
Controlling Historical Information
Dissemination in Publish/Subscribe

Jatinder Singh David M. Eyers
Computer Laboratory

University of Cambridge
{first.last}@cl.cam.ac.uk

Jean Bacon

ABSTRACT
Application environments dealing with sensitive information
require mechanisms to define the circumstances for data dis-
closure. In event-based environments, access control typ-
ically concerns messages (events) as they occur. However,
scenarios exist in which the retrieval of historical information
is required. The publish/subscribe paradigm decouples pro-
ducers from consumers, where information from numerous
sources can satisfy an information request (subscription).
These sources may be unknown to subscribers.

This paper describes a unified approach for managing the
disclosure of both historical and future events. We show,
with the aid of healthcare scenarios, how context and access
mechanisms can be used for fine-grained control over the
circumstances for information disclosure.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distrib-
uted Systems

General Terms
Security, Management

Keywords
Data Control, Middleware, Event Replay, Publish/Subscribe

1. INTRODUCTION
Many application environments require control over data

access. In some application domains, such as healthcare,
data is particularly sensitive; stringent control mechanisms
are required to meet the strict access requirements.

Access control decisions are circumstantial, referencing
context to determine whether to allow access to information.
Context may include details of the requester (credentials),
current environmental state (an emergency situation, step
in a workflow procedure), aspects/details of the request or
the information itself—or some combination thereof. This
decision may be binary: permit or deny; or may customise
the information to the particular situation (see §2.2).

c©ACM, 2008. This is the author’s version of the work. It is posted here
by permission of ACM for your personal use. Not for redistribution. The
definitive version was published in Proceedings of the 2008 workshop on
Middleware Security http://doi.acm.org/10.1145/1463342.1463349

Publish/subscribe is a well-established asynchronous event
dissemination paradigm. It is suitable for large-scale in-
formation distribution in data-driven application scenarios.
Publish/subscribe delivers information to those interested
as it occurs. However, certain situations require the de-
livery of historical information—events that have previously
occurred. This is where an incident makes previous informa-
tion relevant; perhaps due to mobility (events missed during
disconnection) or where a change in context requires past in-
formation. In distributed environments, there may be multi-
ple sources supplying a particular event, making it imprac-
tical for a principal to directly query (in a point-to-point
manner) each datastore for the historical information [8].

There are various methods for controlling data access in
a publish/subscribe paradigm [1], such as imposing restric-
tions on subscription requests and/or notifications (infor-
mation delivery). Encryption can be used to secure event
attributes and types. Event transformation allows event in-
formation to be tailored to the particular circumstances.

Event replay mechanisms require control, allowing policy
to define the circumstances in which historical information
is released. An important consideration is the effect of con-
text on event replay. As access mechanisms are context-
dependent, a replayed event might be subject to different
controls from the original, due to a change in circumstance.
For example, an event originally subject to a restriction fil-
ter, may now, instead, be subject to a transformation. Fur-
ther, as all events use the same infrastructure, it is possible
that the replayed events may impact on system state. It
might be the case that an event (e.g. an emergency) must
be delivered to a certain number of recipients to meet a
particular obligation. Replayed events are relevant to the
monitoring of this condition. The historical request itself
may also be of significance, e.g. to audit the auditor.

This paper describes mechanisms for authorising and con-
trolling historical event republication. We use real-world
healthcare examples to describe how policy administrators
can exploit context-aware access mechanisms to control data
disclosure. Our approach unifies delivery for both live and
historical events, providing a common interface for the ad-
ministration of disclosure policy, while facilitating similar
event-processing actions for both types of events.

2. BACKGROUND
2.1 The Publish/Subscribe Paradigm

Publish/subscribe [6] is an asynchronous message deliv-
ery paradigm suited to data-driven environments. A prin-
cipal may be a publisher and/or a subscriber. A publisher



produces an event—a data-rich encapsulation of a particu-
lar semantic. Subscribers register their interest in receiv-
ing particular events (information) through a subscription.
Communication between principals occurs through the pub-
lish/subscribe middleware, which delivers events from pub-
lishers to subscribers with matching subscriptions. Princi-
pals connect to a broker, which through its interconnection
with other brokers, provides the middleware functionality.

A key feature of the paradigm is that information produc-
ers and consumers are decoupled, i.e. those producing infor-
mation are not burdened with the addressing specifics of
the potential end-points. Instead, the middleware is respon-
sible for information delivery, routing events according to
interest as they occur. As all communication passes through
the middleware, it is an appropriate point for the enforce-
ment of information control policy. Another characteristic
of publish/subscribe is that its ability to perform distributed
content-based routing can assist in load-balancing.

2.2 Access-control in Publish/Subscribe
There are various ways to restrict information flow in a

publish/subscribe framework [1]. Basic control concerns ac-
cess to the middleware, describing who may connect, sub-
scribe to an event type or publish an event instance. Fil-
ters may qualify access, restricting on various properties—
typically event content. Encryption and key-management
can be used to control the visibility of event types and the
attributes of event instances [12]. Some control mechanisms
allow publishers to define the circumstances for event de-
livery, either through filters [16] or by authorising specific
subscribers [11]. Wun et al. [20] describe a generic policy
model for publish/subscribe frameworks; directions are to-
wards middleware enforcement of application-level policy.

Interaction Control
Interaction control provides the means for customising data
access to circumstance [1]. Information is controlled through
policy rule definitions that are loaded and enforced in a bro-
ker to control the data it releases. These rules set the bounds
for data transmission.

Our model uses three types of data control rules [1, 15].
Subscription authorisation rules define the circumstances in
which a subscription channel is allowed. Restrictions are
silently imposed on a subscription to filter the messages de-
livered to a particular subscriber. Finally, transformation
rules allow an event instance to be transformed into another.
This might serve to enrich or perturb the information of the
event instance, or perhaps convert an event into another
type to encapsulate a different semantic. Transformations
provide more than binary access control (permit/deny) by
allowing data to be tailored to circumstance.

The power of interaction control stems from the fact that
rules are context-sensitive. Rule definitions can access mes-
saging system information (e.g. broker/principal informa-
tion and message content), credentials (i.e. the identity, qual-
ifications, roles and certificates held by the principals) as well
as environmental state (e.g. emergency situations), stored
data and external services. As policy rules are context-
aware, unlike typical access control mechanisms, restrictions
can be unrelated to the credentials of the principals, or event
content, e.g. “nobody may access my heart-rate data unless
I’m in cardiac arrest”. They are also reactive to context;
for instance, a subscription authorisation rule enforcing a

relationship between a doctor and a patient can cause the
subscription to be deactivated if the doctor no longer treats
that patient. Transformations, which alter information, re-
spond to context by applying only in certain situations.

These interaction control mechanisms were developed for
application environments where information crosses bound-
aries of administrative control. Each administrative body
maintains its own—possibly differing—policies that define
the situations for data release, which are loaded into the
broker(s) they control. This gives the ability to manage and
control data by setting the bounds for release. Subscribers
may define their interests, though these are subject to inter-
action control mechanisms.

Fine-grained access control mechanisms depend on con-
text, thus a change in circumstance can alter information
flow. Previous work in controlling publish/subscribe focuses
on events as they occur within the system. When handling
historical events, it becomes necessary to consider (1) the
circumstances in which replay is appropriate, and (2) how a
contextual change alters information flow.

2.3 DB Publish/Subscribe Infrastructure
We build on PostgreSQL-PS, an integrated content-based

publish/subscribe and database system [19]. This means a
database instance, in addition to storing information, op-
erates as a broker routing information from publishers to
subscribers. It also has the ability to, itself, publish and sub-
scribe to (process) particular events. This coupling brings
a common type system and API to both the messaging and
data storage substrates. Importantly, this means that a bro-
ker has a rich representation of context, with the ability to
access stored data, or internal or external functions through
database languages. Events, subscription requests, publica-
tions and policies are represented in XML.

We have built interaction control mechanisms into this in-
frastructure [15] to control the flow of events as they occur
within the system. Control concerns data transmission, thus
a database-messaging system is the obvious point to enforce
access policy. As a broker is a database, with rich access
to state and the capability to process (subscribe, publish
and analyse) events, it means that events themselves serve
to alter context, which in turn effects access control mech-
anisms1. Here we extend this control to manage historical
event dissemination, where context-aware data replay rules
can be defined to appropriately protect historical data.

3. HEALTHCARE BACKGROUND
Healthcare is the motivating scenario for our research into

publish/subscribe information control. Care providers must
share information to afford proper care. At the same time,
health data is sensitive, and must be protected. Those col-
lecting and holding information as part of the care process
are responsible for its protection, with serious repercussions
for mismanagement or misuse [17]. To balance these con-
cerns, health data must be shared when appropriate, in line
with patient consent, which may be explicit, but is typically
implied in the interests of the patient’s health [2].

Homecare services (including mobile and remote care) are
acknowledged to be the future of healthcare. Such environ-
ments benefit both patients and the health service in terms

1In addition to other context-reactive processes, such as trig-
gers and workflows.



of improved (preventative) care and resource allocation [4].
Homecare environments are created to cater for a particular
aspect of a patient’s care [13]. Existing outside of a central
environment, they are particularly amenable to collabora-
tion across administrative domains, where different entities
provide particular services as part of the care process. Sen-
sors and monitoring technologies also form an integral part
of the homecare interaction-mix. Health incidents, be they
actions (of a patient or carer), observations (e.g. sensor read-
ings) or state transitions (e.g. cardiac arrest) are relevant to
various care providers. However, the information that an
entity requires from an incident will depend on the service
they provide, in addition to current circumstances.

Patient Home

Centralised
Record

Services

Surgery

Medical 
Accountant

Specialists

Pharmacy

Overall c
are

Summarised
Data

Specialist

Ser iv ces

Financial
Services

 Tech Supplier
(sensors)

Monitoring

(patient &

enviro
nment)

D
ru

g
Su

pp
ly

Monitoring(care process)
Auditor

Figure 1: Home healthcare involves interactions be-
tween entities, managed in different administrative
domains. Each has different data requirements, de-
pending on the health services they provide.

The healthcare space is heterogeneous, where each ad-
ministrative domain maintains a degree of control over their
systems, processes and services [9]. As the environment is
highly data-driven, event-based infrastructure is appropriate
for managing interactions between entities, which may be
across administrative boundaries. Our work in securing pub-
lish/subscribe systems is in line with this, providing admin-
istrative domains (care providers) with fine-grained control
over the circumstances in which data is released from their
local brokers. This allows providers to meet their data man-
agement responsibilities. Previous work concerned manag-
ing events as they occurred. Here we present a framework to
unify the control of historical and current events, considering
context and access control specifics.

3.1 Historical Event Replay: Drug Allocation
This scenario concerns the supply of controlled drugs.

Nurses are authorised to prescribe drugs, which includes
classes of controlled drugs (e.g. morphine), in certain sit-
uations [5]. Legislation states that the use of controlled
drugs must be monitored, though the audit is prescriber
focused [18]. Patient specifics should not be shared unless
necessary, e.g. when a prescriber is under investigation.

We have used this example to demonstrate the power
of our data control mechanisms in restricting information
flow [15, 14], where the auditor receives prescription infor-
mation for controlled drugs with patient specifics removed.

If the prescriber is under investigation, the restrictions are
removed so that the auditor receives patient specifics to as-
sist in the investigation. Historical information is useful for
an investigation as it provides details of the patients who
received controlled drugs from this prescriber.

Consider a homecare nurse employed by a nursing clinic.
Her employer contracts with many surgeries that manage
home environments to provide daily homecare services. Cur-
rently, the nurse treats 15 patients a week, from 4 different
surgeries; though throughout her employment contract, she
has treated patients from over 50 institutions. It comes to
light that a number of her patients have been falling ill,
and that this nurse has been prescribing controlled drugs
far more frequently than other nurses. As such, she is offi-
cially placed under investigation by the NHS. The auditor
requires detailed information regarding the circumstances,
including patient specifics, regarding past and future pre-
scriptions authorised by the nurse. Although under inves-
tigation, she is not accused of anything, thus she continues
to practice. However, it is in the interest of the public and
patient safety that the auditor investigate the matter2.

3.2 Sensor Obfuscation
Homecare environments are increasingly using monitoring

technologies [4]. Sensors exist that measure various aspects
of physiological state. These are often coupled with location
sensors, to monitor position and mobility. As sensor read-
ings may contain sensitive information, transformation func-
tions can serve to protect privacy. This may involve fuzzify-
ing values, e.g. bucketing respiratory readings into a ‘dash-
board’ representation [e.g. Stable, Concern or Emergency
states], and location coordinates into [Home or Not Home] as
opposed to providing the precise GPS or room coordinates.
In an emergency situation, the perturbing transformations
do not apply, thus the complete details are propagated to
facilitate better care. However, in an emergency, informa-
tion of prior readings might not only be relevant, but vital
to treatment. As such, appropriate historical events should
be replayed, but with detailed (unperturbed) information.
This provides the appropriate granularity of information to
the care manager, A&E, etc., in the circumstances required.

These scenarios are used to show how replay mechanisms
interplay with context to control access to sensitive data.

4. EVENT REPLAY
Event-based middleware focuses on the delivery of events

as they occur within a system. However, there are situa-
tions where principals require historical information. This
requirement typically stems from some incident: perhaps to
update an information store after a period of disconnection
(mobility); perhaps the occurrence renders previously ‘un-
interesting’ events (e.g. those restricted by filters) relevant,
or perhaps the incident triggers some application-level need
for historical data, such as the investigation of a prescriber.

One potential approach is for principals to query the data-
stores of the information producers directly for the required
historical data. However, in a distributed, event-driven en-
vironment with content-based routing [8] the potential de-
coupling of producers from consumers may preclude reliably
discovering the complete set of producers. By handling his-
torical requests in the middleware, the requesting principal

2The auditor is responsible for the information received.



is not burdened with the (perhaps impossible) task of un-
covering and directly querying every potential information
source. Although each broker in our PostgreSQL-PS deploy-
ments provides a database API, distributed communication
occurs through the publish/subscribe API.

There is some work concerning historical events in pub-
lish/subscribe systems. Cilia et al. [3] describe the use of his-
tory buffers to allow event republication to deal with boot-
strapping and disconnection in mobile systems. Muehl et
al. [10] also deal with mobility, mentioning that event his-
tories can be managed either by producers or brokers. Li
et al. [8] take a general approach, where databases are con-
nected to various brokers, each associated with a filter to
store particular information. The database holding the rel-
evant information republishes historical events on receipt of
a subscription query with a historic time-based parameter.

Previous work demonstrates the value of event replay in
publish/subscribe, but tends not to address security con-
cerns. Access control policies are context sensitive, which
means the content of, and/or flow (restrictions) on, a his-
torical event may differ due to a change in circumstance.
As such, it is necessary to consider the impact of context
on historical republication, and its effects on information
disclosure. Replay control need not only restrict, but may
also enrich information flows. For example, where a partic-
ular event (emergency) triggers the release of a set of unper-
turbed historical events (sensor readings).

5. EVENT-REPLAY ACCESS CONTROL
INFRASTRUCTURE

Replay semantics are defined in broker-specific policy rules
which control the circumstances for data release.

5.1 Fluents
A fluent, as defined in Event Calculus [7], is a reified,

half-open interval in some given time domain. It represents
a particular state of affairs holding (non-exclusively). The
simplest canonical forms of Kowalski’s Event Calculus pro-
vide a predicate holds-at, that reports whether a particular
fluent holds at a particular point in time.

Fluents are a useful representation of context; for instance,
a fluent can be defined to refer to a particular patient as
being in a critical situation, or a prescriber being under in-
vestigation. Fluents can potentially encapsulate complex
representations of state (i.e. composite events), in that a
number of events might serve to alter the state of a fluent.

Replay semantics are defined with reference to time ranges
(i.e. the range in which events are republished), and thus
also potentially with reference to fluents. From a policy
perspective, generally it is an occurrence, or change in con-
text (fluent state) that defines an interest, not the value of
the time-point at which the triggering event occurs. In our
implementation, fluents are used to facilitate more natural
policy expressions: policy rules can include a named fluent
instead of a time-stamp range. As for event definitions, flu-
ent definitions may range in scope from local to global.

5.2 Replay Request
Principals require the ability to request access to histori-

cal information. Such a request is defined as a REPLAY mes-
sage, which at the very least has an attribute indicating the
Event Type being replayed. Most replay messages will limit

the scope of replay3. From and To attributes can provide
timestamps that bound the time line on one or both sides.
Also the During attribute can filter events that do not oc-
cur when the named fluent is active. Not during inverts
the fluent match. Finally, a filter attribute can provide a
conditional clause akin to a subscription filter.

The filter must encapsulate any mandatory attributes spec-
ified by the policy author, which are attributes that the re-
quester must include as part of their filter. For example, pol-
icy might specify that any replay request for a prescribe

event must include the ID of the prescriber. This allows
reasoning about the motivation behind a request—to make
more informed authorisation decisions—while ensuring that
requests are properly constrained.

Note that a replay request is essentially a subscription to
past information, while a general subscription is a query over
future events. As such, subscriptions and replay requests can
be unified, where a general subscription request includes a
From tag to signify that the subscription should replay prior
events as well as delivering new events as they occur.

5.3 Interaction Control & Event Replay
Interaction control policies are enforced in a broker, giving

the management domain fine-grained control over the infor-
mation released. Replay requests are logically equivalent to
subscription requests, except that they refer to prior events.
As such, the same controls can be used for both.

Here we consider the details of authorisation and restric-
tion rules. Authorisations tend to define general privilege.
These may be qualified by one-or-more restriction rules,
which cater for particular situations, e.g. to satisfy the re-
quest of a particular patient. This separation brings flexibil-
ity, as there may be a many-to-many mapping between the
rules types. Authorisation rules take the following form4:

ALLOW [SUBSCRIPTION TO | REPLAY OF] (event type)
WHERE (validation conditions)

In this rule, the choice of subscription to or replay of is
merely a lexical concern, since they are equivalent in terms
of implementation. The rule is specified over a particular
event type. Finally, a set of validation conditions is in-
cluded. This conditional clause can access parameters of the
request, which can be used to verify that the principal holds
particular credentials for the rule to apply, that fluent val-
ues and mandatory attributes were appropriately specified,
that the time range is valid, etc. As this condition is a SQL
statement, it may access a variety of functions, operators
and services, allowing for rigorous validation.

Restrictions may be imposed that filter the delivery of
events. Restrictions take the following form:

RESTRICT EVENT DELIVERY OF (event type)
WHERE (validation conditions) FILTER (filters)

The same definitions exist for event type and validation con-
ditions, however filters specify the restrictions that are
imposed (enforced) on the delivery of an event instance.

Transformations convert an event instance into the speci-
fied output type, either on publication or notification (deliv-

3The requested scope may be limited by authorisation and
restriction rules—see §5.3.
4Our implementation represents policy rules in XML, how-
ever we are moving toward a syntax usable from the
database console—as presented here.



ery) of the instance. Transformation rules take the following
form:

TRANSFORM EVENT (event type) TO (output event type)
ON (publish | notify) EXECUTE (function)
WHERE (validation conditions)

The transform occurs through the specified function when
the validation conditions are met. Unless otherwise de-
fined (through validation conditions), transformation rules
are triggered by both general and replayed events5.

Authorisation rules are evaluated on receipt of a replay
or subscription request. Multiple policy rules can apply to
a particular request: enforcement and conflict resolution in-
volves overriding rules or aggregating restrictions (see [15]
for details). If the request, which satisfies an authorisation
rule, encompasses historical information, any prior events
matching the requester’s query and set of applicable restric-
tion (policy) filters are republished. If the request also con-
cerns future events, then the subscription channel is estab-
lished with the appropriate restriction filters imposed [15].
Events are delivered, subject to any applicable (and re-
solved) transformations.

Republished events are transmitted with some meta-data,
including the time of original publication.

5.4 Automatic Replay
There may be situations where a broker should automat-

ically republish historical events. This might be to assure
a quality of service, e.g. to minimise loss in cases of discon-
nection, or in situations where a change in context interacts
with the access control mechanisms to alter the flow of infor-
mation. That is, a change in context might cause a certain
restriction or transformation to no longer apply, and thus
prior events should be republished without restriction.

The definition of an automatic replay rule is similar to a
request, except that it defines the triggering condition and
the target. Rules are specified as follows:

AUTO REPLAY EVENT TYPE (event type)

(FROM|TO) (timestamp)

((NOT) DURING) (fluent)

WHERE (validation conditions)

FILTER (filter)

ON EVENT (event) WHERE (execution conditions)

The event type, time, fluent, validation conditions and filters
have been described previously. The final line of this listing
describes the event instance, and associated conditions, that
trigger the event replay. Replayed events will not trigger an
automatic replay rule, unless explicitly specified in its exe-
cution conditions. These rules are loaded on a subscription
request (for future events), where it meets the validation cri-
teria specified in the rule. Historical events in the defined
range are delivered upon the occurrence of a triggering event
matching the defined conditions.

5.5 Propagation
These rules allow definition of the circumstances for infor-

mation propagation from the perspective of a local broker.
Clearly, such rules can also apply to centralised, point-to-
point architectures. However, in a distributed publish/sub-

5Note that transformed events (outputs) do not trigger other
transformation rules at the same interaction point [15].

scribe system, a replay request is routed through the network
in the same manner as a subscription. Historical informa-
tion is released by brokers serving such events, if authorised
by their disclosure policy. In order to avoid duplicates, only
a broker hosting an information publisher should propagate
the historical information of that publisher. Similarly, var-
ious brokers might load replay rules for a particular sub-
scription, providing the subscriber with information, possi-
bly from multiple sources.

6. SCENARIO APPLICATION
We return to the previously described healthcare exam-

ples and consider the event replay rules and conditions used
in such scenarios.
Drug auditing. When the nurse falls under investigation,
the auditor requires historical information of the patients to
whom she supplied controlled substances. The access con-
trol rules involve a transformation, which removes patient
details from the event delivered to the auditor. However,
this is conditional, applying only to situations where the
prescriber is not under investigation6. When the nurse is
under investigation, her future prescription events should
contain patient details. To obtain historical information,
the auditor can issue a replay request defined using the un-

derInvestigation(nhsid) fluent, as shown in Figure 2(a).
This request propagates through the network, where each
domain (broker) republishes all relevant (controlled drugs
issued by the prescriber) prescribe events. The authori-
sation rule shown in Figure 2(b) ensures that a request is
for a specific prescriber7, while the restriction rules ensure
that the auditor only receives events pertaining to restricted
drugs, regardless of whether they are historical. The system
combines the request and restriction filters, determining the
events to release (if any). In this case, events where a drug is
supplied will be replayed, if the requester is an auditor and
specifies the prescriber of interest. As the nurse (prescriber)
is under investigation, the replayed events pass through un-
perturbed; thus the auditor receives information from all
domains (in this case, a number of surgeries) on patients to
whom the nurse prescribed controlled drugs.
Sensor obfuscation. For reasons of privacy, transforma-
tion functions alter the granularity of sensor readings re-
ceived by subscribers. However, in emergency situations, it
is important that those subscribed to sensor streams receive
complete, detailed (unperturbed) information. As the trans-
formation is performed on notification, the database stores
the unperturbed event instances. Given the imperative na-
ture of an emergency situation, a domain might decide it im-
portant to automatically replay the sensor events from sev-
eral hours before the patient reached a critical state. When
an emergency situation is detected, an emergency event for
the patient triggers event republication. This replay mech-
anism provides care staff with detailed sensor readings in
the period leading up to the emergency situation, to help
improve patient care. Figure 2(c) shows the rule definition
that replays readings to all subscribers to the patient’s sen-
sor stream from two hours before the emergency.

6This is generally subject to consent. Though omitted due
to space, consent can be verified through rule conditionals.
7Although policy is domain specific, it is likely that policies
will be consistent given the legislative basis.



<replay_request>
<event_type>prescribe</event_type>
<during not="T">underInvestigation(nurse_8821)</during>
<filter>prescriber_id = nurse_8821</filter>

</replay_request>

(a) Request policy for prior prescribe events.

ALLOW REPLAY OF prescribe
WHERE sub.prescriber_id <> NULL AND credentials(user, auditor)

RESTRICT DELIVERY OF prescribe
WHERE credentials(user, auditor)
FILTER isControlled(drug_id)

(b) The replay authorisation and restriction rules concerning pre-
scribe events.

AUTO REPLAY EVENT TYPE physical_status FROM
now() - interval ‘2 hours’ TO now()
WHERE sub.patient_id = nhs_patient_4122
FILTER physical_status.patient_id = nhs_patient_4412
ON emergency WHERE emergency.patient_id = nhs_patient_4412

(c) The automatic replay rule for emergency situations.

Figure 2: Policy fragments to drive the scenarios

7. FUTURE WORK AND CONCLUSION
Event replay is a useful feature of an event-based infras-

tructure, particularly in situations where changes in context
alter data visibility and/or where information comes from
multiple sources. In application environments with strin-
gent data control requirements, mechanisms are required to
control the circumstances of event replay. Such mechanisms
not only control the situations for data release, but as shown
in the two scenarios, serve to encode application-level se-
mantics into the middleware—bringing about automatic en-
forcement and compliance checking.

This work serves as a basis for further exploration into
historical event republication. Clearly, the rate of data flow
is an important concern [10], as replaying historical informa-
tion involves the propagation of a number of events at once.
While remaining an area for future work, it would appear
that rate/flow-control requirements could be integrated into
the conditional segments of the replay authorisation rules.
Events are replayed for particular time ranges, optionally
refined by the truth of given fluents. Both the requester
and administrator can filter the event stream. While intu-
itively flexible, more application scenarios are required to
test whether historical requests are sufficiently expressive to
meet the requirements of the healthcare domain.

We have presented a framework that unifies the delivery
of both past and current events. This common interface
for defining information disclosure policies gives administra-
tors fine-grained control over the information released. The
same infrastructure can react to historical requests and both
new and republished events; altering context (fluent state),
triggering actions (e.g. workflow processes), etc. The re-
play of an event is more than just a snapshot, it can impact
on system state. The infrastructure presented demonstrates
mechanisms to control event republication, describing how
context can be exploited by policy administrators to best
manage their data disclosure responsibilities.

8. ACKNOWLEDGEMENTS
We acknowledge the support of the UK EPSRC grant

CareGrid (EP/C53718X). We thank Luis Vargas and others

from the Opera Research Group for their contributions.

9. REFERENCES
[1] J. Bacon, D. M. Eyers, J. Singh, and P. R. Pietzuch.

Access Control in Publish/Subscribe Systems. In
Distributed Event Based Systems, pages 23–34, 2008.

[2] British Medical Association. Confidentiality and
disclosure of information to PCTs in primary care
settings, 2007.

[3] M. Cilia, L. Fiege, C. Haul, A. Zeidler, and A. P.
Buchmann. Looking into the past: enhancing mobile
publish/subscribe middleware. In Distributed Event
Based Systems, pages 1–8, 2003.

[4] Department of Health (UK). Building Telecare in
England, 2005.

[5] Department of Health (UK). Safer management of
Controlled Drugs, 2007.

[6] P. Eugster, P. Felber, R. Guerraoui, and
A. Kermarrec. The Many Faces of Publish/Subscribe.
ACM Computing Surveys, 35(2):114–131, 2003.

[7] R. Kowalski and M. Sergot. A logic-based calculus of
events. New Generation Computing, 4:67–95, 1986.

[8] G. Li, A. Cheung, S. Hou, S. Hu, V. Muthusamy,
R. Sherafat, A. Wun, H.-A. Jacobsen, and
S. Manovski. Historic data access in
publish/subscribe. In Distributed Event Based
Systems, pages 80–84, 2007.

[9] Lord Darzi. High quality care for all: NHS Next Stage
Review, 2008.

[10] G. Muehl, A. Ulbrich, K. Herrmann, and T. Weis.
Disseminating information to mobile clients using
publish-subscribe. IEEE Internet Computing,
8(3):46–53, 2004.

[11] L. Opyrchal, A. Prakash, and A. Agrawal. Supporting
privacy policies in a publish-subscribe substrate for
pervasive environments. Journal of Networks,
2(1):17–26, 2007.

[12] L. I. W. Pesonen, D. M. Eyers, and J. Bacon.
Encryption-Enforced Access Control in Dynamic
Multi-Domain Publish/Subscribe Networks. In
Distributed Event Based Systems, pages 104–115, 2007.

[13] J. Singh, J. Bacon, and K. Moody. Dynamic trust
domains for secure, private, technology-assisted living.
In ARES, pages 27–34, 2007.

[14] J. Singh, L. Vargas, and J. Bacon. A model for
controlling data flow in distributed healthcare
environments. Pervasive Health, pages 188–191, 2008.

[15] J. Singh, L. Vargas, J. Bacon, and K. Moody.
Policy-based information sharing in publish/subscribe
middleware. In POLICY, pages 137–144, 2008.

[16] A. Tomasic, C. Garrod, and K. Popendorf. Symmetric
publish/subscribe via constraint publication. Technical
Report CMU-CS-06-129R, 2006.

[17] UK Crown. Data Protection Act (1998).

[18] UK Crown. The Controlled Drugs Regulations 2006.

[19] L. Vargas, J. Bacon, and K. Moody. Event-Driven
Database Information Sharing. In British National
Conference on Databases, pages 113–125, 2008.

[20] A. Wun and H.-A. Jacobsen. A policy management
framework for content-based publish/subscribe. In
Middleware ’07, pages 368–388, 2007.


