
Abstract
Distributed event-based middleware (DEBM) provides a
basis for the interoperation of autonomous components in
large-scale systems. Transactions ensure the atomic and
reliable execution of operations that involve interconnected
clients. Integrating transactions and DEBM is a challenging
software design problem with important applications. This
paper presents the Hermes Transaction Service (HTS), a
service that supports event-driven applications with
transactional requirements. HTS uses transaction-context
propagation via event notifications, where the contexts of
publishers and subscribers are interrelated within a mixed
transaction. Clients may opt to be compensatable or non-
compensatable. Optional anonymity of transaction
participants is supported through hash-based set
memberships.

1. Introduction

Middleware allows distributed heterogeneous components to
interoperate. Message-oriented-middleware (MOM), such as
IBM’s MQSeries, allows for asynchronous interoperation of
components. MOM has been used widely in Enterprise
Application Integration (EAI) to decouple the execution of
cooperative information systems. However, its message-
passing model assumes closely controlled environments, by
requiring senders and receivers to know the locations of a
number of message queues in advance. In MOM, scalability is
increased by distributing a set of message topics between a
large number of servers or by means of server clustering.
With no support for distributed (multi-server) message
routing decisions, the model is point-to-point between a
number of heavyweight servers, making its deployment
infeasible for large-scale environments.
Distributed event-based middleware (DEBM) such as
Gryphon [Strom98] and Hermes [Pietzuch04], help alleviate
the difficulties of component interoperation in large-scale
environments. Built around the notion of an event, i.e. a
happening of interest in the system, and the publish/subscribe
paradigm, DEBM achieves scalable event delivery between
publishers and subscribers by distributing the
publication/subscription matching process between a large
number of participants (brokers). Its many-to-many
interaction model makes DEBM particularly suited to support
applications that must monitor and disseminate component
updates from many publishers to an even larger number of
subscribers. Examples of these applications are general
situation assessment systems and business process (workflow)
control systems. In such applications, the transactional notion
of all-or-nothing semantics and the definition of dependencies
between the producer of an event and its consumers are often

needed. To our knowledge, no published work exists on the
integration of transactions with a distributed (multi-broker)
event-based middleware. The integration of transactions and
messaging has been studied in the context of MOM (e.g. with
MQSeries in D-Spheres [Tai01] and TIB/Rendezvous in
X2TS [Liebig01]). But since DEBM will constitute an integral
part of most future, large-scale application-integration
scenarios, we argue the need for a framework that supports
the transactional, yet flexible integration of autonomous
components connected via DEBM. We have used a locally
developed DEBM, Hermes, as a basis for the work presented
here. We next describe a motivating example for transactions
on DEBM. Section 2 gives background on transactions and
their integration with messaging. Section 3 describes the
Hermes DEBM and discusses the design of HTS. Its event-
action model is described in terms of coupling modes and its
use of 2PC and compensation in mixed transactions is
discussed. Then, the transaction service’s architecture and
supported protocol are presented. Section 5 discusses related
work and Section 6 concludes the paper.

1.1. Motivating Example

Consider the implementation of a collaborative workflow that
integrates a number of autonomous components, as depicted
in Figure 1. A process to schedule meetings is defined where
sets of invitation messages (notifications) are (content-based)
routed from a publisher to a number of subscribers via the
DEBM, according to their previously stated interests
(subscriptions). A subset of all the recipients will accept the
invitation and acknowledge it to the initiator, updating the
process’ distributed information record (e.g. the various
participants’ diaries), booking the required resources at the
initiator, and finally confirming the meeting.

Figure 1 – A transaction on top of DEBM

Different requirements could be specified by the initiator e.g.
the meeting might be conditional on a minimum number of

Transactions in Distributed Event-Based Middleware
Luis Vargas Jean Bacon Ken Moody

Computer Laboratory, University of Cambridge

{firstname.lastname}@cl.cam.ac.uk

participants. If the process is to be executed in an all-or-
nothing manner, the notion of a transaction is required that
allows the triggering, delivery, and processing of
asynchronous event notifications to comprise an atomic unit-
of-work.

2. Transactions

The concept of transaction is fundamental for database
management systems. An ACID transaction provides a unit of
reliable execution that brackets (atomically) a number of
operations and ensures that all or none are carried out.
Isolation of transactions preserves consistency of the database
in that transactions move the database between consistent
states.

2.1. MOM Transactions

In MOM, a notion of transaction exists where units-of-work
(in MQSeries) or transacted sessions (in JMS) are used to
group a set of messages for their atomic
enqueuing/dequeuing. There, a message published in a MOM
transaction is not sent until the MOM transaction commits,
restricting the system to short transactions. Also, because
MOM transactions always take place between a client
(message producer or consumer) and a queue manager, no
dependencies can be established between the publication of a
message and its successful consumption by recipients and
vice versa.

2.2. Distributed Transactions

In contrast to database and MOM transactions, transaction
processing(TP)-monitors provide distributed transaction
coordination. Distributed transactions, unlike ACID
transactions, focus on the atomicity of operations across
participants (resources), ensuring that they all receive a
consistent view of the outcome of a transaction. This requires
the TP-monitor to maintain a list of interacting resources and
to make the commit/rollback decision by implementing an
atomic commitment protocol such as two-phase commit
(2PC). Any concurrency and reliability concerns, as well as
durability guarantees with respect to the transaction outcome
are left to the participating resources.
For integrating messaging with distributed transactions,
current distributed transaction processing models (e.g.
X/Open DTP [X/Open96]) only support the definition of MQ-
integrating transactions via MOM, i.e. integrating message
queues as resource managers into a distributed transaction.
There, the enqueuing/dequeuing of messages is enclosed in a
unit-of-work and made dependent on the overall distributed
transaction outcome and vice versa. Only if the unit-of-work
commits, are the messages available for consumption. [Tai00]
identified various shortcomings associated with this model; in
particular, its inability to associate the processing of a
message by a consumer with the sender’s transactional
context. This often requires applications to maintain complex
coordination logic to deal with errors in a transaction (e.g. due
to unsuccessful processing of a message).

3. Hermes Transaction Service

First, we summarize the features of Hermes that are relevant
to the Hermes Transaction Service. The design, architecture,
and implementation of HTS is then discussed.

3.1. Hermes

Hermes [Pietzuch04] is a distributed, content-based
publish/subscribe event-based middleware. It is built on
Pastry, a peer-to-peer routing substrate to provide scalable
event dissemination and fault-tolerance. A distributed event-
based system implemented on Hermes consists of two kinds
of components: event brokers and event clients. Event brokers
form an application-level overlay network that propagates
events. Event clients (publishers or subscribers) use the
services provided by the broker network to communicate
using events. Before publishing an event, a publisher
advertises the associated event type. Subscribers specify their
interests in (a subset of) these event types, via content-based
subscriptions. Reverse path forwarding of subscriptions is
used to create event dissemination trees from publishers to
subscribers. Event notifications are delivered in FIFO order
with respect to each publisher, and there is no total ordering in
the case of multiple publishers on the same event type. End-
to-end reliable delivery is an area of current work.

3.2 Hermes Transaction Service Design

HTS realizes an event-action model where the publication of
events and the processing of event notifications by Hermes
clients can be demarcated within a transaction. The outcome
of a transaction and the effects of the processing of its
notifications can therefore be made mutually dependent. This
way, a transaction that is initiated by some triggering process
at a publisher will be made to succeed only if the event
notifications published within the transaction are successfully
processed by the set of subscribers participating in the
transaction. Correspondingly, the processing of a notification
at a subscriber will be allowed to succeed only if the
transaction associated with the notification is successful.

3.2.1. Coupling Modes. In the context of event-based
interactions, [Buchmann94] introduced the notion of coupling
modes and a set of constituent properties to determine the
execution of triggered actions relative to the transaction in
which a triggered event was published. Building on that
notion, we now describe the different policies available in
HTS with respect to event notification visibility, transactional
contexts, and publisher/subscriber dependencies.
Unlike MOM, which supports on commit message visibility,
HTS provides immediate notification visibility. With
immediate visibility, published event notifications are
delivered to subscribers in a non-blocking manner, allowing
parallel activity within the system.
Event notifications published within a transaction include the
transaction’s context. Recipients of these notifications can
decide whether to run in a shared transaction context with the
publisher or whether to run in their own separate context. A
shared context makes the processing of the notifications part

of the transaction initiated by the publisher. A separate
context consumes the notifications in the recipient’s detached
process.
A shared context implies backward and forward
dependencies between the publisher of an event notification
and the set of recipients. That is, the commit of the
transaction triggering an event notification at a publisher is
(backward) dependent on the success of the processing of the
notification at every subscriber sharing the same transaction
context, and vice versa (forward-dependency).

3.2.2. Mixed Transactions. Externalizing the effects of
uncommitted transactions (e.g. via event notifications with
immediate visibility) breaks the isolation of the triggering
transaction at the publisher and may cause dirty reads (and
reactions) by the notification consumers. Within a
transactional context, coping with this requires not only that
the failure in the processing of an event notification causes its
triggering transaction to roll back; but also that, if the
transaction fails after publishing event notifications, the
processing effects of all these notifications be undone. There
are two ways to ensure this. One is to require atomic
commitment e.g. using two-phase commit (2PC), so that the
triggering transaction at an event publisher is allowed to
commit only after the triggered reaction at every relevant
subscriber is prepared to commit and vice versa. However,
relating clients of the DEBM by atomic commitment may
sometimes not be desirable or even acceptable. One reason is
that, with 2PC, a client exposes transaction control to other
clients. If a client votes OK in response to a prepare request,
the client has to be able to commit its local processing (e.g.
hold locks) until instructed otherwise by the coordinator
(which may be another client). Few services are willing to
hand over transaction control in a loosely-coupled system.
Another reason is that global transactions may be long-
running. There are many factors contributing to this: long-
lived business logic, delayed human input, network delays,
etc. With 2PC, a client cannot commit until the distributed
transaction can commit. Thus, a fast client may be forced to
wait for a slow client.
Another (optimistic) way of dealing with dirty notification
reads, while coping with the drawbacks of 2PC, is
compensation. Using compensation as a recovery mechanism
allows the triggered reaction at each subscriber to commit
unilaterally, as an autonomous subtransaction, without
waiting for the transaction coordinator’s decision, with the
promise that the effect of the subtransaction can be
semantically cancelled afterwards, via a compensating
transaction. Compensation is a generally accepted mechanism
to deal with failures, fundamental to extended transaction
models. However, not all transactions are compensatable. For
example, transactions involving real actions are typically non-
compensatable. In addition, for some clients, the cost of
executing a compensating transaction may outweigh the costs
of participating in a 2PC protocol.
For these reasons HTS adopts a flexible transactional model,
with mixed transactions [Elmagarmid90], to accommodate
both compensatable and non-compensatable clients within the
same transaction. In a mixed transaction the constituent
subtransactions which are compensatable may be allowed to
commit before the global transaction commits, while the

commitment of the non-compensatable subtransactions must
wait for a global decision. When a decision is reached to abort
a mixed transaction, the subtransactions in progress and the
non-compensatable subtransactions waiting for a global
decision are aborted, while the committed compensatable
subtransactions are compensated. While the definition of
compensating transactions is expected to be defined locally by
each client, it is the responsibility of the transaction service to
notify a compensatable client if the global transaction fails.

3.3 Hermes Transaction Service Architecture

HTS builds on two types of components to support
transactions on top of Hermes: a transaction manager and a
set of client managers. Each of these component types,
depicted in Figure 3, exposes interfaces to: i) allow Hermes
clients to access the transaction service functionality, and ii)
establish contracts between the transaction manager and the
clients (publisher and subscribers) involved in a transaction.

Figure 3 - Hermes Transaction Service

The transaction manager is the core component of the
transaction service. It provides interfaces for transaction
demarcation and the enlistment/delistment of transactional
clients, and is responsible for propagating the transaction
context with published event notifications. It also orchestrates
the execution of the transaction service protocol; that is, the
two-phase processing of mixed transactions and the
acknowledgement of compensatable clients. By default in
HTS, an event publisher takes the role of transaction manager
for those transactions it initiates.
Client managers constitute the client-side component of the
service. A client registers as a participant in a HTS transaction
via its client manager. A client manager assumes different
responsibilities depending on its client type. In the case of a
non-compensatable client joining a transaction, the client
manager is responsible for associating any work performed
within the client’s local transaction context (as a result of the
processing of event notifications within the transaction) with
the transaction’s global context. At commit time, client
managers of non-compensatable clients are informed by the
transaction manager to prepare, commit, or rollback according
to 2PC. For the case of compensatable clients joining a
transaction, it is the responsibility of the client manager that,
if the transaction aborts, any registered compensating function
is executed to undo the effects of the client’s local processing.

Global
Context

Local
Context

Local
Context

Local
Context

Pub/Sub
DEBM

publish notify

notify

Client
Manager

Client
Manager

Local
Context

pub

sub
1

sub
2 Client

Manager

Transaction
Manager sub

3

Client
Manager

3.4. Hermes Transaction Service Protocol

The HTS protocol achieves the execution of mixed
transactions using Hermes. As a service above Hermes, HTS
builds on the asynchronous notification features of the
underlying DEBM to publish, and deliver as event
notifications, all the transaction-related messages (e.g.
prepare, commit, and compensate) required by the transaction
protocol. The semantic imposed by a shared transactional
context requires that the participants of a transaction are
known by the TM before the start of commit processing. For
this reason, HTS adds an initial census phase to two-phase
commit. Thus, the HTS commit protocol has three phases:
census, voting and decision. In the census phase the TM
determines the set of subscribers that will participate in a
transaction initiated at some event publisher. In the voting
phase, the TM is informed by the transaction participants, via
their CM, whether the outcome of their local transactions was
successful. Finally, in the decision phase, the TM determines
a global outcome for the transaction, based on the participant
replies. If the decision is to commit the transaction, the TM
requests the set of non-compensatable clients to commit their
local transactions, via their CM. Otherwise, if the global
transaction is to be aborted, while non-compensatable
participants are requested to abort their local transactions,
compensatable participants are notified to execute a
compensating action.

3.4.1. Census phase. The purpose of the HTS census phase is
to determine the set of subscribers that will process a
notification within a transaction, while still supporting
optional client anonymity. The basic idea is to authenticate
membership in a group of transaction participants, rather than
identifying individual members for a transaction. We assume
that CMs are able to generate a globally unique pseudonym p
for every transaction they participate in, and that TMs and
CMs know the same one-way hash function H.
On receipt of a transactional-aware notification with
transaction id xid, a CM will evaluate whether the notification
is to be consumed within the same transactional context at the
subscriber, and if so, it will: 1) log the notification, 2)
generate and remember a unique identifier p, 3) reply
join(xid, p) to the TM, requesting to participate in the
transaction xid with pseudonym p, and 4) Subscribe to
transaction-related notifications for the transaction xid.
Based on the replies in the census phase, the TM will build a
list of pseudonyms l(xid) =[p1, p2,.., pn] for subscribers
participating in the transaction xid. Different application-
defined conditions can be used to delimit the census phase
(timeout t, min/max n subscribers, etc).
At the end of the census phase the TM will: 1) compute the
hash H(p) of every pseudonym in l(xid) into a list Hl(xid)

=[H(p1), H(p2),.., H(pn)], and 2) publish joined(xid, Hl(xid))
to notify the set of relevant subscribers about its participation
in the transaction xid.
On receipt of joined, each CM will verify its membership in
the list of transaction participants, computing the hash of its
pseudonym, H(p), and verifying its existence in Hl(xid). Notice
that, as H is one-way, no pseudonym can be extracted from
the published list. Having verified its membership in the
transaction, the CM will establish the appropriate

transactional context and pass the notification to the
subscriber for its processing. Thereafter, the CM will receive
either more notifications within the same transaction or a
prepare notification. The CM will vote (commit or rollback)
on the global transaction according to 2PC with the same
pseudonym. Correspondingly, on receipt of any vote from a
CM, the TM will verify the existence of the enclosed
pseudonym in the list of transaction participants, in order to
consider it. Different application-defined conditions could
determine the transaction success (e.g. min n OK votes).

4. Related Work

X2TS [Liebig01] integrates CORBA’s Transaction and
Notification Services to provide transactional services above
TIB/Rendezvous. X2TS is based on hierarchical subject-based
addressing. Subdividing the message name space into subjects
is inflexible, and may lead to subscribers having to filter
events from general topics, or to the creation of large message
hierarchies. Dependency(D)-Spheres [Tai01] focuses on
grouping distributed object transactions and messages. The
prototype is realized as an additional layer above the Java
Transaction Service (JTS) and the MQSeries MOM. D-
Spheres provides a flexible integration model for transactions
above existing MOM. The model is statically based on a
number of servers with no support for distributed message-
routing decisions.

5. Conclusions

In this paper we presented HTS, a transaction service for
Hermes, a scalable DEBM. HTS provides automatic
transaction context propagation, via event notifications
published with immediate visibility. It interrelates the
transactional contexts of publishers and subscribers through a
flexible model of mixed transactions. Optional anonymity of
participants is supported via hash-based set memberships.

Acknowledgements. Thanks to Ehud Gudes and Lauri
Pesonen for their valuable comments. Luis Vargas is
supported by CONACYT Mexico.

References

[Buchmann94] A. Buchmann. Active Object Systems. In Advances in Object-
Oriented Database Systems. Springer. Vol 130. pp 201-224.
[Elmagarmid90] A. Elmargamid, Y. Leu, W. Litwin, and M. Rusinkiewicz. A
Multidatabase Transaction Model for Interbase. In Proceedings of the 16th
International Conference on Very Large Data Bases. 1990. pp 507-518.
[Liebig01] C. Liebig, M. Malva, and A. Buchman. Integrating Notifications
and Transactions: Concepts and X2TS Prototype. In Proceedings of EDO’00.
Springer-Verlag LNCS 1999. 2000.
[Pietzuch04] P.R. Pietzuch. Hermes: A Scalable Event-Based Middleware.
University of Cambridge PhD Thesis and TR590. 2004.
[Strom98] R. Strom, G. Banavar, T. Chandra, M. Kaplan, K. Miller, B.
Mukherjee, D. Sturman, and M. Ward. Gryphon: An Information Flow Based
Approach to Message Brokering. IBM TJ Watson Research Center. 1998.
[Tai00] S. Tai and I. Rouvellou. Strategies for Integrating Messaging and
Distributed Object Transactions. In Proceedings of Middleware 2000. Springer
LNCS 1795. 2000. pp 308-330,
[Tai01] S. Tai, A. Totok, T. Mikalsen, I. Rouvellou, and S. Sutton Jr..
“Dependency-Spheres: A global transaction context for distributed objects and
messages”. In Proceedings of EDOC’01. IEEE Press. 2001.
[X/Open96] X/Open. “X/Open Guide Distributed Transaction Processing:
Reference Model, version 3”. 1996.

