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ABSTRACT
Publish/subscribe research has so far been mostly focused on
efficient event routing, event filtering, and composite event
detection. The little research that has been published re-
garding security in publish/subscribe systems has been ten-
tative at best. This paper presents a model for secure type
names, and definitions for type-checked, content-based pub-
lish/subscribe systems. Our model provides a cryptograph-
ically verifiable binding between type names and type defi-
nitions. It also produces self-certifiable type definitions that
guarantee type definition authenticity and integrity. We also
consider type management in a large-scale publish/subscribe
system and present a way for delegating management duties
to type managers by issuing SPKI authorisation certificates.
We feel that secure names are a prerequisite for most other
security related work with publish/subscribe systems.

1. INTRODUCTION
Publish/subscribe has emerged as a popular communi-

cation paradigm for Internet-wide, large-scale distributed
systems. Modern large-scale publish/subscribe systems are
based on a peer-to-peer network of brokers that routes events
from publishers to subscribers in an efficient manner. A
peer-to-peer network re-balances itself dynamically in case of
node joins and leaves, as well as node and network link fail-
ures. This makes a peer-to-peer network very fault-tolerant
and scalable. This paper focuses specifically on type-checked,
content-based publish/subscribe systems with a peer-to-peer
broker network, where events are instances of predefined
event types and subscriptions may include filter expressions
that filter events based on their content.

We envision a large-scale, multi domain publish/subscribe
system where multiple domains co-operate together in form-
ing a shared broker network, as seen in Fig. 1. The incentive
for domains to join the network is twofold: on the one hand
domains are interested in implementing shared applications
with other domains, e.g. one domain produces events while
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Figure 1: Three domains co-operate in order to form
a shared broker network.

another one consumes them. On the other hand, even with
domain-internal applications, the increased number of bro-
kers increases the reliability and coverage of the broker net-
work, i.e. a broker network with more nodes is increasingly
fault-tolerant and the increased coverage enables the domain
to reach a larger geographic area with lower infrastructure
investments.

Most of the research in publish/subscribe systems has con-
centrated on efficient event routing, event filtering, and com-
posite event detection. Very little work has been done per-
taining to the security aspects of publish/subscribe systems.
We feel that secure type definitions and names are a basic
building block for more complex security features for pub-
lish/subscribe systems, e.g. access control, event integrity
and confidentiality etc.

We propose an event type definition format for content-
based publish/subscribe systems which binds the type name
and type definition to each other in a secure fashion, and
guarantees type authenticity and integrity by using public-
key cryptography: a secure event type. This prevents: (i)
forged types, where a malicious party tries to disrupt the
data flow by introducing a type definition to the system
with the same name as another legitimate type; (ii) tam-
pered types, where a malicious party changes an existing
type definition; and (iii) accidental name collisions, where
two parties both introduce a new type to the system with
the same name. In addition to solving the above problems,
secure event types form a basis for, for example, access con-
trol where access control policy can refer securely and un-
ambiguously to type and attribute names.

The rest of the paper is organised as follows. Sect. 2 in-
troduces the reader to publish/subscribe and decentralised
trust management. Our model for secure event types is pre-
sented in Sect. 3. Sect. 4 describes the changes that were



made to the Hermes publish/subscribe middleware in order
to support secure event types. We discus related work in
Sect. 6 and conclude the paper with Sect. 7 by outlining
possible future work and summarising our research contri-
butions.

2. BACKGROUND
This section provides a brief introduction to type-checked,

content-based publish/subscribe systems and decentralised
trust management. Our work is specific to type-checked,
content-based publish/subscribe systems where published
events are instances of predefined event types and subscrip-
tions can include filter expressions that filter events based
on their content. The publish/subscribe middleware per-
forms type-checking of requests during publication and sub-
scription time to verify that the publication/subscription
filter conforms to the specified event type. Decentralised
trust management concepts are used in delegating event type
management duties to other principals.

2.1 Publish/Subscribe
We have implemented secure event types on a Hermes-like

[13, 12] publish/subscribe middleware called Maia. Maia is
based on Hermes, but includes security features that were
not part of the original Hermes design.

Hermes is a content-based publish/subscribe middleware
with strong event typing. It is built on a peer-to-peer routing
substrate to provide scalable event dissemination and fault
tolerance in case of node or network failures.

Hermes systems consists of event brokers and event clients,
the latter being publishers and/or subscribers. Event brokers
form an application-level overlay network which performs
event propagation by means of a content-based routing al-
gorithm. Event clients publish and/or subscribe to events in
the system. An event client connects to a local broker, which
then becomes publisher-hosting, subscriber-hosting, or both.
An event broker without connected clients is called an in-
termediate broker.

A feature of Hermes, that this work relies on, is support
for event typing : every published event (or publication) in
Hermes is an instance of an event type. An event type de-
fines a type name and a set of attributes that consist of an
attribute name and an attribute type. Supported attribute
types typically depend on the types supported by the lan-
guage used to express subscription filters. For example,
XPath 2.0[20], which can be used to define filters for XML
documents, defines primitive types like string, boolean, dec-
imal, float, double, duration, time, and date etc.

Another Hermes-specific addition to traditional content-
based publish/subscribe is support for event type hierar-
chies. In Hermes event types can be organised into inher-
itance hierarchies, where an event type inherits all of the
attributes defined and inherited by its ancestor. In addi-
tion to making defining new types easier, type hierarchies
enable a subscriber to subscribe to a supertype in an event
hierarchy and receive notification of events of that specific
type as well as all its subtypes. Our work is compatible
with event type hierarchies, but the proposed design would
require minor additions in order to support them fully. For
example, extend should be added to the set of type man-
agement operations (see Sect. 3.3). In general we have tried
to keep the design as widely compatible with type-checked
content-based publish/subscribe systems as possible.

2.2 Decentralised Trust Management
Decentralised trust management was first introduced as a

concept by Matt Blaze et al. in [4]. Blaze’s PolicyMaker was
later followed by KeyNote[3], the simpler incarnation of Pol-
icyMaker, and the Simple Distributed Security Infrastruc-
ture (SDSI)[14], which was later integrated with the Simple
Public-Key Infrastructure (SPKI)[6, 7] to create SPKI/SDSI
2.0[5].

The central idea in decentralised trust management is
to decentralise access control policy management, decision
making, and credential management. This is achieved by
implementing a capability-based approach to access control
where the owner of an object is responsible for access con-
trol policy and credential management for that particular
object. Distributing management responsibilities over all of
the principals results in an extremely scalable access control
system.

In SPKI the decentralisation is based on certificate loops.
A typical certificate loop is depicted in Fig. 2 where the
owner, Pa of an object O, grants an SPKI authorisation
certificate, Cab, with access rights, Aab, to Pb. Pb then fur-
ther delegates access rights Abc, where Abc ⊆ Aab, to Pc by
granting Pc another delegation certificate Cbc. Now, when
Pc wants to access O, she shows Pa both certificates Cab
and Cbc. Pa is now able to form a certificate chain from
Pc to Pb via Cbc and from Pb to itself via Cab. Finally Pc
authenticates herself to Pa by proving ownership of the key-
pair Pc

1. Pc does this by executing a public-key challenge-
response protocol with Pa. This completes the certificate
chain which now forms a certificate loop flowing from Pa to
Pb to Pc and back to Pa again. Pa has now verified that
Pc is authorised to access O within the privileges granted
by Aab ∩Abc2. Typically the verification is performed by an
access control service rather than Pa.

Pa Pc

Issuer: Pa

Subject: Pb
Delegation: true

Authorisation: Aab
Validity: Vab

Issuer: Pb
Subject: Pc
Delegation: false

Authorisation: Abc
Validity: Vbc

Pc proves ownership of key-pair Pc to Pa

Pb

Cab Cbc

O

Figure 2: An SPKI authorisation certificate loop
with three principals and two level delegation.

An SPKI authorisation certificate is a 5-tuple containing
the following five items: Issuer, Subject, Delegation, Autho-
risation, and Validity. Issuer is the public-key (or a hash
of the public-key) of the issuer of the certificate. Subject
is the public-key of the entity the certificate is issued to.
Delegation is a boolean value specifying whether the Sub-

1In SPKI a principal is a cryptographic key, capable of gen-
erating digital signatures. Therefore, SPKI treats principals
and public-keys as synonyms.
2The verification process will also consider optional validity
conditions (e.g. expiration dates) for each certificate in the
chain. An invalid certificate will break the chain and thus
render the whole chain invalid.



ject is permitted to further propagate the Authorisation in
this certificate. In a certificate chain all certificates bar the
last one must have Delegation set to true, otherwise the
certificate chain is not valid. Authorisation is an applica-
tion specific representation of access privileges granted to
the Subject by the Issuer. And finally, Validity defines the
date range when the certificate is valid as well as optional
on-line validity tests, e.g. certificate revocation lists (CRLs).

Two certificates are reduced to a single 5-tuple as follows:

< I1, S1, D1, A1, V1 > + < I2, S2, D2, A2, V2 >

⇒ < I1, S2, D2, A1 ∩A2, V1 ∩ V2 >

iff A1 ∩A2 6= ∅, V1 ∩ V2 6= ∅, S1 = I2 and D1 = true

This 5-tuple reduction rule is applied recursively to the
certificate loop in order to collapse the loop to a single 5-
tuple which will then be evaluated.

Our work relies on SPKI authorisation certificates to prop-
agate type management authorisation from a type issuer to
other type managers in a decentralised and scalable fashion.
We use type issuer to refer to the principal that created a
new type, while type manager refers to a principal that has
been authorised to manage an existing type. We refer to the
SPKI authorisation certificates as delegation certificates in
order to emphasise the fact that they are used to delegate
type management duties. For example, a type issuer is able
to authorise a type manager to add, remove, and rename at-
tributes in an event type by issuing a delegation certificate
to the type manager with the access rights addAttribute,
renameAttribute, and removeAttribute. See Sect. 3.3 for
a detailed description of delegation certificates in type man-
agement and possible type management operations.

3. SECURE EVENT TYPES
We approach the problem of secure event type defini-

tions in a publish/subscribe system by defining a secure
name space for type names. We propose incorporating the
type issuer’s public-key to the type name. A public-key is
globally unique [7], thus it defines a globally unique name
space. Type issuer specific name spaces will prevent acci-
dental name collisions in the publish/subscribe system.

We also propose digitally signing the type definitions with
the private-key corresponding to the public-key used to de-
fine the name space. Because the private-key used to sign
the type definition corresponds to the public-key incorpo-
rated in the name of the type definition, the type name is
bound to the type definition. Both the authenticity and
integrity of the type definition can be verified by verify-
ing the type definition signature with the public-key in the
type name. If the signature verifies correctly, it means that
the issuer is the owner of the name space defined by the
public-key (authenticity), and that the type definition has
not been tampered with since it was issued (integrity). Only
the owner of the name space is able to issue new types for
that name space, because the digital signature on the type
definition must be bound to the public-key defining that
name space.

A secure event type definition consists of six items as de-
picted in Fig. 3 where ti signifies the type issuer.

The items can be divided into three groups based on their
function in the event type definition: the first three items
form the name tuple, which identifies the secure type defi-
nition uniquely in the system; the fourth item is the set of

1. Type Issuer’s Public Key: Pti

2. User-Friendly Name: n

3. Version Number: v

4. Attributes: A

5. Delegation Certificates: D

6. Digital Signature: s }

} Name Tuple

Digital Signature

Figure 3: The contents of a secure event type defi-
nition.

attribute definitions which is the actual payload of the secure
type definition; and the remaining two items are relevant in
verifying the digital signature of the secure event type def-
inition, which ensures its authenticity and integrity. The
following sections will describe each group in more detail.

3.1 Name Tuple
The name of an event type is used to reference a type def-

inition from publish/subscribe messages (i.e. advertisement,
subscriptions, and publications). It is crucial that a specific
type name references the same type definition for all clients
and messages; the name tuple must identify a type definition
unambiguously.

We replace the traditional type name with a 3-tuple con-
sisting of the type issuer’s public-key, a user-friendly name,
and a version number. The name tuple defines a unique
name for the type definition and creates a secure one-to-one
mapping between type name and type definition.

Public-Key. The type issuer’s public-key defines a globally
unique name space while at the same time specifying the
owner of that name space. Because the name space is glob-
ally unique, accidental name collisions are impossible3. A
type definition within a name space is valid only if the sig-
nature of that type definition can be verified and linked back
to the public-key in the name tuple. Because the signature
can only be created with the type issuer’s private-key the
malicious users are not able to forge that link, and there-
fore are unable to introduce forged type definitions into the
system. See Sect. 3.3 for more details on how the digital
signature is linked back to the name space.

User-Friendly Name. Where the public-key defines a glob-
ally unique name space, the user-friendly name can be used
to build naming hierarchies within that name space. For
example, the reverse-DNS naming scheme produces hierar-
chical names like uk.ac.cam.cl.ActiveOffice.DoorEvent.
Naming hierarchies enable the event type owner to express
a semantic structure among multiple related event types,
e.g. all type definitions related to a single publish/subscribe
application can be grouped together. Also, including infor-
mation about the type issuer in the type name will be bene-
ficial for the application developer (cf. Java package naming
conventions[16]).

3We assume that the name-space owner is able to avoid
accidental name collisions within her own name space.



Version Number. We must assume that type definitions in
a large-scale publish/subscribe system need to evolve during
their lifetime. Thus a type manager must be able to update
a type definition while it is in use without disrupting running
clients (see the end of Sect. 3.3 for possible type management
operations).

We propose including a version number in the name tu-
ple, which allows multiple versions of a single event type
to coexist in the publish/subscribe system. A new version
number is created for each new version of a type defini-
tion. Since the version number is part of the name tuple,
changing it effectively renames the event type. This means
that introducing an updated event type into the system does
not interfere with existing clients since they are subscribed
to and/or publish events of a different type name. Exist-
ing clients will continue publishing and receiving events of
the old type until they have been modified to support the
new type. New clients, implemented against the updated
type definition, can use the new type immediately. We as-
sume that clients have to be manually modified to be able
to use an updated type definition. The manual modifica-
tion might be as simple as adding the new type definition
to the client’s configuration files, or it might be a complete
re-implementation of the client.

The version number is created based on the UUID (Uni-
versally Unique Identifier) specification[10]. A UUID is a
128-bit value which is guaranteed to be unique from all other
UUIDs until the year 3400. We use UUIDs as version num-
bers because they are collision resistant, i.e. multiple type
managers can create UUIDs at the same time without ac-
cidentally creating the same version number. If the version
number was a simple integer that was incremented after each
type definition update, we would have to synchronise be-
tween type managers updating the same event type at the
same time to avoid version number collisions. Event type
versioning will be discussed in more detail in Sect. 4.4.

3.2 Attributes
Attributes define the event type structure that publica-

tions must conform to. An attribute definition consists of
a user-friendly name, a unique identifier, and a type. Sup-
ported types depend on the subscription filter language.

An attribute definition defines a mapping between the at-
tribute name and the unique identifier. The name has to
be unique within the context of that particular version of
the type definition whereas the unique identifier has to be
unique within the context of all versions of the type defi-
nition. A unique identifier therefore identifies a single at-
tribute among all the attributes defined for that event type
in all its different versions.

The unique identifier is implemented as a UUID, because
of the collision-resistance properties of UUIDs. Again, we
want to avoid having to synchronise multiple type updates
in order to avoid identifier collisions.

The publish/subscribe clients refer to attributes using at-
tribute names, whereas the intermediate brokers use the
unique identifiers. Before routing the event through the
broker network the publisher-hosting broker translates the
names to UUIDs based on the publisher’s version of the
type definition. The subscriber-hosting broker translates the
UUIDs back to attribute names based on the subscriber’s
version of the type definition before delivering the event to
the subscriber. This enables multiple versions of an event

type to co-exists in the publish/subscribe system at any
given time. Type version translation is covered in more de-
tail in 4.4.

3.3 Digital Signature
The digital signature on an event type guarantees authen-

ticity and integrity of the type definition. The signature is
calculated over all of the items in the type definition except
the signature field (see items 1 through 5 in Fig. 3), i.e. it
provides protection for all items in the type definition.

Because the signature includes the name and version num-
ber of the type definition, and it is linked to the public-key
in the name tuple, it binds the type definition to the name
tuple.

Delegation Certificates. We assume that in an Internet-
scale publish/subscribe system event types are long-lived
and therefore the management of an event type cannot be
the responsibility of a single principal. Unfortunately the se-
curity of our secure event types is based on the fact that the
public-key in the name tuple verifies the digital signature
on the type definition. Thus, only the owner of the public-
key in the name tuple, i.e. the type issuer, is able to create
a digital signature which is verifiable with that public-key.
This means that only the type issuer is able to issue updated
versions of the type definition.

Delegation certificates enable the type issuer to delegate
type management duties to type managers. The digital sig-
nature and the public-key in the name tuple have to be
linked together so that a verifier can trust the authenticity
of the type definition. If a type manager would edit the
event type, sign it, and reintroduce it to the system this
link would be broken, because the type manager is unable
to sign the type definition with the type issuer’s private-key.
In order to maintain the link in a self-certifiable package we
add a set of delegation certificates which link the type man-
ager’s key pair to the type issuer’s public-key. Now the type
manager’s digital signature can be linked to the public-key
in the name tuple by following the certificate chain from the
signature to the type issuer’s public-key, and the authentic-
ity and integrity of the type definition can be verified (see
Sect. 2.2 and Fig. 2).

Figure 4 depicts three different cases of type management.
In the first column the type issuer, Pa, has created or up-
dated the type definition and signed it. The type issuer’s
signature is directly verifiable with the public-key in the
name tuple, so there is no need for a delegation certificate
and thus the delegation certificate field in the type defini-
tion is left empty. In the second column the type manager,
Pb, has updated the type definition. Pb includes in the up-
dated type definition a delegation certificate which links the
signature, S(Pb), to Pa. The third column is similar to the
second column, except in this case the certificate chain link-
ing S(Pn) to Pa consists of more than one certificate.

The set of delegation certificates is there to link the cur-
rent signature to the public-key in the name tuple. The
type manager updating the type definition always replaces
the previous set of delegation certificates with a set of del-
egation certificates that link her to the name tuple. In the
default case where the type issuer issues the type definition
and manages all updates, there is no need to include any
delegation certificates (see the first column in Fig. 4).

The type issuer is able to authorise type managers to man-



Pa, “StockEvent”, 3837

...

Signature: S(Pb)

Issuer: Pa

Subject: Pb

...

Pa, “StockEvent”, 2587

...

Signature: S(Pa)

Pa, “StockEvent”, 2768

...

Signature: S(Pn)

Issuer: Pa

Subject: Pb

...

Issuer: Pn-1

Subject: Pn

...

.

.

.

Name Tuple:

Certificate Chain:

Digitally Signed 

Type Definition:

Signed by the

First Delegate, Pb

Signed by the

Type Issuer, Pa

Signed by the

nth Delegate, Pn

Figure 4: Verifying the name-signature link with
and without delegation certificates.

age a type definition by granting them delegation certificates
with the appropriate access rights. The delegation certifi-
cates are delivered to the type managers out-of-band. Out-
of-band delivery enables the type issuer to grant delegation
certificates even after the type definition has already been
issued. If the delegation certificates were embedded in the
type definition, the type issuer would have to update the
type definition every time she issued a new delegation cer-
tificate. This would become especially cumbersome if type
managers were also issuing delegation certificates.

Delegation certificates enable fine grained authority del-
egation. That is, the type issuer has fine grained control
over what management rights are delegated to a type man-
ager, if the type manager is able to further delegate those
management rights, and what validity conditions the created
certificate has.

In the case of secure event types possible access rights
are addAttribute, removeAttribute, editAttributeName,
and editAttributeType. This can be extended to single at-
tributes, e.g. editAttributeName, iff UUID=9058. We expect
that in most cases limiting the delegate’s authority would
not be necessary.

4. CHANGES TO HERMES
We made a number of changes to the original Hermes de-

sign in order to add support for secure event types. Some
of the changes were necessary for Hermes to be able to sup-
port secure event types. Other changes were made possible
by secure event types and enabled us to simplify the Hermes
design. The following sections describe in detail the more
important changes that were done.

4.1 Type Storage
The original Hermes design uses a distributed hashtable

(DHT)[15] to store event types in the broker network. The
name of the event type is used as a key when inserting the
type definition into the DHT. The unreliable nature of peer-
to-peer networks demands that the stored type definition be
replicated among multiple nodes. That is, because peer-to-
peer nodes may leave the network at any given time, not
to mention the possibility of node and network failures, the
content stored at a specific node must be replicated to other
nodes in order to guarantee the availability of specific con-
tent with high probability. Maintaining the DHT thus re-
sults in a lot of unnecessary network traffic when content is

copied to replica nodes during inserts, and node joins and
leaves. Even with replication, the DHT can only provide
availability with high probability based on the number of
replica nodes. In the worst case the requesting node is cut
off from all replica nodes and thus not able to access the
content.

The self-certifiability of secure event types enables brokers
to verify the authenticity and integrity of type definitions.
This allows a local broker to trust a type definition received
from a client. That is, we can allow publish/subscribe clients
to provide the local broker with the type definition rather
than having to store the type definitions in the broker net-
work as is the case with Hermes.

We argue that developers implementing publish/subscribe
applications that handle specific event types need to have
the definitions of those types available to them during de-
velopment time. The type definitions would be delivered to
the developers out-of-band, e.g. as downloads from a web
page or a central type repository. Since the type definitions
are part of the development process it would be simple to in-
clude them in the packaging of the publish/subscribe clients.
The client code would then be able to pass the type defini-
tion on to the local broker as a part of an appropriate pub-
lish/subscribe request (advertise or subscribe). Finally
the broker would verify the authenticity and integrity of the
client-provided type before executing the client’s request.

Only the local brokers need to do type-checking. The local
broker of a publisher type-checks the submitted publication
before it is routed through the broker network. Similarly
the local broker of a subscriber type-checks the subscrip-
tion filter before passing the subscription on to the broker
network. The intermediate brokers assume that the pub-
lications and subscriptions have already been type-checked
by the local brokers, thus only the local brokers need to be
aware of type definitions.

By relying on publish/subscribe clients to provide type
definitions to local brokers we remove the need for maintain-
ing a type repository in a DHT, thus lowering the amount of
network traffic and making the broker network design more
elegant and simpler in general.

4.2 API Changes
The new approach to type storage presented in the previ-

ous section and the introduction of the name tuple result in
changes to the Hermes API as shown in Fig. 5. Because type
definitions are not installed in the publish/subscribe system
any more, as explained above, there is no need for a specific
type management API with the operations addEventType,
removeEventType, and modifyEventType. Type definitions
are provided to the brokers by the clients as parameters to
the advertise and subscribe operations. In both cases the
old API operations referred to the event type with the type
name, whereas in the updated API the type name has been
replaced by the actual secure type definition.

The other operations in the API have been updated to
refer to a type definition with a cryptographically secure
hash of the type’s name tuple instead of the type name. We
use a hash of the name tuple in order to save some bytes
in network communications. The name tuple consists of a
public-key, a name, and a UUID. A DER-encoded 1024-bit
RSA public-key is at least 160 bytes long. Adding another
16 bytes for the UUID means that the size of the name
tuple is already 176 bytes without the user-friendly name,



Original API

addEventType(type_def)

modifyEventType(type_def)

removeEventType(type_name)

advertise(type_name)

unadvertise(type_name)

publish(event_instance)

subscribe(type_name, filter, callback)

unsubscribe(type_name, callback)

Modified API

advertise(type_def)

unadvertise(type_name)

publish(event_instance)

subscribe(type_def, filter, callback)

unsubscribe(type_name, callback)

Figure 5: The original and the modified Hermes
API.

which can be anything from a single byte to hundreds of
bytes. Compressing the name tuple with a hash function
results in a shorter identifier depending on the size of the
hash function’s output, which vary between 128 bits (16
bytes) and 512 bits (64 bytes) in length. In light of the
recent breaks related to MD5[19] and SHA-1[18], we suggest
using SHA-256[8]. SHA-256 produces a 256-bit (32 byte)
digest, which is significantly shorter than what the name
tuple would be.

4.3 Message Routing
In addition to using the event type name as a key in the

DHT when storing type definitions, Hermes uses the type
name as a node id when routing events through the broker
network. Hermes chooses a rendezvous node from all the
broker nodes by hashing the type name in order to create
a node id. An event dissemination tree is then created in
the broker network by routing advertisement and subscrip-
tion messages towards the rendezvous node. Because the
rendezvous node id is created by hashing the name of the
event type, both publishers and subscribers are able to cre-
ate the node id. Publications are then routed based on the
event dissemination tree to subscribers. The Hermes routing
algorithm is explained in more detail in [13] and [12].

Simply hashing the name tuple would result in each event
type version having a different rendezvous node, because
h(P ||n||v1) 6= h(P ||n||v2). This would result in independent
event dissemination trees for each type version and, because
of this, in unnecessary routing state and sub-optimal routing
performance. Instead of hashing the whole name tuple, we
ignore the version number and hash only the public-key and
the name: h(P ||n). This results in a common rendezvous
node and optimal routing performance for all versions of an
event type.

4.4 Type Version Translation
Another side effect of adding the version number to the

name tuple is that subscribers will not receive events from
publishers that are publishing events of a different version
of the same event type. This presents a real problem when
either the publisher or the subscriber updates its event type
version unilaterally. In such a case the publisher and sub-
scriber will lose connectivity with each other, because the
different event type versions are treated as unrelated types.

Instead of routing events of specific event type versions,
we translate the published event to a transit time event at
the local broker of the publisher after the event has been
type-checked by the broker (see Fig. 6). The transit time
event is simply a collection of name-value pairs that were
copied from the publication. It also includes the public-
key and the name from the name tuple, but not the version
number.

Publisher

Att.Name Value
stockName “Acme”

newValue 1045

oldValue 989

Subscriber

Att.Name Value
stockName “Acme”

newPrice 1045

oldPrice 989

date null

Intermediate

Broker

UUID Value
9058 “Acme”

3265 1045

6267 989

Publisher-Hosting

Broker

Att.Name UUID Type
stockName 9058 String

newValue 3265 int

oldValue 6267 int

StockEvent - Ver. 4799

Subscriber-Hosting

Broker

Att.Name UUID Type
stockName 9058 String

newPrice 3265 int

oldPrice 6267 int

date 3467 Timestamp

StockEvent - Ver. 3678

Event Type

Definition

Event Instance

Published Event Transit Time Event Delivered Event

Figure 6: Translation to and from transit time
events.

The transit time event is then routed through the broker
network to all subscribers of that event type. The local
broker of the subscriber translates the transit time event to
an instance of the subscriber’s version of the type definition.
Attributes that are present in the transit time event, but not
in the subscriber’s version of the type definition are ignored.
Similarly attributes that are not present in the transit time
event, but are defined in the subscriber’s version of the event
type are set to null in the event instance.

The transit time event uses UUIDs instead of names to
refer to attributes. The unique id numbers guarantee that
attributes are always unambiguously identifiable regardless
of their name. This allows type managers to add and re-
move attributes, as well as to rename existing attributes
and reintroduce old attribute names while maintaining in-
teroperability between different versions of a type definition.
That is, in Fig. 6 the publisher uses the version 4799 of the
type StockEvent with the name newValue for the attribute
with UUID 3265, while the subscriber uses the version 3678

of the same type with name newPrice for the same attribute.
Although the names for the attribute are different for the
publisher and the subscriber, the UUIDs are the same which
allows the subscriber’s local broker to deliver the attribute
to the subscriber as newPrice. Similarly a new version of
the type definition derived from version 3678 might include
a new attribute with the name newValue, but with a UUID
3879. Because the UUID (3879) differs from the UUID
(3265) of the original newValue attribute, there is no risk
of confusing one attribute with the other when converting
instances of the type to and from transit time events.

5. PERFORMANCE
The most significant performance penalty in verifying se-

cure event types is caused by digital signature verification.
The other related operations, e.g. SPKI 5-tuple reduction,
are very cheap in comparison.

Event types need to be verified when a publish/subscribe
client provides an event type to the local broker as a part
of an advertisement or a subscription request. Publications
refer to an already verified event type and thus do not need
to be verified individually.

In a näıve implementation a broker verifies every client-
provided event type for every advertisement and subscrip-
tion request separately. An optimised implementation would
cache the verification result of each event type and simply
compare the already verified type to the event types in sub-



sequent requests thus avoiding the expensive signature ver-
ification.

The broker can also store client-provided event types lo-
cally after verification. This enables the broker to load and
verify those event types as part of the broker startup se-
quence. As we can assume that the set of event types in
use in a publish/subscribe system is relatively static, i.e.
the publish/subscribe clients advertise and subscribe to the
same event types most of the time, the bulk of the cost of
verifying those types is paid in advance while the broker is
starting up. The routing performance of a broker is only
affected by new types and type versions introduced to the
system that have not been verified yet.

The cost of verifying an event type depends on the length
of the certificate chain in that event type. Therefore the
impact of event type verification can be reduced even more
by the broker caching also verified delegation certificates.
The cached certificates can then be used in verifying cer-
tificate chains in other event types and event type versions
where the certificate chains contain cached certificates. For
example, if a type manager introduces a new version of an
already cached event type to the system, the broker can use
the cached certificates in verifying the certificate chain from
the type owner to the type manager.

Caching event type verification results means that only
new event types and event type versions have to be verified.
Thus the performance impact caused by secure event type
verification differs from application to application depend-
ing on how many event types the application requires and
on how static the set of used event types is. Therefore we
felt that a simulation would not be useful, because it could
not provide us with universally meaningful results on the
performance impact caused by secure event types.

6. RELATED WORK
Wang et al. present in [17] a number security issues in

Internet-scale publish/subscribe systems that need to be ad-
dressed. The paper covers problems related to authentica-
tion, data integrity and confidentiality, accountability, and
service availability. We feel that secure event types pro-
vide a foundation for solving these problems. The secure
name space defined by a principal’s public-key provide a ba-
sis for event encryption and access control. Without trusted
names, implementing either would be very difficult.

Other research on securing publish/subscribe systems in-
cludes [9], where Miklós presents an access control mecha-
nism for large-scale publish/subscribe systems, which sup-
ports access control decisions based on publication and sub-
scription filter content. Belokosztolszki et al. present a role-
based access control architecture for publish/subscribe sys-
tems in [2]. In both cases the lack of trusted names renders
the scheme infeasible in a multi-domain setting.

Opyrchal and Prakash concentrate on the separate prob-
lem of providing confidentiality for events during the last
hop from the local broker to the subscribers with as few
encryptions as possible [11]. We assume that local brokers
have enough resources to maintain secured network connec-
tions to clients in which case the efficient encryption of single
events for the last hop is not relevant.

7. CONCLUSIONS AND FUTURE WORK
Security is acknowledged to be a crucial concern for the

development of publish/subscribe systems, yet much of the
research done in this area has been speculative at best.

This paper presents a model for secure event type defini-
tions in type-checked, content-based publish/subscribe sys-
tems. The scheme provides self-certifiable type definitions
which allow both event clients and brokers to verify the def-
inition authenticity and integrity. Although our design is
based on Hermes, it is applicable to type-checked, content-
based publish/subscribe systems in general. The design can
also be extended to support event type hierarchies by a few
minor additions, e.g. by adding an extend access privilege
to the set of possible access rights.

We feel that secure event types are the foundation for
a secure publish/subscribe middleware. Other services like
access control can then be built on this foundation. For
example, in the case of access control we can bind access
rights to type and attribute names, because we can trust
those names to be unforgeable and unique. Unforgeable and
unique names will become even more important when pub-
lish/subscribe systems mature and are offered commercially
across multiple independently managed domains.

In addition to secure event types, we have also introduced
a scheme for managing event types in a large-scale publish/
subscribe system. We feel that such a system must be able
to run continuously regardless of type management opera-
tions. Our approach enables type managers to update exist-
ing type definitions transparently without affecting existing
clients. We also support the delegation of type management
duties, which we see as an equally important feature when
considering the expected lifetime of event types in a large-
scale, highly decentralised system.

This research is part of a project, EDSAC21, to pro-
vide secure middleware for large-scale, widely distributed
applications. We are currently working on introducing de-
centralised infrastructure and application level access con-
trol to multi-domain, type-checked, content-based publish/
subscribe systems, and enforcing application level access
control by encrypting events [1].
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