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ABSTRACT
In this paper we consider the problem of sharing data collected by
sensors worldwide amongst different applications. We focus on the
increasingly large collection of powerful sensor nodes which have
full-time connections to the Internet, and describe a distributed ar-
chitecture capable of flexibly sharing these data streams. The so-
lution must operate reliably and continuously despite liveconfigu-
ration changes and failures. We draw on event-based systemsand
present the component middleware we have implemented for pro-
cessing and distributing sensor data. A key aspect is its support
for third-party remapping between components in order to adapt to
topology changes. We also show that it is able to rapidly reconfig-
ure itself when failures occur.

1. INTRODUCTION
Many pervasive computing applications are made possible bythe

widespread availability of computation, networking and sensors.
Without sensors we can create useful networked systems for hu-
mans to interact with directly (such as the web), but with sensors
we can go further by observing and controlling the environment.

Embedded networked computers with sensing capabilities have
great potential. Application domains include environmental mon-
itoring (pollution, weather, agricultural), security systems, factory
automation, supply chain monitoring and smart buildings. In the
TIME [1] (Transport Information Monitoring Environment) project
we are primarily concerned with road traffic monitoring, though
similar design principles apply to other sensor-based systems. To
meet the communication needs of large-scale sensor systemsin
general, we have designed and constructed an event-based middle-
ware, PIRATES.

A key objective of the TIME project is to enable sharing of sen-
sor data amongst different applications. Historically systems have
been vertically structured, with physical sensors (which are costly
to deploy) attached to dedicated networks (also expensive)supply-
ing a single application run by the organisation which installed
them, with a user-base limited to their employees or subscribers
only. Within the traffic monitoring domain, isolated applications
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might show car park occupancy on entry to a city, or display bus
arrival times at bus stops. Such data could be used widely both in
real time information systems and for historical analysis.If data
sharing can be achieved, we can step closer to a planet-wide sen-
sor network, in the same way that the web provides a planet-wide
document repository.

A great deal of existing sensor network research targets resource-
constrained wireless sensor nets. While this style of system may
sometimes be all that is possible, such as in remote areas or hostile
environments, realistic applications based on such technology by
no means dominate sensor-based systems. For a large and increas-
ing class of applications, including TIME, it is realistic to assume
that permanent power and network connections are available(apart
from occasional failures). Sensors typically have either adirect
connection to the Internet or are represented by a proxy on the In-
ternet which is a single hop away from the sensor. This applies to
urban or even rural areas in developed countries. We shall therefore
assume that power and network infrastructure covers the nodes in
our system.

We also observe the communications convergence torwards IP
and the Internet. Our middleware is therefore aimed at data pro-
cessing within the network, output and dissemination to clients,
and also data collection in some cases (for example, mobile phones
with attached sensors which typically appear via a gateway as In-
ternet nodes themselves, and have relatively frequent access to a
power source).

1.1 Characteristics of the data and network
Sensor data is typically emitted as a continuous stream, arising

from periodic sampling at the sensor. Polling and variable rate sam-
pling are less common, due to the simplicity of sensor design(most
of which are “black boxes”) and the lack of a back channel. Ad-
ditionally, “pull” models do not work very well when severalap-
plications are using the same sensor. Stream handling is therefore
very important.

The data streams from sensors are processed in various ways.
There may be multiple levels of filtering, for example to clean
up noisy data, supply missing information, calculate a statistic or
anonymise to respect privacy. Pipes which reformat the data(adap-
tors) are extremely common, and required whenever two systems
with different data formats are connected together.

In addition to data processing pipelines, we may wish to perform
sensor fusion, which requires merging different streams, for exam-
ple to correlate output from two sensors. We also require fan-out
connections, for example when distributing streams to large num-
bers of consumers. There may be different classes of user, such as
subscribers, the general public, or emergency services.



Pipeline processing as well as stream merging and fan-out sug-
gest that a pluggable component-based design is required. The dy-
namic nature of large sensor-based systems means that sensors may
be added or removed frequently; it should also be possible todesign
new applications with previously unanticipated data requirements
and connect them into the running system. We must therefore be
able to make live topological changes to connections between com-
ponents.

Stream processing is usually insufficient on its own; most sensor-
based systems also employ storage components as well as datamin-
ing and triggers. These interactions require an event-based pub-sub
(publish-subscribe) or remote method invocation framework.

1.2 Threats to continuous operation
Sensor-based systems incorporate a considerable amount ofun-

reliability, which affects the sensors themselves, the components
that process the data, and the links between them. Nodes are subject
to temporary outage for hardware upgrades and maintenance,or
when machines are rebooted or disks fill up. Individual components
are susceptible to crashes, overload or software upgrades for bug
or security fixes. Links can be taken down as a result of network
failure, configuration changes or refactoring to increase capacity.
Finally there are threats associated with data format changes, and
staff changes together with lack of documentation.

We wish to construct systems which are reliable in the face ofall
the above threats. Byreliability we mean nearly maintenance-free,
24/7 continuous operation. We do not necessarily mean guaranteed
delivery of every message (sensor data itself is inherentlyintermit-
tent).

2. BACKGROUND: EVENT-BASED MIDDLE-
WARE

There is a large body of existing research into message oriented
middleware and event-based systems. Most of this has originally
been developed in application domains which do not require sen-
sors, such as stock market systems or news feed aggregation.

Historically CORBA provides remote method invocation, with a
language-independent IDL and automatic stub generation.
The CORBA notification service [19] adds a channel-based cen-
tralised pub-sub capability, with filtering on the headers of mes-
sages. ICE [13, 10] is a cleaner, more modern design with a well
developed implementation. This includes a topic-based pub-sub
event broker, implemented as a separate server.

Pure pub-sub systems include SCOP, xmlBlaster, Siena and Elvin.
SCOP [22] is a centralised topic-based solution for rapid small-
scale deployment. Both xmlBlaster [30] and SCOP can also send
messages to specific named clients as well as to topics, but a bro-
ker intermediary is still used. xmlBlaster uses XML as a message
format, with subscriptions in the form of XPath expressionsthat
are evaluated against message headers (the body is opaque).Elvin
[23, 24, 7] and Siena [4] both have full content-based subscriptions,
but message types are restricted to lists of named values rather than
arbitrary structured objects. Elvin is also notable for itscomprehen-
sive support of message quenching to reduce the number of mes-
sages which are sent. The commercial Elvin product is no longer
supported, however.

D-Bus [6], used for desktop integration, gains flexibility by mak-
ing the broker optional. Point-to-point messages enable RPCs, and
broker communications provide pub-sub. D-Bus is a single ma-
chine solution, hence cannot be applied to distributed systems, but
has the benefit that it is aware of local user identities for access
control, and is able to start local services on demand.

Java Message Service [25] (JMS) also has point-to-point as well
as pub-sub modes. Messages have expiry times, and are discarded
if not consumed before then. The pub-sub mode is topic based,
although filtering on the message headers is also possible.

The basic Web Services (WS) stack [27, 28, 16] only provides
simple one-way message exchange. The additional WS-Notification
specification [17, 18] extends this with brokers for pub-subinterac-
tion. Filtering is based on hierarchical topics, and sourcequenching
is possible.

Hermes [20] and SCRIBE [21] are pub-sub systems layered on
top of distributed hash table (DHT) overlay networks, hencesolv-
ing the resource discovery problem and providing a scalableway
to create a network of brokers. Most systems discussed here use a
naming service for resource discovery instead. Gryphon [2,3, 31]
and IBM’s Websphere MQ [12] also use an overlay network, based
on an algorithm for mapping a logical information flow graph onto
an existing broker network (although this has to be created by other
means since a DHT is not used).

A pure event-based middleware is not required to tackle persis-
tent storage, since it can be provided by applications. ICE ships
with a standard storage solution implemented as a separate com-
ponent and we choose to follow the same approach in our system,
since this keeps message transfer and storage as separate concerns.
RUNES [5] and SCOP provide some built-in storage capabilityby
means of an auxiliary registry associated with each component.
Other middleware designs make storage fundamental to the IPC
mechanism itself. For example, ECT [9] and Muddleware [29]
are based on data spaces in a similar vein to tuple spaces. Mud-
dleware uses a memory-mapped hierarchical XML database with
persistence, queried by XPath expressions but with “watchdogs”
(observers) effectively enabling pub-sub behaviour.

IrisNet [8] provides a distributed database for sensor data. It also
has similar goals to our project, since it targets internet-connected
PC class machines with potentially high bandwidth sensors (such
as video cameras), rather than motes with limited resourcesand
simple sensors.

Gryphon is not built on tuple spaces, but makes storage a first
class concern nonetheless by supporting event histories (complete
logs of messages matching the filter expression) and interpretations
(in which a stream of messages is collapsed to some state, such as
a derived statistic). An example given by the Gryphon authors is
based on car buyers who wish to subscribe to advertisements with
certain search parameters. This triggers an initial dump ofmatching
advertisments currently in the database, followed by update events
as they occur. The state to be dumped is derived from and not the
same as the message history, since sold messages revoke earlier
for-sale entries. Gryphon also recognises the need for verycom-
mon data format changes between components, and hence provides
explicit support for event transformations.

Meier and Cahill [14] present a useful taxonomy of event-based
systems, although this does not cover all the dimensions we need
to discuss in the present paper.

3. ARCHITECTURE
Our middleware solution for constructing robust sensor-based

systems is called PIRATES (Peer-to-peer Implementation ofRe-
configurable Architecture for Typed Event Streams). The basic PI-
RATES entity is acomponent. There is a direct relationship be-
tween components and processes (i.e. a component is a PIRATES-
enabled process), and there may be any number of components run-
ning on a given machine. Recall that we shall assume the presence
of power and network connections at each node.

Each component has a number ofendpoints. Endpoints on dif-



ferent components are connected together, ormapped. All commu-
nication between components takes place via mapped endpoints.
The basic mechanism is point-to-point; components send messages
to peers directly without requiring an intermediate broker.

The architecture is therefore decentralised, apart from a resource
discovery component (RDC), which acts as the name service. The
RDC is itself implemented as a component, and there may be more
than one, to avoid central points of failure or to create different do-
mains. RDCs may be federated (in which case they exchange state)
or separate. RDCs typically run at well-known or easily guessed
addresses (such as the standard port number on a local machine).

Most components perform either filtering, merging, storage, dis-
tribution or data mining. Figure 1 shows several example compo-
nents from the road traffic monitoring domain, and a possibleset of
connections between them.
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Figure 1: Example components

4. MULTI-MODAL OPERATION
Some kinds of message oriented middleware are more suitable

for certain communications paradigms. For example, remotemethod
invocation systems only allow RPC style interactions, whereas Elvin,
Gryphon and Muddleware only allow pub-sub (but not RPCs). JMS,
MQ and D-Bus allow pub-sub and also messages addressed to spe-
cific targets, but no replies. CORBA, ICE, SCOP, Web Services
and RUNES are more flexible, supporting RPC as well as pub-sub.

PIRATES extends this idea by attempting to support all reason-
able forms of communication between each pair of components.
We hope that by doing so a single mechanism will suffice for all
of an application’s communication needs. Figure 2 presentsa par-
tial taxonomy of interaction patterns. We start by observing that in
any pairwise interaction one end must send the first message.We
assume this is the left-hand peer on the diagram, hence the first ar-
row is always left-to-right, without loss of generality. There may or
may not be a reply. If there is no reply, the interaction is either fin-
ished (one-shot), or the originator may continue sending messages
(push-stream).

If there is a reply, then again that may conclude business (RPC),
there may be many replies (pull-stream) or the process mightrepeat

one-shot push-stream rpc conversation pull-stream

source / sink client / server sink / sourceEndpoints:

Paradigm:

source / sink client / server

Figure 2: Pairwise interaction patterns

(conversation). More irregular message sequences can be coerced
into a conversation by inserting empty acknowledgement messages
as appropriate. This therefore covers all the major types ofmessage
sequence. Note that a conversation (our name for messages which
ping-pong back and forth) is not the same as repeating an RPC
interaction many times. In particular, there may be state associated
with it. Web applications need cookies because the web effectively
provides RPCs, and not conversations.

PIRATES provides all of these interaction types, with the excep-
tion of conversations, using four types of endpoint: client, server,
source and sink. Clients must be mapped to servers and sources to
sinks, but the mapping can be done by either end (e.g. a sourcemay
set up a mapping from itself to a sink, or a sink may map itself to
the source, and likewise for clients and servers). The source-sink
mapping is many-many, and the client-server mapping is many-
one. Pub-sub interactions are provided by pull-streams.

Another important distinction is that between a sequence ofone-
shot messages and a push stream. The latter makesstreamsfirst-
class objects for PIRATES, which is not the case with a normal
event broker. The presence of explicit streams makes it possi-
ble for tools to understand when two components are “connected”,
which could not necessarily be determined from a sequence ofsin-
gle events. This allows the stream to be automatically remapped if
one of the components moves or terminates, for example.

5. WRAPPERS
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Figure 3: Parts of a component

Figure 3 shows the structure of a single PIRATES component. It
consists of the application (business logic) process, which commu-
nicates over a local pipe (via library calls) with awrapperprocess
running on the same machine. The wrapper is provided and is the
same program for all components. It is implemented in C++, but
applications may be written in any language for which there exists
a language binding. Bindings are simply ports to the appropriate
language of the library which talks to the wrapper. The wrapper is
responsible for maintaining all connections to other components.



As well as increasing portability, the wrapper architecture is de-
signed to solve a specific problem; namely to make PIRATES de-
centralisedand decoupled. A benefit of a decentralised (peer-to-
peer) architecture is that it avoids bottlenecks caused by centralised
components in an event broker network. Central event brokers, on
the other hand, do provide the important benefit of decoupling pro-
ducers from consumers. Without this, every component must deal
with situations where the peers they are connected to suddenly fail,
or perhaps are not running when the component initialises. This
leads to tedious error-handling logic in each component, aswell as
complex dependencies affecting the order in which programscan
be started.

Wrappers mitigate this by taking care of all these issues on behalf
of their components, just as if there was really a central broker.
For example, the business logic does not have to be informed if
a producer (source endpoint) they need is not currently running;
instead of an error there will simply be no messages of that type
until a suitable source is started, at which point the wrapper will
connect to it and start delivering messages.

The functionality provided by the wrapper includes accepting
subscriptions from other components, maintaining the listof peers
interested in a particular event source, performing filtering accord-
ing to the subscriptions currently in force and delivering notifica-
tion messages to subscribers. The business logic part does not have
to be aware who, if anyone, is listening to the events it emits–
hence it can behave just as if there was a central broker.

Effectively, every component automatically includes the pub-sub
functionality that is normally provided by brokers, but notthe mes-
sageaggregation(pooling messages from different sources, before
filtering them via subscriptions). It is still necessary to map di-
rectly the components which produce the data you need. For those
cases where aggregation is essential, PIRATES ships with a sepa-
rate broker component. This is a very simple program indeed since
the wrappers do most of the work. The broker has one source and
one sink endpoint; it accepts connections from anyone to either
endpoint, gathers all the messages received on the sink, andsends
them out through the source (via the subscription expressions the
wrapper has received, of course).

The philosophy we use is to avoid intermediaries (brokers) un-
less they are actually needed for aggregation. A typical stream
of sensor data is more efficiently mapped in a point-to-pointman-
ner without a broker – messages which match the filter expression
travel one hop instead of two; those which don’t match travelno
hops instead of one. Latency is also reduced, and the bottleneck
component is eliminated. If a single source would become over-
loaded by clients, additional relay components can providemulti-
ple levels of fan-out.

Many event-based middleware systems, such as SCOP, xmlBlaster,
Hermes or Elvin, only allow communication via intermediatebro-
kers. Systems which offer a choice of point-to-point mode vs. bro-
kers include JMS, WS-notification and D-Bus (although they do not
provide the decoupling properties we achieve with the wrapper).

Another function provided by wrappers is to implement a col-
lection of built-in endpoints. These are endpoints which all com-
ponents possess automatically. For example, there is a built-in end-
point which returns a list of the other endpoints supported by the
component, and another which returns its load statistics.

6. DATA MODEL
The two data models employed by most message oriented mid-

dleware are name-value-type triples (attributes), or arbitrary struc-
tured types (objects). Siena and Elvin restrict message content to
attributes, whereas CORBA, ICE, SCOP and JMS use objects. PI-

RATES also follows the object data model, because it is richer and
maps better onto arbitrary programming language data structures.

PIRATES uses a schema language called LITMUS (Language of
Interface Types for Messages in Underlying Streams) to describe
message formats. Every endpoint has a schema associated with it
to describe the types of message it handles (client and server end-
points also have a second schema for the format of the reply mes-
sages). LITMUS is essentially a type system similar to OMG IDL.
A summary of LITMUS syntax is shown in Fig. 4, and a sample
message format for an endpoint in Fig. 5.

Older versions of our system encoded messages in XML, with
RELAX-NG [15] as the schema language. RELAX-NG, like XML
Schema [26] language, uses XML itself to express the schemas(un-
like DTDs). We prefer RELAX-NG to XML Schema because it is
terser and more human-readable. The experience we gained from
this earlier system suggested that an XML schema language such
as RELAX-NG was more than adequately powerful, but still a little
verbose. Secondly, it was so expressive that it was difficultto re-
strict it to the unambiguous constructs (for mapping onto program-
ming language types) that we wanted. Schema languages are good
at describing document formats, but less suitable as type systems.
We also found that the default XML message format consumed too
much bandwidth.

For these reasons PIRATES now uses a binary encoding natively
for inter-component messages, and the LITMUS IDL. LITMUS
comes with a rich set of primitive types built-in, includingdate-
time and location. These are useful because many sensor events
have an associated timestamp and position in space. PIRATESalso
supports an XML message encoding, which is in fact used for the
library to wrapper link, and can be used to import and export mes-
sages from other sources and to disk. Other systems which support
both XML and binary message encodings include Elvin, D-Bus,
IrisNet and Web Services. SCOP only supports XML and CORBA
only supports binary.

int name dbl name Integer, Floating point,
flg name txt name Flag (boolean), Text string,
clk name loc name Date and time, Location,
bin name Binary data,
[ elt ] <elt1...eltN> Optional element, Choice,
- * Foo bar Unnamed elt, Comment,
@elt ^label name Type defn, Type reference,
@"filename" Import types from file,
name { elt1 ... eltN } Structure,
name ( elt ) List of elt,
name (+ elt ) Non-empty list,
name (N elt ) Array of N elements,
name < #val1 ... #valN > Enumeration,
name1 + ... + nameN Multiple declaration

Figure 4: LITMUS syntax

6.1 Marshalling
PIRATES follows the model of SCOP, in which the basic system

does not automatically generate stubs with marshalling code from
IDL. Instead, library calls are used by the component developer to
perform marshalling and unmarshalling (typically the programmer
will encapsulate these within a constructor or other methodof the
object which holds the data). This is less convenient than automatic
stub generation but avoids imposing a build system and machine-
generated code on every program. A stub generator could be lay-
ered on top as an optional tool. In contrast, CORBA and ICE both
employ automatic stub generation. RUNES uses OMG IDL but in



@fleet
( taxi

{ int number
status < #prebook #hired #forhire >
txt destination
clk timestamp
loc place
[ bin image ] } )

Figure 5: Sample endpoint message format, in LITMUS

the manner that PIRATES uses LITMUS: as a type definition lan-
guage without automatic stub generation.

6.2 Type checks
A basic RPC service with automatic stub generation might be

used to compile both a client and server at the same time, using
the same IDL. In that case one could be reasonably confident that
the two programs will be compatible, and deploy them withoutany
runtime checks on message format. For any realistic component
based system this is not the case, however. Firstly, components
may be built by different people, at different times, on different
systems. There is no guarantee that they have obtained the right
schema, particularly if it evolves and there are different versions in
circulation. Secondly, components should not crash if someone de-
liberately uses the incorrect schema. A consequence of thisis that
components cannot make assumptions about the format of mes-
sages they receive from any other component; we need to check
the types.

One approach would be for the middleware to check the basic
layout, then hand the problem over to the application. For example,
if an attribute data model is used then the application will always
receive an associative array, and can consult it to see if required
attributes are present. This is tedious for the applicationwriter if
there are many things they must check. Instead we would like the
middleware to check the entire message first; if this check succeeds
the application knows the message contains everything it expects,
and can omit further error-handling code.

Type checking is a two-stage process. Firstly, the type of the
incoming message must be established. Secondly, it must be de-
termined if this is acceptable to the receiving endpoint. With the
attribute data model, the type of the incoming message is explicit.
With the object model, some type information is needed however.
Reasonable approaches would be to make the object structurefully
self-identifying, or to send a single unique composite typeidenti-
fier. Now, all elements in LITMUS are named, so that programmers
can request a data member of a structure by name, such as “height”,
rather than a position in the structure, e.g. “4th”. Consequently
sending full type information would add a great deal of overhead;
even 1-bit fields would need an associated text string for thename.
For this reason we decided not to send full type information.

The problems with unique type identifiers are how to generate
them, and how to look them up. If a small probability of collisions
is tolerated, they could be generated with a very large random num-
ber (perhaps combined with an initial IP address or timestamp), but
a repository is then required to store them. It is also highlyun-
satisfactory that two identical types generated by different people
should have different IDs.

PIRATES solves these problems with two mechanisms: LIT-
MUS codes and schema caches. LITMUS codes are a substitute for
global type ID numbers. They are 48 bit numbers which are calcu-
lated as a hash of the full schema itself. Before hashing, theschema

text is parsed to normalise it (removing whitespace and comments,
and factoring out dependencies on the order in which sub-types are
defined, etc). The resulting number takes up very little space (it
is included in every message which is sent) and allows fast type
checks, but is stronger than a unique type ID number. In particular,
if two LITMUS codes match, then with very high probability the
programmers of the two components were working from the same
schema. Useful schemas could be published informally for coop-
erating developers to access using other channels, for example on
web pages or in documentation or standards. A component devel-
oper includes in their program the LITMUS codes of the types they
expect. Since the library only passes validated messages tothe ap-
plication, the developer is then freed from any error checking: if the
code represents a schema containing a memberfoo, they can ma-
nipulate the memberfoo in the message without any concern that it
might not exist.

Some components, such as the event broker or a bridge, must
accept messages ofany type. These are called polymorphic end-
points. These will be situations in which a polymorphic endpoint
receives a LITMUS code it does not recognise. When this hap-
pens, the receiving wrapper suspends processing of that message
and calls back to a built-in endpoint calledlookup_schema on
the sending component, passing the unknown LITMUS code in
question. The other component looks this up in its schema cache,
which is maintained by the wrapper, and replies with the fulltext of
the associated schema. This is immediately added to the cache of
the receiving component, to avoid repeated lookups if more mes-
sages of this type are sent in the future. Since all components do
this, schemas pass along chains of polymorphic components.The
invariant is that no component will ever transmit a message it does
not know the full schema for. This makes central schema reposito-
ries largely unnecessary. It is also possible to create polymorphic
source endpoints and to define new types dynamically.

6.3 Schema evolution
A common characteristic of sensor data formats is that they change

over time. Often new fields need to be added; in the course of our
project we have also encountered situations where the semantics of
existing fields change, such as the introduction of an error value. In
the former case it is highly desirable that existing data consumers
continue to function with the stream containing the extra field[s].
If this is not the case then a great deal of infrastructure must be
updated (probably not all under our control) when we change the
message format. Even if this can be achieved, we must either halt
the data source temporarily or first upgrade the sinks to dealwith
both the old and the new message types, neither of which is par-
ticularly attractive. ICE has some support for this with itsfacets
mechanism; for example a component may simultaneously support
two facets of an interface, one to deal with the old message type and
one for the new. PIRATES also allows a component to have multi-
ple endpoints with the same name but different message schemas,
however this is not our method of choice for schema evolutionor
component versioning.

The attribute data model neatly avoids the schema evolutionprob-
lem, since new fields will simply never be requested by applications
and hence are effectively ignored without disrupting the old fields.
Elvin is an example of a system which ignores non-addressed at-
tributes in this way. Attributes also make it easy to write filter com-
ponents which look for a few key values in the message only, then
distribute the entire message to other components which will under-
stand the full type (for example, we might wish to write a generic
filter that selects messages of any type with timestamps in a certain
range, or location within a given neighbourhood, and forward them



to a dedicated regional server for processing).
The object data model (which we use) is more expressive than at-

tributes, but does not lend itself so well to schema evolution. Most
of the systems with the object data model which support schema
evolution at all do so by means of a type hierarchy. Examples are
ECT and Hermes. This allows fields to be added by sub-typing the
original message format. The disadvantage of this is that anexplicit
type hierarchy relation must be defined and distributed.

PIRATES is designed to allow schema evolution in future, al-
though this is not yet implemented. The design works by relaxing
LITMUS code checking in two ways, called partial matching and
sub-tree matching. For example with partial matching, an unrecog-
nised LITMUS code would trigger a request for the full schemain
the normal way. Once received, the schema can be examined to see
if it coversthe expected schema. One schema covers another if it
has the same root, and when overlaid on the other tree it replicates
it apart from an arbitrary number of extra branches (at any node).
If this is the case then the type would be marked as compatiblein
the component’s schema cache, and the pruned version delivered to
the application.

6.4 Event filtering
Pub-sub middleware allow subscription expressions of differ-

ent generality. The simplest is channel-based (this used tobe the
CORBA model). The next most general is topic-based subscrip-
tion. This is used by ICE, SCOP, WS-notification and SCRIBE.
Going further we may allow filtering on the message content, using
special header fields for this purpose; this is the approach taken by
xmlBlaster and newer versions of CORBA. The header is like a dic-
tionary attached to the main message. JMS allows topic-based as
well as content-header subscription. Finally filtering maybe done
on the full message body. This is the technique used by PIRATES,
and also by Gryphon, MQ, D-Bus, Siena and Elvin (although the
latter two employ the attribute data model, hence the message body
is effectively a header itself). PIRATES and MQ both support
topics as well as content-body subscriptions. Figure 6 shows a
content-based subscription in the expression syntax used by PI-
RATES. There can only be one subscription expression per map-
ping between endpoints, but this can be changed at any time. Third
parties can also change subscriptions using aresubscribebuilt-
in endpoint.

vehicle? & vehicle/timestamp > ’startdate’ &
vehicle/timestamp < ’enddate’ &
vehicle/speed > ’50’ &
(vehicle/description/colour = ’*green’ |
(vehicle/occupants.items = 1 &
vehicle/occupants/#1 = ’alice’))

Figure 6: Subscription example

7. NAMING
During early PIRATES development, the desire for unambigu-

ous component names led to some very awkward naming, such as
filtered-average-fused-local-bus-data
or daves-taxi-component. Of course unique names could
be guaranteed by appending the component developer’s e-mail ad-
dress, but these would not be very long lived if the developerfor a
component changed. To avoid these problems, we do not require
component names to be unique at all, and instead allow a broader
set of criteria with which to describe and select components.

When a component needs to locate another in order to map an
endpoint, it sends amap constraintsstring to the resource discov-
ery component. This includes fields for component name, author,
endpoint name, endpoint type, LITMUS code, keywords, public
key, and component ancestors. All fields are optional apart from
endpoint type and LITMUS code, which are always used to en-
sure the component mapped to is type compatible. The public key
is the only way toguaranteethat a certain component is selected.
Component ancestors are third-parties which a given component is
currently mapped to. This provides a way to request a component
which is connected to specific others. For example, if there are two
standard filter components with the namepseudonymise, it is
possible to request the one connected to bus data instead of the one
connected to a car data stream, should pseudonymised bus events
be required. RDCs always reply with a list of all the components
they know about which fulfill the requirements expressed by the
map constraints string.

8. THIRD-PARTY REMAPPING
A large, continuously operating sensor data processing system

will have a frequently changing configuration. To support recon-
figuration of the running system, PIRATES providesthird-party-
remapping. The mechanism for this is based on three built-in end-
points: map, unmap and divert. The map endpoint accepts
requests to remap the component’s endpoints (change which other
component[s] they are connected to), and performs this without in-
volving the business logic itself. This inversion of control makes it
possible for management tools to effect topology changes onlive
components, with no special support from applications. Forexam-
ple, if a component needs to be migrated (to a machine with more
resources, for example), or we wish to switch to a different supplier
for some events, this can be done by remapping the endpoints using
the built-in interface. Tools which employ this technique may be
interactive (such as a GUI manager’s control screen, for setting up
maps between components visually using drag-and-drop) or fully
automated (such as a load balancing tool which moves components
to different machines as required).

The divert endpoint performs several remaps in one go: it
instructs every other component connected to a particular endpoint
to remap to an alternative. A component can therefore be moved
easily by starting a new version elsewhere, then callingdivert
on all the original’s endpoints to switch any number of clients over
to the new location.

Soon after implementing this we observed thatupdatinga com-
ponent in place requires exactly the same mechanism as component
migration. Often we may produce a new version of a component
with exactly the same interface as before, but fixing some minor
bug, adding features unrelated to IPC, or with increased perfor-
mance etc. In this case the third-party remapping is used to substi-
tute the running component with the updated one (typically running
at a different port on the same machine) without having to stop the
component and with no interruption to service for other compo-
nents which depend upon it.

RUNES [5] (Reconfigurable, Ubiquitous, Networked Embedded
Systems) is an existing system which is most similar to our ap-
proach, as it also offers components with dynamic reconfiguration
for the interconnections. Endpoints in RUNES are calledinterfaces
or receptacles(an interface must be connected to a receptacle).
OMG IDL is used for interface types, but without CORBA-like stub
generation; our LITMUS-based approach is very similar in this re-
spect. The critical differences occur because RUNES is targetted
at embedded systems. RUNES components may be lightweight,
in which case they can be implemented as passive entities (some



code in a chip on a small device) without a separate process. All
PIRATES components are active, so they can respond to external
requests on the built-in endpoints, with the important benefits of
third-party control and reflection. This gives a more uniform com-
ponent model.

ECT is another system which allows third-party reconnection, al-
beit within a centralised architecture. Gryphon and MQ alsomake
connections for you based on an abstract information flow graph
created by the user. RUNES and Gryphon additionally supportin-
terceptors(lightweight filter components), which are transforma-
tions that can be inserted into streams at component interfaces by
third-parties. These may be used for encryption, compression, de-
bugging and gathering statistics etc.

8.1 Automatic reconnection
An important benefit of the wrapper architecture is that whena

connection to another component is lost, the wrapper may attempt
to failover to an alternative replica transparently, or wait until the
other component is restarted. The application believes that it has an
uninterrupted connection. In order to achieve this decoupling, the
wrapper must know the correct thing to do without consultingthe
business logic. In simple cases this can be achieved if the wrapper
re-issues a map request (using the original map constraintsstring)
to the RDC. If there is no state associated with ongoing interactions
then any component which satisfies the constraints will do (were
this not the case then the map constraints must have been under-
specified).

More complex reconnection logic (such as “there must be at least
two A’s connected to every B”) is best implemented by an exter-
nal agent, since it requires non-local information. We callsuch an
agent amapping engine, and it effectively lifts reconnection policy
out of the components’ business logic. Wrappers simply report to
the mapping engine when they have lost a connection. Currently
the mapping engine service is also provided by the RDCs, and
hence is also distributed and federated. The problem now is that
connection policy is present in two places: the initial mapsare per-
formed procedurally by the component’s business logic, andany
subsequent remapping is performed by the mapping engine.

Our experience with the system has suggested that the most ele-
gant solution is for almost all components tostart unmapped. That
is to say, although the library still provides mapping callsto the ap-
plication, we choose not to use them; all mapping is done via the
third-party remapping endpoints by the mapping engine. Applica-
tions start in an inert state (running, but not receiving anyevents
due to their unmapped endpoints). When they register their pres-
ence with a RDC, the mapping engine is triggered to perform initial
maps of their endpoints.

The benefits of this arrangement are that all connection policy
is held in one place (the mapping engine’s tables), and none of
it is hardcoded into applications. A distributed application com-
prises the executable components, plus mapping rules for connect-
ing them together. Programs are much more likely to survive con-
figuration changes if they do not contain explicit componentnames
or map constraint strings.

Mapping engines therefore offer significant advantages over tra-
ditional styles of network programming, as shown in Figure 7.

8.2 State migration
During component migration, stateful components must recreate

their necessary internal state. Our model assumes that the state of
each component which needs to be preserved is purely a function
of the messages it has received. State migration is the responsibil-
ity of application logic. Each endpoint emits messages tagged with

1. Message-based conn = connect(peer)
if conn.failed() error()

Time coupling conn.send(message)
Hardcoded peer conn.close()

2. Event-based publish(topic, message)

Time decoupled
Peers must agree topic
3. Mapping engine endpt = declare(localname)

endpt.send(message)
Time decoupled ———
No hardcoding Mapping rules:{ (from, to), ... }

Figure 7: Comparison of address specification

sequence numbers so that state checkpoints can be named. The
recent message history can be replayed from any endpoint’s circu-
lar output buffer, provided the configurable message bufferspace
has not been exceeded in the time taken to restart the component.
The existence of explicit mappings between components together
with sequence numbers allows streams of sensor data to be cor-
rectly reconnected, which would not be possible with an anony-
mous publish-subscribe system.

9. MAINTAINABILITY
Systems which rely on central brokers are relatively easy tomain-

tain, because the broker can be queried to discover which clients
are running. Maintenance is trickier for decentralised systems. In
keeping with our philosophy of providing the benefit of a cen-
tralised architecture in a peer-to-peer system, PIRATES provides
two built-in endpoints to make maintenance easier:
get_metadata andget_status. Anyone can call these given
a component’s address in order to interrogate it.

Theget_metadata endpoint returns the component’s name,
author, description, keywords and public key. It also liststhe end-
points provided, and for each one provides its name, type, and LIT-
MUS codes for message and reply types. These can of course be
converted to full schemas withlookup_schema if necessary. All
of this forms the static metadata associated with the component.
Self-describing components are good for humans, as well as auto-
mated tools such as mapping GUIs.

Theget_status endpoint returns the dynamic status of the
component. This includes its address, creator (the user whoinstan-
tiated it), instance name, load and latency. For each endpoint, infor-
mation is also returned on number of messages processed/dropped,
the subscription (if one is enabled), and the list of peers that end-
point is currently connected to. Furthermore for each peer astruc-
ture is returned containing the peer component and instancenames,
endpoint, address, remote subscription and latency (this informa-
tion is known to the wrapper, as it is exchanged during the hand-
shake which takes place when an endpoint is mapped). RDCs call
get_status periodically on all the components which have reg-
istered with them, as a liveness check.

The list of peers is particularly useful, because it allows tools to
crawl the connection graph, like a web spider. In this way they can
in principle discover the topology of the entire distributed system
(of course this is not possible to do precisely because it maychange
during the sweep). This is the distributed analog of requesting a list
of clients from a centralised broker. It is useful for givinga man-
agement overview of the network, and also for finding components
which are not registered with any of the local RDCs.



10. IMPLEMENTATION

10.1 Concurrency model
The wrapper must process many connections simultaneously and

without blocking as a result of network delays. Our implementa-
tion uses a single-threaded wrapper which performs all I/O in non-
blocking mode, and never blocks. It employs a state machine and
an abstract message structure to record partially processed mes-
sages. We believe this approach is less susceptible to concurrency
problems than a multi-threaded wrapper.

10.2 Integration
Applications typically employ a number of different libraries (for

example, to present a GUI), so the PIRATES library must coexist
with others. Any library which delivers events has several choices
for integration with the program’s event loop: it may be passive
(so the application can manage the event loop), capture the main
thread of control for itself, use callbacks or create new threads
or processes. Clearly capturing the main thread of control is not
a very polite solution, and callbacks lead to serious concurrency
problems. SCOP is passive and hence very unobtrusive, however
PIRATES needs to respond to requests on built-in endpoints with-
out help from the application, hence must have an active thread of
control.

The solution we have adopted is to make the wrapper a sepa-
rate process, and integrate the library closely with nativeprogram-
ming language I/O. All the library calls in the API use a blocking
mode of operation, because that is less error-prone for develop-
ers than callbacks. In the C++ binding, the file descriptors used
to communicate with each endpoint are exposed so that the pro-
grammer can add these to an existingselect loop, and hence
avoid blocking as well as merge PIRATES with other network and
file-based I/O. Alternatively, developers may write multi-threaded
components. Concurrency control is unnecessary provided threads
manipulate different endpoints; each endpoint has a dedicated pipe
to the wrapper and the wrapper itself does not block. New end-
points may be created whilst the component is running, so a server
may make clones of an endpoint for use by worker threads.

10.3 API
Our primary concern for the implementation, and indeed the de-

sign, has been to create an exceptionally simple API. This was the
approach taken by our earlier system, SCOP, and also by Elvin;
in both cases the libraries have been widely used as a result.By
contrast CORBA has rather complicated APIs. A middleware is
not well served by a complex API, since programmers need to con-
centrate on their business logic and not the glue code. The ba-
sic list of primitives provided by the library consists of:start,
subscribe,map,emit,rpc,rcv,reply,unmap,ismapped
andstop. Each of these take only a few parameters. For example,
Fig. 8 shows complete, compilable code for an event broker com-
ponent (the actual broker we use is marginally more complex as it
also includes configuration code to change the port number).

10.4 Portability
In common with other middleware such as ICE, RUNES, xml-

Blaster and D-Bus, PIRATES is designed for easy portabilityto
different languages. Its native language is C/C++, since most other
languages are higher level and hence easier to port to. SCOP achieves
easy portability via a thin language-specific library, and alarger
event broker which is written once in C++. With PIRATES we
wanted to achieve the same effect, hence the wrapper was imple-
mented as a process rather than a thread (if it were a thread itwould

#include <pirates.h>
void mainloop()
{

scomponent *com; smessage *msg;
sendpoint *pub_ep, *out_ep; snode *sn;
const char *code = "FFFFFFFFFFFF";

com = new scomponent("broker");
pub_ep = com->add_endpoint("publish",
EndpointSink, code);

out_ep = com->add_endpoint("notify",
EndpointSource, code);

com->start("broker.cpt");

while(1)
{
msg = pub_ep->rcv();
sn = msg->tree;
printf("Received tree:\n"); sn->dump();
out_ep->emit(sn, NULL, msg->hc);
delete msg;

}
}

Figure 8: Component code example: Broker

have to be ported to different languages, but as a process only the
library must be converted).

Our experience with SCOP suggested that even with a thin li-
brary layer, keeping the different language bindings synchronised
was a lot of work. They were easy to port initially, but the inevitable
change requests often did not get applied at once to all bindings,
due to the difficulty of switching languages in the middle of atask.
For this reason we wanted the PIRATES library to be even thinner,
if possible. Unfortunately, PIRATES includes a rich type system,
which SCOP does not; the library would have to understand this,
and hence we realised would not be thin at all. For example, in
order to encode messages for transmission across the pipe tothe
wrapper, the library would require marshalling and unmarshalling
code, and an appropriate LITMUS schema, which relies in turnon
the LITMUS parsing code.

Our solution was to defer all type checking and schema process-
ing to the wrapper. The messages sent across the pipe are not vali-
dated, and hence cannot be transmitted properly using the compact
binary encoding. Instead, we use the XML import/export facilities.
The extra bandwidth is not a major problem because the library
to wrapper connection is just a local pipe and does not cross the
network. Constructs which are syntactically identical in XML, for
example lists and structures, or missing optional elements, are dis-
ambiguated on receipt by the wrapper, which does have accessto
the proper schema.

10.5 Modularity
The PIRATES component wrapper is a considerable piece of

software (15,000 lines of code) upon which all components depend.
Consequently it is important to consider which features areessen-
tial to the core middleware, and which can be separated. Modular-
ity also allows pieces of the system to be replaced by alternative
versions.

We have two mechanisms at our disposal to achieve modularity:
layering and components (vertical vs horizontal separation). For
example, PIRATES uses a separate layer for its marshalling code.



Splitting functionality into separate components provides excel-
lent isolation since it runs in a different process. PIRATESuses
separate components for the RDC and the Event Broker. The RDC
program could be replaced, which allows for a pluggable nameser-
vice. Message persistence is also pluggable, since PIRATESde-
fers this to other components. Finally, we have made the topol-
ogy connection logic (automatic component start, automatic recon-
nection, failover, migration, replicas and load balancing) pluggable
with mapping engines. Currently the mapping engine is supplied
by the RDC, but this could be separated if required (it is alsopossi-
ble to ignore the built-in mapping engine by not requesting any per-
sistent components or persistent maps, and to implement one’s own
mapping service instead, since the built-in remapping endpoints are
publicly accessible).

11. EVALUATION

11.1 TIME project deployment
Within the TIME project we are using PIRATES to distribute

data from a number of sensor types. The length of queues at the
traffic lights at major junctions around the city is reportedby a
SCOOT[11] system, and the position of buses is tracked with GPS
units mounted on each roof. Weather conditions are measuredby
our own weather station and pollution data is fetched from a num-
ber of sensors around the city. We also monitor the occupancyof
the city centre car parks. To supplement the SCOOT data on one
major road we are using an infra-red sensor attached to a lamppost,
which counts vehicles from their heat signatures. We are also ex-
perimenting with acoustic sensors, automatic numberplaterecogni-
tion (ANPR) and a data feed from the railway station ticket barriers.

All of the data sources we have used fit the model of direct con-
nection to the Internet, and each source is represented by one PI-
RATES component. For example, aggregation of the SCOOT data
from the 37 monitored junctions around the city takes place within
the SCOOT hardware before it is collected by PIRATES. Individual
sensors are prone to failure as well as the aggregate stream itself,
so the SCOOT data is discontinuous.

We decided to store all sensor data for future processing. Storage
is handled by a generic stream persistence component,spersist,
which can be attached to any stream. It creates an event history
in an SQL database on disk. Each event is logged together with
its timestamp and associated LITMUS code, so that they are self-
identifying if the schema changes during the observed history. A
second database table stores all observed schemas with their corre-
sponding LITMUS codes.spersist provides an RPC endpoint
for replaying events between a specified pair of timestamps.

Output is directed both to periodically generated static webpages
and interactive Java applets, which provide statistics to illustrate
the city’s current and historical traffic states. We have made use of
aggregation in a number of ways, for example comparing SCOOT
data with the bus GPS traces to predict waiting times at red lights,
and using the infra-red camera to validate the other data.

11.2 Design choices
We now consider the major design choices made during creation

of the middleware, and evaluate their success (or otherwise).
The decision to use an object data model rather than tuples al-

lows for rich data expression, at the expense of more difficult schema
evolution and partial message processing (for example, it is harder
to extract and filter on timestamps buried inside a complex object).

We choose to integrate RPC and event style communication,
which has made the middleware significantly more complicated,
as their needs inside the implementation are somewhat different.

The benefit of doing this is that it avoids the need to employ two
separate middleware for many types of application.

PIRATES has only one choice of type system. Simpler types of
data such as binary, plain text or name-value pairs can trivially be
represented within the rich type system using appropriate schemas,
hence a separate “content type” field for messages is unnecessary.
In retrospect not making the type system entirely optional (as in
SCOP) was a mistake, since there is no way to avoid paying the
complexity cost for components which do not need it.

Another weakness of the current implementation is the lack of
a pluggable transport layer (only TCP is offered). Many systems,
such as xmlBlaster, ICE, Twisted, Siena, WS-notification and Elvin
allow a choice of transport (TCP, UDP, HTTP, e-mail etc). Ourex-
perience suggests that more attention should be paid to modularity
in the future.

Allowing subscriptions to filter on the full content of messages
seems a fully justified design choice. Point to point communication
has also improved latency and eliminated bottlenecks associated
with unnecessary event brokers.

The lack of any built-in topology setup has ensured that PIRATES
is policy free, at the expense of a reliance on RDCs. In the future we
envisage the equivalent of search engines, using the topology dis-
covery built-in endpoints in order to explore the componentspace.
This could add the same ease of use to a relatively unstructured
distributed sensor system as conventional search engines do for the
web.

A success at the implementation level was the non-blocking (rather
than multi-threaded) approach to concurrency. We also madetwo
notable mistakes. The first was choosing C++ as the native lan-
guage rather than Java; this has made the wrapper unnecessarily
complex. The second was making the wrapper a process rather than
a thread. The benefit of increased portability to different language
bindings was probably outweighed by the additional complexity
and overhead added by the wrapper to library communication pro-
tocol.

The most powerful design choice we have made was the decision
to allow third-party reconfiguration of the inter-component map-
pings. This has been very successful and instrumental in allow-
ing the middleware to adapt to the changing requirements of the
project.

11.3 Performance
The scalability of PIRATES depends on the topology of the con-

nections between components, which is not mandated by the mid-
dleware itself. Higher level policies are expected to avoidbottle-
necks and instantiate a suitable number of broker components if
necessary. The performance of the middleware itself must however
be predictable in order for such capacity planning to take place.

Component performance tests were carried out on a live system
running on a network of 1.8 Ghz Transtec SENYO 600 mini-PCs
using Linux. Figure 9 shows the round trip time (RTT) of RPCs
with payload sizes of 100 bytes or 10 Kbytes, as the load on the
machine increases. The load consists of between 0 and 20 parallel
components, each sending 100 messages per second. For small
message sizes the RTT starts at 2ms and is not greatly effected by
load, rising to a maximum of 5ms. For larger messages the RTT
starts at 45ms, rises as the load on the machine increases dueto
contention for the CPU, then falls back almost to the same value
as the OS scheduler starts to prioritise the measured component in
favour of the heavy background load.

Figure 10 shows the round trip time of RPCs in the presence of
crosstalk messages: in this case between 0 and 20 other compo-
nents are each sending 100 messages per second to thesameend-
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point that is being used for the latency measurements. This tests
the PIRATES wrapper’s ability to keep up with incoming requests,
rather than the OS kernel. Both local (same machine) and remote
(LAN) scenarios are tested.

Due to the increasing queue lengths at the endpoint, response
times increase approximately linearly with the degree of crosstalk.
Interestingly the remote case starts with a RTT of 4ms (compared
with 2ms for the local case) due to the extra network latency,but
ultimately wins for small messages because the CPU load is then
shared between two machines. For large message sizes the RTTin-
creases superlinearly as the bandwidth starts to saturate the network
link (10 Mbit/s).

11.4 Failure recovery
The RDCs maintain a set ofpersistent components, which must

remain operational at all times. If one of these exits for anyreason,
an attempt is made to automatically restart it. Suitable replace-
ments are located to satisfy the original component specification
in the form of map constraints; thus the replacement may be ona
different machine or a different program as long as it provides the
same service. Once the replacement has registered, the mapping
engine repairs its links to peer components.

The table in Figure 11 shows the time taken for persistent com-

ponents to restart and begin communicating in different failure sce-
narios. The first column is the restart time for a single failed com-
ponent, the second is the average restart time should ten compo-
nents fail simultaneously.

Situation One failure Ten failures

Component deregisters 77 ms 330 ms
Connected component crashes90 ms 700 ms
Isolated component crashes 5 secs 50 secs
Host machine reboots 2 mins 2 mins

Figure 11: Persistent component restart times

The quickest recovery occurs if the failed component[s] exit grace-
fully, deregistering themselves with the RDC. If they crashwithout
deregistering and are not currently mapped to any other component,
recovery takes at least five seconds because this is the default time
period at which the RDC pings components to check they are still
alive. Fortunately this case is rare in practice – components are not
much use if they don’t communicate, and hence are usually mapped
to at least one peer. In this case distributed failure detection oper-
ates, and the peer component reports to the RDC immediately that
it has lost contact. This allows the failed component to be restarted
almost as quickly as if it had deregistered gracefully.

The most common multiple-failure case in which no mapped
peers remain alive is when a machine hosting several components
reboots; in this case all the components are restarted immediately
once the host has recovered.

12. CONCLUSION
As part of the TIME project on transport monitoring, we have

designed and implemented PIRATES, a middleware for processing
streams of data from sensors within a conventional, powerednet-
work. The architecture uses wrappers which are both decentralised
and decoupled, and hence combines the advantages of peer-to-peer
and central event broker solutions. It is multi-modal, supporting
events, RPCs and streams. Communication may be point-to-point
or via intermediate brokers. We use an object data model with
content-based subscriptions and fast type checking using aschema
hash called a LITMUS code.

An advantage over traditional solutions is the comprehensive
support for third-party remapping. We have found that this solves
many common problems encountered whilst managing a contin-
uously running and evolving large-scale sensor-based information
system. Reflection and topology discovery are also providedby the
wrappers. The implementation is portable and has a lightweight
API; it can be downloaded fromhttp://www.srcf.ucam.
org/~dmi1000/pirates. Currently it runs on Linux and Mac
OS.
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