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Abstract. The EDEE system provides a framework through which busi-
nesses may store the data pertaining to business events, contracts and
organizational policies, within a single repository using the unifying no-
tion of an occurrence. A collection of stored queries (cf. SQL views) is
maintained. Each query describes the occurrences promised and prohib-
ited under the provisions of the contracts and policies of an organiza-
tion. This paper proposes a mechanism for both the static and dynamic
derivation of the overlaps between queries. We show, through worked ex-
amples, that by determining these covering relationships we can discover
inconsistencies between business contracts and organizational policies.

1 Introduction

Prudent business enterprises operating in e-service environments need to check
proposed business contracts against their organizational rules, to ensure that
their intentions do not violate internal regulations. The E-commerce application
Development and Execution Environment, or EDEE, system [2] unifies storage of
data pertaining to real business events, prospective actions and business policy
through the notion of occurrences and queries over these occurrences.

In this paper, we propose a framework for storing contracts and policies,
and for checking their consistency. We view both contracts and policies as sets
of provisions. A provision specifies a promise, prohibition, permission or power;
only the former two are demonstrated in this paper. Each provision embeds
a query which describes the promised or prohibited occurrences. Our system
facilitates dynamic addition of provisions, and through automatic derivation of
overlaps between stored queries, can ascertain conflicts.

The notions of covering relationships between queries, and dirtying relation-
ships between data and queries, are used to find run-time overlaps. We say that
a query is covered by another stored query if the results of the former are a sub-
set of the results of the latter for any data-set. Some questions of coverage are
decidable statically, but others depend on application semantics: some covering
relations change when new data is added, in a context-specific manner. We say a
query is dirtied by new data (input dirt) if the new data changes a criterion (cf.



text of a WHERE clause in an SQL SELECT statement) of the query. For example,
upon the addition of the new supplier, Steelmans, to the database, the query
‘payments to suppliers’ is dirtied as the results must now also include any ‘pay-
ments to Steelmans’. Any such payments would be what we term output dirt.
The materialized view literature [9] talks of dirt in the sense of our output dirt.
Whereas materialized views would only change when any actual payments to
Steelmans were added, covering relationships may change even in the absence of
any payments stored in the database.

This paper shows how conflicts may be detected at the time contracts are
added to the database, or when inserted data dirties queries and thus brings
provisions into conflict. The example we present shows that a potential conflict
between a promise to pay and a prohibition against a particular type of payment
can be flagged as soon as the promise is entered, rather than merely at the time
of payment. This conflict might be resolved by breaking the promise, violating
the prohibition, or voiding one or both. Such conflict resolution is treated in [1].

2 Related Work

Current contract-driven inter-enterprise workflow architectures, such as COS-
MOS [12] and CrossFlow [11] focus on service advertisement and invocation,
but do not ascertain consistency between contractual terms and business poli-
cies. Initiatives such as the OASIS ebXML Collaboration Protocol Profile (CPP)
and Agreement (CPA) specifications [7] again provide service advertisement and
conformance-checking framework specification for the negotiation of organiza-
tional inter-operation. CPAs capture the technology-specific parameters agreed
by parties. These include message formats (e.g. OBI), encryption techniques
(e.g. SSL), and communication protocols (e.g. HTTP). There is no notion of
the rights and duties of the parties, nor any provision for fulfillment monitoring.
CPAs define specific business process arrangements, rather than a framework for
managing the potentially conflicting policy sources which may govern a single
business entity.

Previous contract assessment approaches, such as [4, 6], apply Petri Nets
or Finite State machines to determine contract status. Contracts are reduced
to directed graphs that capture the business procedure, but leave provisions im-
plicit. To allow inspection and analysis, provisions need to be explicitly captured
within the business database. Explicit storage of provisions can then be exploited
for consistency checking, contract performance assessment, and management re-
view of which provisions pertain to items or occurrences. The goal of the OASIS
Provisioning Technical Committee [5] is to propose standards for service provi-
sioning. Their notion of a ‘provision’ is in the sense of ‘providing resources’; the
intention is to facilitate resource allocation by setting up, amending, and revok-
ing system access rights (cf. access control policies) to electronic services. This
can be contrasted to the normative, contractual sense of ‘provision’, which spec-
ifies desirable and undesirable situations in terms of conventions for interpreting
various happenings, and attitudes towards the conventionally described occur-



rences. By dividing the problem into specifying inter-operation between separate
provisioning systems, and specifying inter-operation between a provisioning sys-
tem and its managed resources, they do not focus on the introspection required
within any given provision management system to manage conflict situations.

It is instructive to contrast EDEE with traditional expert systems approaches
to business logic. The occurrence database is the working memory of the system;
production rules in EDEE are maintained in a list of queries over this database.
These queries are explicitly stored criteria describing sets of items and occur-
rences. As such, they are more similar to SQL views, than to the throw-away
queries executed by an SQL engine.

The EDEEQL extension of SQL [2] leads to an occurrence structure with
a simple tabular form able to store business events and provisions of contracts
and policies. It avoids the need to specify schemas explicitly for each occurrence
class, thus increasing the dynamic configurability of the system. This particular
storage approach has been chosen for semantic rather than performance reasons.
The representation allows us to determine when parties participate in the same
occurrence, but unlike full graph-based representations (for example, the Hydra
database system [3]), we cannot directly locate more distant associations.

An underlying database system manages storage and retrieval of occurrences
and queries. The coverage checking mechanism proposed in this paper optimizes
the execution of these stored queries. Due to the common goal of incremental
state re-computation, it has many similarities to the RETE [8] and TREAT [13]
expert system optimization algorithms. The most striking difference is that our
approach places an emphasis on dynamic compilation and analysis of coverage.
This allows us to go beyond the fact/pattern matching in RETE and TREAT
to also perform pattern/pattern matches as well.

3 Application Scenario

We introduce an application scenario, describe how operational data, provisions
and queries are stored, then illustrate via a worked example how conflicts be-
tween provisions and internal regulations are determined.

In our scenario, SkyHi Builders is a construction company. Steelmans Ware-
house a supplier of high-grade steel. SkyHi, having recently won a tender to
build a new office block, enters into a contract with Steelmans. We select a hy-
pothetical clause from this contract, Clause C.1 SkyHi promises to pay Steelmans
£25,000, and a clause from the SkyHi’s risk management procedures (i.e. internal
policy), Clause P.3 Payments of more than £10,000 to suppliers are prohibited.

3.1 Storing Operational Data

Let us say SkyHi, a customer of Steelmans, has paid Steelmans £25,000 for a
specific shipment. Let being supplierl and payingl denote instances (hence
the 1 added to create a unique identifier) of occurrences of type being a supplier
and paying respectively. Table 1 shows the occurrence, role, participant schema



Table 1. A tabular schema for storing various occurrences

Commentary Occurrence |Role Participant

Steelmans being a supplier for SkyHi |being_supplierl|supplier Steelmans
supplied SkyHi

SkyHi paid £25,000 to Steelmans payingl payer SkyHi
paid_amount|£25,000
payee Steelmans

Table 2. Schemas for storing prohibitions and promises

Occurrence|Role Participant
prohibitingl |prohibited|Query10
promisingl |promised |Queryl9
(Query10 = occurrences of paying with over £10,000 in role paid N

occurrences of paying with a supplier in role payee. See figure 1),
(Query19 = first occurrence of SkyHi paying Steelmans £25,000. See figure 2)

employed in EDEE to store this operational data. For readability we have in-
cluded values like Steelmans in our tables instead of foreign key references.
Similarly we show occurrence primary keys in forms such as being supplierld,
instead of foreign key references into a table describing the occurrence type
(being_supplier). Finally we omit repeated key values in adjacent rows.

3.2 Storing Provisions of Contracts and Policies

To store contractual provisions — e.g. “X prohibits that [Y be paid]” and “X
promises that [X pay Y]” — in a relational database we need to handle their
embedded propositional content [2, 10].

Consider Clause P.3 from the application scenario presented above. Clearly,
we cannot store simply “Steelmans prohibits [payingl]” because payingl is a
concrete instance and might not yet have occurred anyway. We instead store the
prohibition as prohibitingl in Table 2, and indicate the prohibited occurrences
using a pointer to a database view (query) describing the set of prohibited oc-
currences, which is query10 in Figure 1. Note that this query would be empty
in the case that no prohibited occurrences exist.

Similarly, the promise in Clause C.1 of our scenario cannot be stored via
“SkyHi promises payingl”, because we need to store a description of a payment.
The promise is thus stored as promisingl in Table 2 with the promised occur-
rence represented by the pointer to query19 in Figure 2. Query19 asks for the
first payment since it is exactly one payment that is promised. It may be empty
in cases where the promise is broken or voided and no payments are made.

Storing provisions therefore requires the storage of views or queries which
describe the promised or prohibited occurrences. Conflicts can be detected from
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Fig. 1. Parse tree and storage schema for query that returns all occurrences where
more than £10,000 is paid to a supplier

the overlaps between these stored descriptions. The next section describes how
the semantics of a query may be stored in a database.

3.3 Storing Queries

To make queries that return occurrences more concise, we use our own language,
EDEEQLI2]. Queries may be stored in occurrence-role-participant tabular form
by assigning a query-identifier for each criterion’s occurrence entry, and storing
its type and value in the role and participant columns respectively. The criterion-
value may be constant or a reference to an embedded query. The EDEEQL parser
takes the textual form of the query and converts it to its tabular semantic form.

Take for example the query that returns all occurrences where more than
£10,000 is paid to a supplier (query10, in the Participant column, for the row
with prohibitingl, in Table 2 above). Figure 1 illustrates the parse tree for
query10, and shows its nested sub-queries (Currency representation is omitted
for simplicity). The second query we need to store is “select the first payment
of £25,000 by SkyHi to Steelmans” (Query19 in the Participant column, for
the row with promisingl, in Table 2 above). The complete parse tree for this
query, excluding the repeated query sub-expressions shown earlier, is given in
Figure 2. Storing queries explicitly is helpful for finding covering-queries since
we can analytically determine which queries, among a large number of stored
queries, cover a certain item or query. We describe the mechanism for finding
covering-queries, in the next section.
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Fig. 2. Parse tree and storage schema for query that returns the first payment of
£25,000 by SkyHi to Steelmans

4 Finding Overlapping and Inconsistent Provisions

Assume a prohibition, prohibitingl, and the associated query describing the
prohibited occurrences are stored in an empty database as shown in Table 2
and Figure 1. We then record that Steelmans is a supplier of SkyHi by inserting
the occurrence, being supplierl, as described in Table 1 (assume the payment,
payingl, is not ever inserted). Upon insertion, the coverage-checking algorithm
examines each of the unique items Steelmans, being supplierl, supplier,
SkyHi, and supplied in the set of triples added for this occurrence ':

1. By Rule 4 item supplier is covered by the query [=supplier].

2. By Rule 1 item being supplierl is covered by the query occurrences of
[being_supplier].

3. By Rule 9 queries [=supplier] and occurrences of [being supplier]
dirty the query [participants in role [=supplier] in occurrences of
[being_supplier]]. Substitution of the input dirt for the dirtied criteria
(shown underlined) yields the partial re-evaluation query: [participants
in role [=supplier] in [=being supplier1]]. Evaluation of this par-
tial re-evaluation query yields the output dirt Steelmans.

4. By Rule 9 and step 3 Item (Steelmans) dirties query occurrences of
paying where [participants in role [=supplier] in occurrences of
[being supplier]] are [=payeel. Substitution of the input dirt (shown

! Bach of the rules mentioned here is defined in detail in the Appendix.



Table 3. Dirtied queries and their output dirt after addition of occurrence of
being supplierl to a new data-store

Dirtied Query|Output Dirt
queryb supplier
query6 being_supplierl, ...
query7 Steelmans
(query5 = [=supplier]), (query6 = occurrences of [being supplier]),
(query7 = [participants in role [=supplier] in occurrences of [being supplier]])

underlined) for the dirtied criterion yields the partial re-evaluation query:
occurrences of paying where [=Steelmans] are [=payee]. Evaluation of
this partial re-evaluation query yields no output dirt. The coverage-checker
thus stops.

We conclude that the new occurrence, being_supplierl, is not prohibited, since
the only query that covers it is, occurrences of [being supplier], which is
not in the prohibited role in any prohibition. We nevertheless record which
queries were dirtied by this new data and cache the output dirt, since we can
use this dirt in future partial re-evaluations. The dirtied queries and their output
dirt is shown in Table 3. The incremental nature of the algorithm is important
as tens of thousands of occurrences may be stored in the database. Re-executing
every stored query on each occurrence addition is infeasible, particularly since
most results will be unchanged. The cache of dirtied queries facilitates creation
of more specific partial re-evaluation queries. Even if the actual dirt cache was
cleared to conserve resources, we can still rely upon the query optimizer to only
re-evaluate the minimal set requiring re-evaluation. For large data volumes, a
query execution approach is likely to be more efficient than a theorem-proving
or logic programming approach, as the query execution approach incorporates
query optimizers which take into account data profiles (predicate selectivity)
when executing a query, whereas theorem provers and logic programs typically
do not concern themselves with such execution efficiency issues.

Say SkyHi promises to pay to Steelmans £25,000. Assume this payment has
been contemplated, but not effected; no occurrence of paying has been added to
the data store. As shown in Table 2 and Figure 1, the promise can be represented
by embedding the stored query, query19, in an occurrence of promising. Now,
comparing the description of the promised occurrences (query19) to other stored
queries, proceeding from its most deeply nested sub-expressions upwards:

1. By Rule 3 [=25,000] (query16) is covered by query [>10,000] (query?2)

2. By Rule 7 occurrences of paying where [>10,000] is [=paid amount]
(query4) covers the query occurrences of paying where [=25,000] is
[=paid_amount] (query17)

3. By Rule 5 [=Steelmans] (queryl4) is covered by any query which cov-
ers Steelmans. As seen earlier, [participants in role [=supplier] in
occurrences of [being supplier]] (query7) covers Steelmans. This fact



is stored in the last row of the “dirtied query and dirt” cache shown in Table
3. Therefore query7 covers query14.

4. By Rule 7, and step 3 occurrences of paying where [participants in
role [=supplier] in occurrences of [being supplier]] are [=payeel
(query9) covers occurrences of paying where [=Steelmans] is [=payee]
(query15s)

. By Rule 6, step 2 and step 4 Query18 is covered by Query10

. By Rule 8 and step 5 The set criterion (Query18) covers Query19

. By Rule 2, step 5 and step 6 Query19 is covered by Query10.

=

We have thus shown that what is promised (the description of the promised
occurrences = Query19) in this context is covered by what is prohibited (the
description of the prohibited occurrences = Query10). We have thus detected a
dynamically appearing conflict between a provision embedded in a contract, and
an organizational policy. [1] describes mechanisms for resolving such conflicts.
Research into increasing the efficiency of our implementation, and confirming
through performance tests that the system is comfortably suited to real-world
business workloads, is ongoing.

5 Conclusion

We have proposed a coverage-determination mechanism for queries within e-
service environments. We discussed the data and query storage techniques em-
ployed by the EDEE system, and through a worked example, demonstrated how
our approach efficiently determined conflicts which appeared dynamically be-
tween business contracts and organizational policies.
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Coverage Checking Rules

Below are the rules used for determining coverage relationships between queries
in our example (the complete list is available on request).

Rule 1 An item is covered by queries with matching type criteria.
Rule 2 Transitively, a query is covered by any coverer of its coverers.
Rule 3 A numeric equal-to query Q, is covered by an equal-to, less-than or

greater-than query if its equal-to, less-than, or greater-than criterion
is, respectively, equal to, greater than, or less than Q’s equal-to criterion. A
numeric less-than query Q, is covered by numeric less-than queries where the
less-than criterion is greater than the less-than criterion of Q. A numeric
greater-than query Q, is covered by numeric greater-than queries where the
greater-than criterion is less than the greater-than criterion of Q.
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Rule 4 Any participant, occurrence, or role is covered by concept-identification
queries where the identified-concept criterion is identical to the partici-
pant, occurrence, or role identifier.

Rule 5 A concept-identification query is covered by any query that covers its
identified-concept criterion.

Rule 6 An intersection query Q, is covered by any intersection query P, if each
of P’s intersectands covers some non-zero number of (’s intersectands.

Rule 7 For two participant queries?, P covers Q if P’s role criterion covers Q’s
and P’s occurrence criterion covers Q’s. Similarly for occurrence queries 3.

Rule 8 An ordinal (sequence) query is covered by its set criterion. e.g. 1st
[payments] is covered by payments.

Rule 9 A query, Q, dirties any participant or occurrence query that has Q as
its participant criterion, occurrence criterion, or role criterion.

2 EpEEQL syntax is: participant_query = PARTICIPANTS IN ROLE role criterion
IN occurrence_criterion

3 EpEEQL syntax is: occurrence_query = OCCURRENCES OF occurrence_criterion
WHERE participant_criterion IS | ARE role_criterion



