
A Capability-Based Access Control Architecture for Multi-Domain
Publish/Subscribe Systems

Lauri I.W. Pesonen, David M. Eyers, and Jean Bacon
University of Cambridge, Computer Laboratory
JJ Thomson Avenue, Cambridge, CB3 0FD, UK

{firstname.lastname}@cl.cam.ac.uk

Abstract

Publish/subscribe has emerged as an attractive commu-
nication paradigm for building Internet-wide distributed
systems by decoupling message senders from receivers. So
far most of the research on publish/subscribe has focused on
efficient event routing, event filtering, and composite event
detection. Very little research has been published regard-
ing securing publish/subscribe systems. In this paper we
present a capability-based access control architecture that
enables multiple domains to co-operate in order to build
a shared, wide-scale publish/subscribe system. Our archi-
tecture employs SPKI authorisation certificates for delegat-
ing access control responsibilities to access control services
within independent domains in order to balance security
and scalability. The architecture supports controlling ac-
cess both for new event brokers joining the broker network
as well as for clients accessing the publish/subscribe API.

1. Introduction

Publish/subscribe has emerged as a popular communica-
tion paradigm for Internet-wide, large-scale distributed sys-
tems. This is because it decouples message senders and re-
ceivers from each other, routing messages based on
their topic or content instead. Modern large-scale pub-
lish/subscribe systems are based on a peer-to-peer network
of event brokers that routes events from publishers to sub-
scribers in an efficient manner. A peer-to-peer network
re-balances itself dynamically in the case of node and net-
work link failures, and when nodes join and leave the
peer-to-peer network. Broker networks based on peer-
to-peer overlays are thus highly fault-tolerant and scal-
able.
Most of the research in publish/subscribe systems has

concentrated on efficient event routing, event filtering, and
composite event detection. Very little work has been done
on the security aspects of publish/subscribe systems, yet

Domain A

Domain B
Domain C

Event Broker

Access control
Manager

Figure 1. Three domains co-operate in order
to form a shared broker network.

scalable access control will be a prerequisite for Internet-
wide publish/subscribe due to ever-present malicious users
(and possibly also for legal reasons within organisations).
When the scale of a system increases, so do its access con-
trol requirements. Small-scale systems can be deployed in
company intranets without any access control, but that is not
feasible in a public or large-scale setting.
We envision a large-scale, multi domain publish/

subscribe system where multiple domains co-operate to
form a shared broker network, as seen in Fig. 1. Bro-
kers may be inherently mutually trusting, as in the
sub-domains of a national police force (See Sect. 4), or mu-
tually suspicious as when police domains interwork with
different public service domains.
We propose an access control architecture that scales

well with the number of domains, clients, and event types,
while at the same time provides the benefits of decentralised
trust management, e.g. delegation of responsibilities. We
present a number of uses for SPKI authorisation certificates
in implementing a full-featured access control architecture
for a multi-domain publish/subscribe system.
The rest of the paper is organised as follows. Sect. 2 pro-

vides background knowledge required to understand our ar-
chitecture, which itself is introduced in Sect. 3. Sect. 4 dis-
cusses an example application. We present related work in

Sect. 5, and finally, in Sect. 6 make our conclusions and in-
dicate areas of future research.

2. Background

This section provides a brief introduction to publish/
subscribe systems, capability-based access control, and de-
centralised trust management.

2.1. Publish/Subscribe Message Delivery

Publish/subscribe communication facilitates many-to-
many communication between parties based on the event
content or topic, rather than the explicit source and destina-
tion addresses.
The simplest form of publish/subscribe system, called

topic-based publish/subscribe [9], classifies events based on
their topic. Subscribers subscribe to specific topics and re-
ceive all events published to that topic. Content-based pub-
lish/subscribe [9] allows filtering based on the content of
an event, i.e. a subscriber defines a filter and only match-
ing events are delivered. Topic-based and content-based ap-
proaches can be combined so that a subscription is topic-
specific, but it includes a filter expression for filtering events
of that topic.

2.1.1. Typed, Content-based Publish/Subscribe We
have implemented our access control architecture on a
Hermes-like [13, 14] publish/subscribe middleware called
Maia. Maia implements Hermes, but also includes secu-
rity features that were not part of the original design.
Hermes is a content-based publish/subscribe middleware

with strong event typing. It is built on a peer-to-peer routing
substrate to provide scalable event dissemination and fault
tolerance in case of node or network failures.
A Hermes system consists of event brokers and event

clients, the latter being publishers and/or subscribers. Event
brokers form an application-level overlay network that per-
forms event propagation by means of a content-based rout-
ing algorithm. Event clients publish and/or subscribe to
events in the system. An event client connects to a local
broker, which then becomes publisher-hosting, subscriber-
hosting, or both. An event broker without connected clients
is called an intermediate broker.
Hermes supports event typing: every published event (or

publication) in Hermes is an instance of an event type. An
event type defines a type name and a set of attributes that
consist of an attribute name and an attribute type. Supported
attribute types typically depend on the types supported by
the language used to express subscription filters. For ex-
ample, XPath 2.0 [18], which can be used to specify fil-
ters for XML documents, defines primitive types like string,
boolean, decimal, float, double, duration, and date etc.

Another Hermes-specific feature is support for event type
hierarchies – an event type inherits all of the attributes de-
fined and inherited by its ancestor. In addition to making
defining new types easier, subscriptions to super-types in
an event hierarchy match notifications of events of both the
subscribed type and all its subtypes.

2.1.2. Secure Names This work relies on the fact that ac-
cess rights can be bound to a unique and unforgeable name.
We introduced secure event types in [12] that provide secure
names both for event types as well as attributes within those
types. The type definition is digitally signed with the type
owner’s private-key. In secure event types the type owner’s
public-key is included in the name of the event type. This
creates a unique name that is bound to the type definition,
because the signature in the type definition is verifiable with
the public-key from the type’s name. The digital signature
guarantees that type and attribute names cannot be forged
nor tampered with.
The same approach, adding the owner’s public-key in

the name, can be utilised also with topic-based publish/
subscribe, in which case the topic name would include the
topic owner’s public-key. Because the capability granting
the client access to the topic must be linked to the topic
owner’s public-key, as will be explained in Sect. 2.3, the
topic name can be seen as secure.

2.2. Capabilities

Access rights in a system can be described with an ac-
cess control matrix where the rows represent subjects (i.e.
users), the columns represent objects (i.e. resources), and
the cells define the access rights that a specific subject has
over a specific object.
Access control systems typically implement either a col-

umn centric view or a row centric view of the matrix. In a
column centric view each column of the matrix is translated
to an access control list (ACL) that is stored with the ob-
ject that the column represents. The ACL contains entries
for each subject defining the access rights for that subject
regarding the specific object.
In a row centric view each row of the matrix is translated

to a set of capabilities that are stored with the subject. Each
capability defines what access rights the subject, or holder
of the capability, has over a given object.
A common use for certificates is to map principals to

trusted identities. Rather than using certificates as an au-
thentication token, however, it is also possible to use certifi-
cates for authorisation of actions. Certificates used in this
manner are often referred to as signed capabilities.
Maia will use the access control policy engine of the

Open Architecture for Secure Interworking Services (OA-
SIS) [2, 3], which is an established, distributed, Role-Based
Access Control (RBAC) [16] system. In OASIS, principals

authenticate into roles and activate capabilities according to
role activation and authorisation policies, respectively. Role
membership and capabilities are both represented by digi-
tal certificates that are used in access requests.

2.3. Decentralised Trust Management

Decentralised trust management was first introduced by
Blaze et al. in [6]. PolicyMaker was later followed by
KeyNote [5], and the Simple Distributed Security Infrastruc-
ture (SDSI) [15], which was later integrated with the Simple
Public-Key Infrastructure (SPKI) [8] to create SDSI 2.0 [7].
The central idea in decentralised trust management is to

decentralise access control decision making, and policy and
credential management. This is achieved by requiring the
owner of an object, or their delegatee, create the capabil-
ities which can be used to access it. Distributing manage-
ment responsibilities over all of the principals results in an
extremely scalable access control system.
In SPKI the decentralisation is based on certificate loops.

A typical certificate loop is depicted in Fig. 2 where the
owner, Pa of an object O, grants Pb an SPKI authorisa-
tion certificate, Cab, with access rights, Aab, for the ob-
ject O. Pb then further delegates access rights Abc, where
Abc ⊆ Aab, to Pc by granting Pc another delegation cer-
tificate Cbc. Now, when Pc wants to access O, she shows
Pa both certificates Cab and Cbc. Pa is now able to form a
certificate chain from Pc to Pb via Cbc and from Pb to it-
self via Cab. Finally Pc authenticates herself to Pa by prov-
ing ownership of the key-pair Pc. Pc does this by execut-
ing a public-key challenge-response protocol with Pa. This
completes the certificate chain which now forms a certifi-
cate loop flowing from Pa to Pb to Pc and back to Pa again.
Pa has now verified that Pc is authorised to accessO within
the privileges granted by Aab ∩ Abc

1. Typically the verifi-
cation is performed by an access control service rather than
Pa. Note that in SPKI, principals and key-pairs are synony-
mous.
An SPKI authorisation certificate is a 5-tuple contain-

ing the following items: Issuer, Subject, Delegation, Autho-
risation, and Validity. Issuer is the public-key (or a hash
of the public-key) of the issuer of the certificate. Subject is
the public-key of the entity the certificate is issued to. Del-
egation is a boolean value specifying whether the Subject
is permitted to further propagate the Authorisation granted
by this certificate. In a certificate chain all certificates bar
the last one must have Delegation set to true, otherwise the
certificate chain is not valid. Authorisation is an applica-
tion specific representation of access privileges granted to
the Subject by the Issuer. And finally, Validity defines the

1 The verification process will also consider optional validity conditions
(e.g. expiration dates) for each certificate in the chain. Any invalid cer-
tificate will render the whole chain invalid.

Pa Pc

Issuer: Pa
Subject: Pb
Delegation: true
Authorisation: Aab
Validity: Vab

Issuer: Pb
Subject: Pc
Delegation: false
Authorisation: Abc
Validity: Vbc

Pc proves ownership of key-pair Pc to Pa

Pb

Cab Cbc

O

Figure 2. An SPKI authorisation certificate
loop with three principals and two level del-
egation.

date range when the certificate is valid and optional on-line
validity tests, e.g. certificate revocation lists (CRLs).
Two certificates are reduced to a single 5-tuple as fol-

lows:

< I1, S1,D1, A1, V1 > + < I2, S2,D2, A2, V2 >

⇒ < I1, S2,D2, A1 ∩ A2, V1 ∩ V2 >

iff A1 ∩ A2 �= ∅, V1 ∩ V2 �= ∅, S1 = I2 and D1 = true

This 5-tuple reduction rule is applied recursively to the
certificate loop in order to collapse the loop to a single 5-
tuple that will then be evaluated.
Our work relies on SPKI authorisation certificates to

propagate authorisation from resource owners to domains
in a decentralised and scalable fashion. We refer to the au-
thorisation certificates as delegation certificates in order to
emphasise the fact that they are used to delegate access con-
trol duties by one party to another.

3. Access Control in Publish/Subscribe

We envision a multi-domain publish/subscribe system,
as explained in Sect. 1 and Fig. 1, where each domain con-
tains a number of event clients and brokers, and an access
control manager. The access control manager is responsi-
ble for granting privileges to brokers and clients in that do-
main according to the domain’s access control policy.
One of the domains in the system is the coordinating do-

main which coordinates the forming of the shared publish/
subscribe system. The coordinating domain invites other
domains to join the shared publish/subscribe system. In a
sense the coordinating domain owns the shared publish/
subscribe system and is responsible for managing it.
The incentive for domains to join the network is twofold:

on the one hand domains are interested in implementing
shared applications with other domains, e.g. when one do-
main produces events while others consume them. On the

other hand, even with domain-internal applications, the in-
creased number of brokers increases the reliability and cov-
erage of the broker network, i.e. a broker network with more
nodes is increasingly fault-tolerant and the increased cover-
age enables the domain to reach a larger geographic area
with lower infrastructure investments. Both incentives are
attractive to domains, but only if the system provides proper
access control to prevent unauthorised access.
The publish/subscribe system needs to control access to

a number of resources. All of the following actions have to
be authorised: (i) nodes, i.e. event brokers and event clients,
connecting to the broker network; (ii) type and topic own-
ers (in content-based and topic-based publish/subscribe, re-
spectively) introducing new types and topics to the system;
(iii) type and topic owners extending an existing type/topic;
(iv) event clients accessing the publish/subscribe API, i.e.
to publish or subscribe to events.
We propose a common approach to access control for

publish/subscribe systems where access control decisions
in all four cases are ultimately rooted at the appropriate re-
source owner. In (i) and (ii) the resource owner is the co-
ordinating domain. In (iii) and (iv) the resource owner is
the type or topic owner. Employing delegation certificates
in the architecture and distributing the access control pol-
icy management, decision making, and credential manage-
ment over all resource owners enables the access control ar-
chitecture to scale well in a multi-domain environment.

3.1. Delegating Authority

As explained in Sect. 2.3, a resource owner delegates au-
thority to another subject by issuing a delegation certificate
for that subject. In our model the resource owner grants a
delegation certificate to a domain’s access control manager.
The delegation certificate authorises the access control man-
ager to further delegate the granted authority to clients (e.g.
event brokers and event clients) in that domain. The access
control manager is then responsible for further delegating
the authority to its clients by issuing capabilities to them
according to the domain-internal access control policy.
The delegation certificates and capabilities form a certifi-

cate loop that links the client to the resource owner through
the access control manager, as seen in Fig. 3.
When a client requests an action, it will show the capa-

bility it received from the access control manager and the
delegation certificate(s) linking the access control manager
to the resource owner. The capability and the delegation cer-
tificate chain are linked to each other by the access control
manager’s public-key which is the subject in the last del-
egation certificate in the certificate chain and the issuer in
the client’s capability. The verifier then verifies the capa-
bility and the delegation certificates, verifies the certificate
chain that they form, and executes a public-key challenge-

Local
Broker

Type
Owner

Access
Control

Manager

Event
Client

Delegation Certificate
type: TypeOwner.*
action: publish | subscribe
attributes: *

Capability
type: TypeOwner.TestType1
action: subscribe
attributes: * & Attr2 >= 500

Request:
type: TypeOwner.TestType1
action: subscribe
filter: Attr1 = 100 & Attr2 > 800
credentials: Deleg.Cert., Capability

The last link is implied by the
Type Owner’s public-key being
incorporated in the type name

Figure 3. The type owner delegates authority
to the access control service to issue capa-
bilities for accessing the type owner’s event
types.

response protocol with the requesting client, as depicted in
Fig. 2. If everything validates correctly, the client’s request
is processed.
Note that the certificate chain must end at a resource

owner that the verifier trusts. That is, the prover and the ver-
ifier must have a common trust root. In the coordinating do-
main’s case, all nodes participating in the shared publish/
subscribe system trust the coordinating domain (the public-
key of the coordinating domain is installed in all nodes as
a trusted public-key or alternatively the access control man-
ager gives the public-key to the client with the capability).
In the case of the type and topic owners, the owner’s public-
key is included in the name of the type/topic. This links to-
gether the root of the certificate chain and the type/topic
name, and enables the verifier to trust the certificate chain.
We assume that delegation certificates will be delivered

to the domain access control managers out-of-band. Out-of-
band delivery enables the resource owners to change access
control policy after deployment by issuing new and revok-
ing existing delegation certificates. For example, the coor-
dinating domain is able to accept a new domain to the com-
mon broker network by issuing a delegation certificate to
the joining domain’s access control manager. Similarly, a
type owner is able to grant a new domain access to an exist-
ing event type by issuing the new domain a delegation cer-
tificate granting access to that event type.
The authorities described below can be combined into

a single certificate assuming that the issuer is authorised
to grant that authority. For example, a coordinating do-
main could issue a single certificate granting both con-
nect and install rights to an access control manager
(e.g. action: connect | install). The field val-
ues of the authority support also wildcards, e.g. action:
* in order to enable all actions. It is important to notice
that the resource owner can only grant authority for her
own resources. That is, a type owner can grant the author-
ity type: *, but that will only grant access to that type
owner’s types. Similarly with coordinating domains the au-

thority network: * will grant access only to networks
coordinated by that domain.

3.1.1. Broker Network Access. The lowest level access
control decision in the system is granting nodes access to
the broker network. The authority is rooted at the coordi-
nating domain which is seen as the resource owner in the
case of the shared publish/subscribe system.
The authority granted is very coarse compared to the

publish/subscribe API related authorities: it can only grant
or not grant access to a specific network. The authority spec-
ifies the name of the network and the authorised action:

network: TestNetwork1
action: connect

When connecting to a broker, both parties should verify
each others credentials. This is to prevent a client from con-
necting to a malicious broker that pretends to be part of the
system, but in reality is not.

3.1.2. Introducing New Types/Topics. The authority to
install new types or topics is also controlled by the coordi-
nating domain since this is seen as a service related to the
publish/subscribe system. For example:

network: TestNetwork1
action: install

3.1.3. Extending Types/Topics. Extending an exist-
ing type or topic is related to the type/topic being inherited.
Thus the owner of that type/topic should be the one dele-
gating the authority to extend that type/topic.
By using wildcards the type/topic owner is able to in-

clude multiple types/topics into one certificate. In the ex-
ample below, authority is granted to extend all types with
names starting with Test owned by the this type owner:

type: Test*
action: extend

In type-checked publish/subscribe the delegation certifi-
cate granting authority to extend a type must be included
in the inheriting type definition. This way the type defini-
tion is a self-contained package and its validity can be veri-
fied without external assistance [12].

3.1.4. Accessing the Publish/Subscribe API. Accessing
the publish/subscribe API is always related to a specific
type/topic. Therefore the type/topic owner is seen as the re-
source owner and she is responsible for issuing delegation
certificates to access control managers.
The authority for accessing the publish/subscribe API

can be very fine grained. On the one hand the authority can
be extremely generous granting the client access to all types
and all attributes in those types both for publishing and sub-
scribing. On the other hand the authority can be very spe-
cific and specify a single type that the authority applies to,

whether it grants only publishing or subscription rights, and
which attributes are accessible to the client:

type: TestType1
action: subscribe | publish
attributes: Attr1 & Attr2 >= 500

Notice that the authority can place restrictions on event
content. That is, in the above example the value of Attr2
is restricted to be greater or equal than 500. When publish-
ing this means that the local broker drops the publication if
the publisher tries to publish a value less than 500. When
subscribing the local broker of the subscriber adds a filter
for Attr2 >= 500 to the subscription.

3.2. Access Control Policy

The access control policy for a resource is distributed
between the resource owner and the authorised access con-
trol managers. The resource owner authorises access con-
trol managers to delegate authority to domain members. The
access control service of a domain implements an indepen-
dent, domain-internal access control policy which defines
the access rights granted to domain members. This means
that the resource owner has no control over delegation cer-
tificates issued to domain members by the domain’s access
control manager. We assume that the resource owner is will-
ing to trust the access control manager of a domain within
the extent of the delegation certificate. This seems reason-
able assuming that the resource owner is able to easily re-
voke access from misbehaving access control managers.

3.3. Credential Propagation

A publish/subscribe client presents its credentials to the
local broker when making a publish/subscribe API call. The
local broker verifies that the provided credentials authorise
the client to make the request and routes the request through
the broker network [13]. For the intermediate brokers to be
able to verify the request during transit, the message must
include the credentials authorising the client to make the re-
quest. In addition to the credentials, the request must also
include a timestamp and it must be signed by the client. The
timestamp allows brokers to reject old, replayed requests.
The signature binds the request to the client’s public-key
which is again bound to the provided credentials. Together
the credentials, the timestamp, and the signature allow any
broker in the network to verify that an authorised client has
made the given request.
In principle we assume that brokers trust each other, but

propagating the credentials with requests enable intermedi-
ate brokers to verify the legitimacy of a request if they so de-
sire. The brokers are free to implement various verification
strategies. A paranoid broker might verify every request. A

more trusting broker might implement a probabilistic ap-
proach where each request is verified with a configurable
probability.
The cost of verifying a request in each node it passes

through in a network can be estimated. A DHT-based peer-
to-peer network routes messages within log(n) hops to a
known destination, where n is the number of nodes in the
network. A subscription request is first routed to the ren-
dezvous node and from there towards all known publish-
ers following the reverse path of advertisement messages.
Thus, each publisher publishing the same type/topic adds
another log(n) hops to the aggregate hop count of the sub-
scription. Each broker on the route from the subscriber to
each of the publishers verifies the digital signature of the
publish/subscribe request and one digital signature for each
certificate in the certificate chain leading from the sub-
scriber to the type/topic owner. Thus, verifying the valid-
ity of a subscription in all intermediate brokers results in up
to (c+1)(p+1) log(n) extra certificate computations com-
pared to not verifying the validity of the request (where p
is the number of publishers and c is the number of certifi-
cates in the certificate chain). We ignore the other compu-
tations required to verify a certificate chain, e.g. set opera-
tions over the authority field, because they are most likely
very fast compared to digital signature verification.
In case of advertisements the incurred cost would be

(c + 1) log(n), because the advertisement is routed from
a publisher only to the rendezvous node.
For publications the incurred cost would be (c + 1)(s +

1) log(n), where s is the number of subscribers. The re-
quired effort is reduced if subscriptions include filters that
filter out some of publications in the intermediate brokers.

3.4. Access Rights Revocation

Rapid, reliable, distributed revocation of certificates is a
non-trivial problem, yet one for which we need a mecha-
nism if rights issued in an access control system such as
ours might ever need to be revised.
Traditional approaches to certificate revocation include

expiry dates, certificate revocation lists (CRLs), and vari-
ous on-line tests. When a given revocation occurs through
any of these mechanisms, the OASIS policy rules for which
that credential was a prerequisite for can be scanned to ef-
fect active security – we can send events to the other parties
that need to be notified of this revocation. That is, if a sub-
ject loses her role membership or capability, all registered
parties will be notified. This allows, for example, event bro-
kers to be notified if a client loses a capability that autho-
rises her to subscribe to an event type.
The proper approach to certificate revocation is very

much application dependent. In some cases very short ex-

piry dates will suffice. Other applications will require more
complex approaches.

4. Example Application

The architecture we have presented is motivated by prob-
lems facing organisations with which we do collaborative
research, such as the Police Information Technology Or-
ganisation (PITO) in the UK. In this particular case, we
consider the British Police Force (BPF) – a federation of
more than fifty largely autonomous regional forces. Many
of PITO’s projects aim to increase the efficiency of commu-
nications between these independent police forces. This is a
challenging task, given the diversity of software deployed,
and the different ontologies used within the separate forces.
For the sake of administration and infrastructure costs,

added fault-tolerance, and more efficient message delivery,
a shared publish/subscribe broker network across all the po-
lice forces is very appealing.
In addition to decreasing costs, the shared infrastructure

enables the separate forces to implement shared applica-
tions that make police work more efficient. For example a
detective working on a robbery in the jurisdiction of po-
lice force P1 can subscribe nationwide to events related to
a car seen at the crime scene. Then a report, after the ini-
tial robbery investigation began, of a stolen vehicle in an-
other police force, P2, results in an event being delivered to
the detective. Instead of repeatedly checking for changes in
the vehicle registration databases of all the separate police
forces, the detective is notified of a change asynchronously.
Although the regional forces are all part of the BPF

and thus trusted, there still needs to be access control in
place to provide confidentiality and to guarantee message
integrity. For example, investigations include witness state-
ments where the identity of the witness must remain con-
fidential in order to protect the witness. Thus an infrastruc-
ture shared among multiple seemingly mutually trusting do-
mains must implement an access control system such as
ours. In addition to protecting data confidentiality and in-
tegrity, access control is also necessary in order to keep ap-
plications domain-internal. In the case of the BPF, the re-
gional forces have their own proprietary applications that
should not be accessible to all members of the Force.

5. Related Work

Related work on securing publish/subscribe systems in-
cludes [10], where Miklós presents an access control mech-
anism for large-scale publish/subscribe systems that sup-
ports access control decisions based on publication and
subscription filter content. Similarly Belokosztolszki et al.
present a role-based access control mechanism for publish/
subscribe systems in [4]. In both cases the lack of trusted

names renders the scheme infeasible in a multi-domain set-
ting, whereas our approach in binding access rights to se-
cure names avoids this problem. This paper, alongside [12],
provides the security mechanisms underpinning [1].
Wang et al. present in [17] a number of security issues in

Internet-scale publish/subscribe systems that need to be ad-
dressed in the future. The paper covers problems related to
authentication, data integrity and confidentiality, account-
ability, and service availability. We feel that access control
provides a foundation for solving these problems. Our ap-
proach provides access control on all tiers of the publish/
subscribe system which goes a long way in answering many
of the questions they have posed.
Opyrchal and Prakash concentrate on the separate prob-

lem of providing confidentiality for events during the last
hop from the local broker to the subscribers with as few
encryptions as possible [11]. Where we see event encryp-
tion as an effective way to enforce access control in an un-
trusted broker network, we assume that local brokers have
enough resources to maintain secured network connections
to clients in which case the efficient encryption of single
events for the last hop is not relevant.

6. Conclusions and Future Work

We have presented an SPKI-based access control archi-
tecture for multi-domain publish/subscribe systems. By ap-
plying decentralised trust management, we are able to con-
veniently administer and enforce access control within pub-
lish/subscribe systems that span multiple domains.
There are aspects of future work resulting from this pa-

per. So far we have focused on allowing clients to verify that
they are communicating using consistent event types/topics
through checking the certificate chains that authorise their
use of them. We are keen to move towards encrypting
events, or attributes of them, so that we can enforce ac-
cess control in an untrusted broker network, and thus evolve
away from a boundary-oriented access control approach.

7. Acknowledgements

Lauri Pesonen is supported by EPSRC (GR/T28164/01).

References

[1] J. Bacon, D. Eyers, K. Moody, and L. Pesonen. Securing
publish/subscribe for multi-domain systems. In Middleware
2005, November 2005. Forthcoming.

[2] J. Bacon, K. Moody, and W. Yao. Access control and trust in
the use of widely distributed services. In Middleware 2001,
volume LNCS 2218, pages 300–315. Springer-Verlag, Nov.
2001.

[3] J. Bacon, K. Moody, and W. Yao. A Model of OASIS Role-
Based Access Control and its Support for Active Security.

ACM Transactions on Information and System Security (TIS-
SEC), 5(4):492–540, Nov. 2002.

[4] A. Belokosztolszki, D. M. Eyers, P. R. Pietzuch, J. Ba-
con, and K. Moody. Role-based access control for pub-
lish/subscribe middleware architectures. In Proc. of the 2nd
International Workshop on Distributed Event-Based Systems
(DEBS’03), ACM SIGMOD, San Diego, CA, USA, June
2003. ACM.

[5] M. Blaze, J. Feigenbaum, and A. D. Keromytis. KeyNote:
Trust management for public-key infrastructures (position
paper). In Proc. of the Cambridge 1998 Security Protocols
International Workshop, volume 1550, pages 59–63, 1998.

[6] M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized trust
management. In Proc. of the IEEE Conference on Security
and Privacy, Oakland, CA, USA, May 1996. IEEE.

[7] CIS. SDSI (a simple distributed security infrastruc-
ture). http://theory.lcs.mit.edu/˜cis/sdsi.
html, Sept. 2001.

[8] C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas, and
T. Ylönen. SPKI certificate theory. RFC 2693, Internet En-
gineering Task Force, Sept. 1999.

[9] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermar-
rec. The many faces of publish/subscribe. ACM Computing
Surveys (CSUR), 35(2):114–131, 2003.

[10] Z. Miklós. Towards an access control mechanism for wide-
area publish/subscribe systems. In Proc. of the 1st In-
ternational Workshop on Distributed Event-Based Systems
(DEBS’02), Vienna, Austria, July 2002. IEEE.

[11] L. Opyrchal and A. Prakash. Secure distribution of events
in content-based publish subscribe systems. In Proc. of the
10th USENIX Security Symposium. USENIX, Aug. 2001.

[12] L. I. Pesonen and J. Bacon. Secure event types in content-
based, multi-domain publish/subscribe systems, Sept. 2005.
Forthcoming.

[13] P. R. Pietzuch and J. Bacon. Peer-to-peer overlay broker
networks in an event-based middleware. In H. A. Jacob-
sen, editor, Proc. of the 2nd International Workshop on Dis-
tributed Event-Based Systems (DEBS’03), ACM SIGMOD,
San Diego, CA, USA, June 2003. ACM.

[14] P. R. Pietzuch and J. M. Bacon. Hermes: A Distributed
Event-Based Middleware Architecture. In Proc. of the 1st
International Workshop on Distributed Event-Based Sys-
tems (DEBS’02), pages 611–618, Vienna, Austria, July 2002.
IEEE.

[15] R. L. Rivest and B. Lampson. SDSI – A simple distributed
security infrastructure. Presented at CRYPTO’96 Rumpses-
sion, Oct. 1996.

[16] R. Sandhu, E. Coyne, H. L. Feinstein, and C. E. Youman.
Role-based access control models. IEEE Computer,
29(2):38–47, 1996.

[17] C. Wang, A. Carzaniga, D. Evans, and A. L. Wolf. Security
issues and requirements in internet-scale publish-subscribe
systems. In Proc. of the 35th Annual Hawaii International
Conference on System Sciences (HICSS’02), Big Island, HI,
USA, 2002. IEEE.

[18] World Wide Web Consortium. XML Path Language (XPath)
Version 2.0, Apr. 2005.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 15%)
 /CalRGBProfile (ColorMatch RGB)
 /CalCMYKProfile (U.S. Sheetfed Uncoated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

