore SA. KQML and FLBC: Contrasting Agent Communication
Languages. International Jonrnal of Electronic Commerce. 5(1). Fall 2000.
Michael JB, Ong VL, and Rowe NC. Natural Language Processing Support
for Developing Policy-Governed Software Systems. 397 International
Conference on Object-Oriented Langnages and Systems (TOOLS USA 2001). Santa
Barbara, CA. July-August 2001.

285

Bibliography [Mou78] - [NSJ98]

[Mou78]

[MS93]

[MS94]

[MS97]

[MSM2001]

[MSY95]

[MU2000]

[MvdT2001]

[MW93]

[NSJ98]

Mourelatos APD. Events, Processes, and States. Linguistics and Philosophy.
2. pp. 415-434. 1978. Reprinted in P. Tedeschi and A Zaenen (eds):
Syntax and Semantics 14: Tense and Aspect. Academic Press. New York,

NY. pp. 191-212. 1981,

Moffett JD and Sloman MS. Policy Hierarchies for Distributed Systems
Management. [EEE Journal on Selected Areas in Communications. 11(9). pp.
1404-1414. December 1993.

Moffett JD and Sloman MS. Policy Conflict Analysis in Distributed System
Management. Journal of Organizational Computing. 4(1). Ablex Publishing.
pp- 1-22. 1994.

Mansouri-Samani M and Sloman M. GEM: A Generalized Event
Monitoring Language for Distributed Systems. IEEE/IOP/BCS Distributed
Systems Engineering Journal. 4(2). June 1997.

Morciniec M, Salle M, and Monahan B. Towards Regulating Electronic
Communities with Contracts. 2% Workshop on Norms and Institutions in Multi-
Agent Systems, at the 5" International Conference on Autonomons Agents. Montreal,
Canada. May 2001. Also available as Hewlett Packard Technical Report
HPL-2001-120. Awvailable at: http://www.hpl.np.com/techreports/2001/HPL-2001-120.pdf
Marriott DA, Sloman M, and Yialelis N. Management Policy Service for
Distributed Systems. Research Report DoC 95/10. Department of
Computing, Imperial College. London, UK. October 1995.

Minsky NH and Ungureanu V. Law-Governed Interaction: A Coordination
and Control Mechanism for Heterogeneous Distributed Systems. ACM

Transactions on Software Engineering and Methodology. 9(3). pp. 273-305. 2000.

Makinson D and van der Torre L. Constraints for Input/Output Logics.
Journal of Philosophical Logic. 30. pp. 155-185. 2001.

Meyer JJ and Wieringa R]. Deontic Logic in Computer Science: Normative System
Specification. John Wiley and Sons. Chichester, UK. 1993.
Norman TJ, Sierra C, and Jennings NR. Rights and commitments in multi-

agent agreements. Proceedings of the 37 International Conference on Multi-Agent
Systems (ICMAS-98). Paris, France. pp. 222-229. 1998.

286

[OAS2001]

[OAS2002]

[OMY96]

[OMG2001]

[Par90]

[PD99]

[PES2000]

[P1.2000]

[PS97]

[PS98]

[OAS2001] - [PS98] Bibliography

Organization for the Advancement of Structured Information Standards
(OASIS). An Introduction to the Provisioning Services Technical Committee. 2001.

Available at: http://www.oasis-open.org/committees/provision/Intro-102301.doc

Organization for the Advancement of Structured Information Standards
(OASIS). OASIS ebXML. Collaboration-Protocol Profile and — _Agreement
Specification Version 2.0. June 2002.

Available at: http://www.oasis-open.org/committees/ebxml-cppa/documents/ebcpp-2.0.pdf

Osborne M and MacNish C. Processing natural language software
requirements specifications. International Conference on Requirements Engineering.

Colorado Springs, CO. 1996.

Object Management Group. OMG Unified Modelling Language
Specification, Version 1.4. September 2001.

Available at: http://www.omg.org/technology/documents/formal/uml.htm

Parsons T. Events in the Semantics of English: A Study in Subatomic Semantics.
MIT Press. Cambridge, MA. 1990.

Paton NW and Diaz O. Active Database Systems. ACM Computing Surveys.
31(1). pp. 63-103. 1999.

Peyton Jones S, Eber JM, and Seward]. Composing contracts: An
adventure in financial engineering. International Conference on Functional

Programming. Montreal, Canada. September 2000.

Pottinger R and Levy A. A Scalable Algorithm for Answering Queries
using Views. Proceedings of the 26" International Conference on 1ery Large
Databases (1VI.DB 2000). pp. 484-495. 2000.

Prakken H and Sergot M. Dyadic Deontic Logic and Contrary-to-Duty
Obligations. In Nute D (ed.): Defeasible Deontic Logic: Essays in Nonmonotonic
Normative Reasoning. ~ Synthese Library No. 263. Kluwer Academic
Publishers. pp. 223-262. 1997.

Patankar AK and Segev A. An Architecture and Construction of a Business
Event Manager. In Etzion O, Jajodia S, and Sripada S (eds): Temporal
Databases — Research and Practice. Lecture Notes in Computer Science 1399.

Springer-Verlag. Berlin, Germany. pp. 257-280. 1998.

287

Bibliography [PST2001] - [SB98]

[PST2001]

[Pul96]

[RCS83]

[Ret98]

[RGW2002]

[Ril2001]

[RZF2001]

[SABH2000]

[SB9S]

Production Systems Technologies Inc. Rete and Rete II. August 2001.
http://www.pst.com/rete.htm

Pulman SG. Controlled Language for Knowledge Representation.
Proceedings of the First International Workshop on Controlled Langnage Applications
(CLLAW96). Katholieke Universiteit Leuven. Belgium. pp. 233-242. March
1996.

Robinson RE, Coval SC, and Smith JC. The Logic of Rights. University of
Toronto Law Journal. 33(267). 1983.

Retschitzegger W. Composite Event Management in TriGS — Concepts
and Implementation. In Quirchmayr G, Schweighofer E, Bench-Capon
TIM (eds): Proceedings of the 9" International Conference on Database and Expert
Systems Applications (DEX.A ’98). Vienna, Austria. August 1998. Lecture
Notes in Computer Science 1460. Springer-Verlag. Berlin, Germany.
1998.

Reeves DM, Grosof BN, and Wellman MP. Automated Negotiation from
Declarative Contract Descriptions. Computational Intelligence. Special Issue

on Agent Technologies for Electronic Commerce. Forthcoming, 2002.

Riley G. CLIPS: A Tool for Building Expert Systems. August 2001.
Available at: http://www.ghg.net/clips/CLIPS.html and http://www.ghgcorp.com/clips/CLIPS-
FAQ

Ribeiro C, Zaquete A, and Ferreira P. Enforcing Obligation with Security
Monitors. Proceedings of the Third International Conference on Information and
Communications Security (ICICS2007). Xian, China. Lecture Notes in
Computer Science 2229. Springer-Verlag. Berlin, Germany. pp. 172-176.
November 2001.

Segall B, Arnold D, Boot |, Henderson M, and Phelps T. Content Based
Routing with Elvin4. Proceedings AUUGZK. Canberra, Australia. June 2000.

Available at: http://www.elvin.dstc.edu.au/doc/papers/index.html

Spiteri M and Bates J. An Architecture for the Storage and Retrieval of
Events. Proceedings of Middleware’98. Springer. pp. 443—458. 1998.

288

[SCY6]

[Sch96]

[Sch99]

[SCJ97]

[SD2000]

[Sea69]

[Ser99]

[Ser2001]

[SGTV2000]

[SHPSS]

[SIL2002]

[SK91]

[SK95]

[SCo6] - [SK95] Bibliography

Santos F and Carmo J. Indirect action, influence, and responsibility. In
Brown M and Carmo] (eds): Deontic Logic, Agency, and Normative Systems.
Springer. pp. 194-215. 1996.

Schwiderski S. Monitoring the Behaviour of Distributed Systems. PhD Thesis.
University of Cambridge Computer Laboratory. April 1996.

Schmidt M. The Evolution of Workflow Standards. IEEE Concurrency.
July-September 1999.

Santos F, Carmo J, and Jones AJI. Action concepts for describing
organized interaction. In Sprague RA (ed.): 30" Annual Hawaii International

Conference on Systems Sciences. pp. 373-382. 1997.

Steen MWA and Derrick J. ODP Enterprise Viewpoint Specification.
Computer Standards and Interfaces. 22. pp. 165-189. September 2000.

Searle JR. Speech acts: An essay in the philosophy of language. Cambridge

University Press. 1969.

Sergot M. Deontic Logic in Policy Specification. Policy Workshop. HP
Laboratories, Bristol, UK. November 1999.

Sergot M. A Computational Theory of Normative Positions. ACM

Transactions on Computational Logic. 2(4). pp. 581-622. October 2001.
Schlenoff C, Gruniger M, Tissot F, Valois |, Lubell J, and Lee J. The
(PSL)

National Institute of Standards and

Process Overview and Version 1.0
Specification. NISTIR 6459.

Technology (NIST). Gaithersburg, MD. 2000.

Specification Language

Stonebraker M, Hanson EN, and Potamianos S. The POSTGRES Rule
Manager. Transactions on Software Engineering. 14(7). July 1988.

SIL International. What is disconrse deixcis? July 2002. Available at:
http://www.sil.org/linguistics/GlossaryOfLinguisticTerms/WhatlsDiscourseDeixis.htm
Stonebraker M and Kemnitz G. The Postgres Next-Generation Database

Management System. Communications of the ACM. 34(10). October 1991.

Sadri F and Kowalski R. Variants of the Event Calculus. Ir Proceedings of the
12th International Conference on Logic Programming (ICLLP 95). MIT Press.
Cambridge, MA. pp. 67-82. 1995.

289

Bibliography [SLL2001] - [SSKK86]

[SLL2001]

[S1094]

[S1095]

[S102000]

[SLRSS]

[Smi80]

[Sof2001]

[Sow2000]

[Spi2000]

[SSKKS86]

Sloman M, Lobo |, and Lupu EC (eds.): Proceedings of Policies for Distributed
Systems and Networks: International Workshop (Policy 2007). Bristol, UK.
Lecture Notes in Computer Science 1995. Springer-Verlag. Berlin,

Germany. January 2001.

Sloman M. Policy Driven Management for Distributed Systems. Journal of

Network and Systems Management. 2(4). Plenum Press. 1994.

Sloman M. Management Issues for Distributed Services. Proceedings IEEE
20 International Workshop on Services in Distributed and Networked Environments
(SDNEY95). Whistler, BC. June 1995.

Sloman M, Dulay N, and Nuseibeh B. EPSRC Grant GR/1 96103. SecPol:
Specification and Analysis of Security Policy for Distributed Systems. Imperial
College, Department of Computing. 2000.

Sellis T, Lin C-C, and Raschid L. Implementing Large Production Systems
in a DBMS Environment: Concepts and Algorithms. Proceedings of the 1988
ACM SIGMOD Conference on the Management of Data. Chicago, IL. pp. 404-
412. June 1988.

Smith R. The Contract Net Protocol: High-level Communication and
Control in a Distributed Problem Solver. IEEE Transactions on Computers.
29(12). December 1980.

Software AG Tamino XML Server. http://www.softwareag.com/tamino/. 2001.

Sowa JF. Knowledge Representation: Logical, Philosophical, and Computational
Foundations. Brooks/Cole. Pacific Grove, CA. 2000.

Spiteri MD. _An Architecture for the Notification, Storage, and Retrieval of Events.
PhD Thesis. University of Cambridge Computer Laboratory. January
2000.

Sergot MJ, Sadri F, Kowalski RA, Kriwaczek F, Hammond P, and Cory HT.
The British Nationality Act as a Logic Program. Communications of the ACM.
29(5). pp. 370-386. May 1986.

290

[Sta2002]

[Ste2000]

[SV85]

[SvdAA99]

[SvdRD2000]

[TB99]

[TGNO92]

[Tho98]

[Tom99]

[TT99]

[TW2001a]

[Sta2002] - [TW2001a] Bibliography

Staskiewicz D. Laogikbasierte Uberwachung der Vertragserfiillungsphase im
elektronischen Handel. Diplomarbeit Informatik am Lehrstuhl IV der
Rheinisch-Westfilische Technische Hochschule Aachen (RWTH Aachen).
Aachen, Germany. December 2002. Forthcoming.

Steedman M. The Productions of Time. Tutorial notes, Draft 4.0. Cognitive

Science, Division of Informations, University of Edinburgh. July 2000.

Searle JR and Vanderveken D. Foundations of lllocutionary Logic. Cambridge
University Press. Cambridge, UK. 1985.

Sheth AP, van der Aalst WMP, and Arpinar IB. Processes Driving the
Networked Economy. IEEE Concurreney. July-September 1999.

Steuten AAG, van de Riet RP, and Dietz JLG. Linguistically based
conceptual modelling of business communication. Data and Knowledge

Engineering. 35. pp. 121-136. 2000.

Thorpe CP and Bailey JCL. Commercial Contracts. Kogan Page Limited.
London, UK. 1999.

Terry D, Goldberg D, Nichols D, and Oki B. Continuous Queries over
Append-Only Database. Proceedings of the 1992 ACM SIGMOD International
Conference on the Management of Data. San Diego, CA. pp. 321-330. June
1992.

Thomas J. Meaning in Interaction: An Introduction to Pragmatics. Addison
Wesley Longman Limited. New York, NY. pp. 1-54. 1998.

Tombros D. An Event- and Repository-based Component Framework for Workflow
System Architecture. PhD Thesis. University of Zurich. 1999.

Tan Y-H and Thoen W. A Logical Model of Directed Obligations and
Permissions to Support Electronic Contracting in Electronic Commerce.
International Journal of Electronic Commerce (I[EC). 3(2). pp. 87-104. Winter
1998-1999.

Taveter K and Wagner G. Agent-Oriented Business Rules: Deontic
Assignments. In Proceedings of the International Workshop on Open Enterprise
Solutions: Systems, Experiences, and Organizations (OES-SEO2001). Rome, Italy.
September 2001.

201

Bibliography [TW2001b] - [Wid96]

[TW2001b]

[UMY6]

[Us02001]

[vdA96]

[vdAvHTH94]

[Ver96]
[Ver2001]

[vW51]
[Wag2000]

[Wag2001]

[WEMC95]

[Wid96]

Taveter K and Wagner G. Agent-Oriented Enterprise Modelling Based on
Business Rules. In Proceedings of the 20th International Conference on Conceptual
Modelling (ER2001). Yokohama, Japan. November 2001.

University of Michigan. The SLAPD and SLURPD Administrator’s Guide:

Release 3.3. April 1996.

Usoft Developer Series.

http://www.ness-europe.com/products/usoftdeveloperseries/default.htm. 2001.

van der Aalst WMP. Three Good Reasons for Using a Petri-Net-based
Workflow Management System. In Navathe S and Wakayama T (eds):
Proceedings of the International Working Conference on Information and Process
Integration in Enterprises (IPIC'96). pp. 179-201. Cambridge, MA.
November 1996.

van der Aalst WMP, van Hee KM, and Houben GJ. Modelling and
analysing workflow using a Petri-Net-based approach. In De Michelis G,
Ellis C, and Memmi G (eds): Proceedings of the Second Workshop on Computer-

Supported Cooperative Work, Petri Nets and Related Formalisms. pp. 31-50. 1994.
Verkuyl HJ. A Theory of Aspectuality. Cambridge University Press. 1996.
Versata Logic Suite. http://www.versata.com/. 2001.

von Wright GH. Deontic Logic. Mind. 60. pp. 1-15. 1951.

Wagner G. Agent-Oriented Analysis and Design of Organizational
Information Systems. In J. Barzdins and A. Caplinskas (eds): Databases and
Information Systems: 4th IEEE International Baltic Workshop on Databases and
Information Systems. Vilnius, Lithuania. May 2000.

Wagner G. The Agent-Object-Relationship Meta-Model: Towards a

Unified View of State and Behaviour. Technical Report. Eindhoven

University of Technology. August 2001.
Workflow Management Coalition (WMC). The Workflow Reference
Model: TC00-1005. 1995. Available at:

http://www.wfmc.org/standards/docs.htm

Issue 1.1.

Widom J. The Starburst Active Database Rule System. IEEE Transactions
on Knowledge and Data Engineering. 8(4). pp. 583-595. 1996.

202

[Wies95]

[WX2001]

[Wiesgs5] - [WX2001] Bibliography

Wies R. Using a Classification of Management Policies for Policy
Specification and Policy Transformation. Proceedings of the IFIP/IEEE
International Symposium on Integrated Network Management. Santa Barbara, CA.
May 1995.

Weigand H and Xu L. Contracts in E-Commerce. 9#h IFIP 2.6 Working
Conference on Database Semantic Issues in E-Commerce Systems (DS-9). April 2001.

293

[[[[This page exists just to force the printer beech to print the last page of the bibliography]]]]

[[[[This page exists just to force the printer beech to print the last page of the bibliography]]]]

[[[[This page exists just to force the printer beech to print the last page of the bibliography]]]]

[[[[This page exists just to force the printer beech to print the last page of the bibliography]]]]

