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Abstract. This paper describes Kilim, a framework that employs a
combination of techniques to help create robust, massively concurrent
systems in mainstream languages such as Java: (i) ultra-lightweight,
cooperatively-scheduled threads (actors), (ii) a message-passing frame-
work (no shared memory, no locks) and (iii) isolation-aware messaging.

Isolation is achieved by controlling the shape and ownership of mu-
table messages – they must not have internal aliases and can only be
owned by a single actor at a time. We demonstrate a static analysis built
around isolation type qualifiers to enforce these constraints.

Kilim comfortably scales to handle hundreds of thousands of actors
and messages on modest hardware. It is fast as well – task-switching
is 1000x faster than Java threads and 60x faster than other lightweight
tasking frameworks, and message-passing is 3x faster than Erlang (cur-
rently the gold standard for concurrency-oriented programming).

1 Imagine No Sharing

Computing architectures are getting increasingly distributed, from multiple cores
in one processor and multiple NUMA processors in one box, to many boxes in a
data centre and many data centres. The shared memory mindset – synonymous
with the concurrent computation model – is at odds with this trend. Not only
are its idioms substantially different from those of distributed programming, it
is extremely difficult to obtain correctness, fairness and efficiency in the presence
of fine-grained locks and access to shared objects.

The “Actor” model, espoused by Erlang, Singularity and the Unix pro-
cess+pipe model, offers an alternative: independent communicating sequential
entities that share nothing and communicate by passing messages. Address-
space isolation engenders several desirable properties: component-oriented test-
ing, elimination of data races, unification of local and distributed programming
models and better optimisation opportunities for compilers and garbage collec-
tors. Finally, data-independence promotes failure-independence [1]: an exception
in one actor cannot fatally affect another.

1.1 Motivation

The actor and message-passing approach, with its coarse-grained concurrency
and loosely-coupled components is a good fit for split-phase workloads (CPU,
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Fig. 1. javac output post-processed by Kilim weaver

network and disk) [4] and service-oriented workflows. With a view to immedi-
ate industrial adoption, we impose the following additional requirements: (a) no
changes to Java syntax or to the JVM, (b) lightweight actors1 (c) fast messaging
(d) no assumptions made about a message receiver’s location and implementa-
tion language (e) widespread support for debugging, logging and persistence.

1.2 The Kilim Solution

This paper introduces Kilim2, an actor framework for Java that contains a byte-
code post-processor (“weaver”, see Fig. 1) and a run-time library. We list below
some important features as well as the design points:

Ultra-lightweight threads. Kilim’s weaver transforms methods identified by
an @pausable annotation into continuation passing style (CPS) to provide
cooperatively-scheduled lightweight threads with automatic stack manage-
ment and trampolined call stack [3, 20]. These actor threads are quick to
context-switch and do not need pre-allocated private heaps. The annotation
is similar in spirit to checked exceptions in that all callers and overriding
methods must be marked @pausable as well.

Messages as a special category. For the reasons outlined above, we treat
message types as philosophically distinct from, and much simpler than other
Java objects. Messages are:

– Unencapsulated values without identity (like their on-the-wire coun-
terparts, XML, C++ structs, ML datatypes and Scala’s case classes).
The public structure permits pattern-matching, structure transforma-
tion, delegation and flexible auditing at message exchange points; these
are much harder to achieve in the presence of encapsulation.

– Not internally aliased. A message object may be pointed to by at most
one other message object (and then only by one field or array element of

1 For example, threads are too heavyweight to assign per HTTP connection or per
component in composable communication protocol state machines.

2 Kilims are flexible, lightweight Turkish flat rugs woven with fine threads.



106 S. Srinivasan and A. Mycroft

it). The resulting tree-structure can be serialized and cloned efficiently
and effortlessly stored in relational and XML schemas. The lack of in-
ternal aliasing is less limiting in practice than would first appear, mostly
because loosely-coupled components tend to have simple interfaces. Ex-
amples include events or messages in most server frameworks, windowing
systems, the Singularity operating system [18] and CORBA valuetypes.

– Linearly owned. A message can have at most one owner at any time.
This allows efficient zero-copy message transfer where possible. The pro-
grammer has to explicitly make a copy if needed, and the imperative to
avoid copies puts a noticeable “back pressure” on the programmer.

Statically-enforced isolation. We enforce the above properties at compile-
time. Isolation is interpreted as interference-freedom, obtained by keeping
the set of mutable objects reachable from an actor’s instance fields and stack
totally disjoint from another actor’s. Kilim’s weaver performs a static intra-
procedural heap analysis that takes hints from isolation qualifiers specified
on method interfaces.

Run-time support. Kilim contains a run-time library of type-parametrised
mailboxes for asynchronous message-passing with I/O throttling and priori-
tised alting [23]; SEDA-style I/O conditioning [36] is omnipresent. Mailboxes
can be incorporated into messages, π-calculus [28] style. Space prevents us
from presenting much of the run-time framework; this paper concentrates on
the compile-time analysis and transformations.

The contribution of this work is the synthesis of ideas found in extant litera-
ture and in picking particular design points that allow portability and immediate
applicability (no change to the language or the JVM).

1.3 Isolation Qualifiers and Capabilities: A Brief Overview

Drossopoulou et al [16] present in their brief survey the choices of syntactic rep-
resentations for controlling aliasing. One issue they raise is the need to “develop
lightweight and yet powerful [shape] systems”. We have adopted “only trees may
be transferred between actors” as our guiding principle.

The motivations given in Sec. 1.1 led us to choose a scheme with (i) a marker
interface Message to identify tree-shaped message types which may contain prim-
itive types, references to Messages and arrays of the above; and (ii) three qual-
ifiers (@free, @cuttable, @safe) on method parameters, which we formalise
within a calculus.

These qualifiers can be understood in terms of two orthogonal capabilities of
an object in a tree: first, whether it is pointed to by another object or not (called
a root in the latter case) and second, whether or not it is structurally modifi-
able (whether its pointer-valued fields are assignable). The latter is a transitive
property; an object is structurally modifiable if its parent is.
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Given this, an object is free3 if it is the root of a tree and is structurally
modifiable. A cuttable object may or may not be the root, but is structurally
modifiable. An object with a safe capability cannot be structurally modified
(transitively so), and does not care whether or not it is the root. These capabil-
ities represent in decreasing order the amount of freedom offered by an object
(in our ability to modify it, send to another actor, to placel on either side of
a field assignment). We use the term send (sent) to mean that the message is
effectively transferred out of the sender’s space after which the sender is not
permitted access to the message.

Clearly, in all cases, a node in our Message tree can have at most one other
object pointing to it4; in Boylands’ terminology [9], all fields of our Messages
are unique, which provides a system-wide invariant that permits an easy intuitive
grasp of our isolation qualifiers as deep qualifiers. The cut operator (see below)
can be read as an explicit version of the notion of destructive reads [9]. The
cuttable and safe capabilities can be seen as variants of Boylands’ borrowed.

The relationship between qualifiers and capabilities is this: the qualifiers are
specified on method interfaces and imply a interface contract between a method
and its caller and, in addition, bestow the corresponding capability on the object
referred to by the method parameter. Sec. 3 gives the specifics.

The cut operator performs a specific structural modification: it cuts a branch
of a tree, severing a subtree from its parent. In addition, it grants the root of
the subtree a free capability. Only new and cut can create free objects.

As an aside, we provide an additional (unchecked) escape interface Sharable
that allows the programmer to identify classes that do not follow our message
restrictions, yet can be safely transferred across to another thread. These may
include immutable classes and those with internal aliasing.

2 Example

Fig. 2 shows a simple Actor class TxtSrvr that blocks on a mailbox awaiting a
message, transforms the message and responds to a reply-to mailbox specified
in the message itself.

TxtMsg is a message class identified as such with the marker interface Message.
The programming model for actors (TxtSrvr here) is similar to that for Java
threads – replace Thread with Actor and run() with execute(). Similarly, an
actor is spawned thus: new TxtSrvr().start();

The entry point of a Kilim task is execute(), the only method of the actor
required to be public. Its other non-private methods may only have message-
compatible parameters and results. The @pausable annotation on a method
informs Kilim’s weaver that the method may (directly or transitively) call other
pausable methods such as Actor.sleep() and Mailbox.get().
3 Note: parameters have qualifiers, objects have capabilities; we write @free for the

programmer-supplied qualifier and free for the corresponding object’s capability.
4 At most one heap alias. Multiple local variables may also have the same pointer

value.
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import kilim.*;
class Mbx extends Mailbox<TxtMsg> {}

class TxtSrvr extends Actor {
Mbx mb;
TxtSrvr(Mbx mb) {this.mb = mb;}

@pausable
public void execute() {

while(true) {
TxtMsg m = mb.get();
transform(m);
reply(m);

}}

@pausable
void reply(@free TxtMsg m) {

m.replymb.put(m);
}

// @safe is default, so optional
void transform(@safe TxtMsg m) {· · ·}

}

class TxtMsg
implements Message

{
Mbx replymb;
byte [ ] data;

}

// Sample driver code

// spawn actor
Mbx outmb = new Mbx();
new TxtSrvr(outmb).start();

// Send and recv message
Mbx replymb = new Mbx();
byte [ ] data = ...
outmb.put(new TxtMsg(replymb, data));
... = replymb.get();

Fig. 2. Example Kilim code showing annotations for message and stack management.
Kilim’s semantic extensions are in bold.

The blocking call (to Mailbox.get()) in an infinite loop illustrates auto-
matic stack management. A typical state machine framework would have the
programmer rewrite this in a callback-oriented style and arrange to return to a
main loop; this style is prevalent even in multi-threaded settings because threads
are expensive and slow resources.

Kilim’s mailboxes are type-specific and thread-safe message queues, and being
sharable objects (see Sec. 5.2), they can be passed around in messages. They
support blocking, timed-blocking and non-blocking variants of get and put. An
actor may simultaneously wait for a message from one of many mailboxes using
select (like CSP’s alt [23]). Rudimentary I/O throttling is provided in the form
of bounded queue sizes (default is unbounded), and the caller of Mailbox.put()
is suspended if the queue is full (which is why reply()) must be marked as
pausable in the example.

The isolation qualifier @free on the reply() method’s parameter is a contract
between the caller (execute()) and the callee. The weaver checks that the caller
supplies an object with a free capability to the callee and subsequently does not
use any local variables pointing to or into the message. In turn, reply cedes
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FuncDcl ::= freeopt m(�p : �α) { (lb : Stmt)∗; }
Stmt ::= x := new | x := y

| x := y.f | x.f := y | x := cut(y.f)
| x := y[·] | x[·] := y | x := cut(y[·])
| x := m(�y) | if/goto �lb | return x

x, y, p ∈ variable names f ∈ field names
lb ∈ label names m ∈ function names
sel ∈ field names ∪ {[·]} [·] pseudo field name for array access
α, β ∈ isolation qualifier {free , cuttable , safe}
null is treated as a special readonly variable

Fig. 3. Core syntax. All expressions are in A-normal form. Variables not appearing in
the parameter list are assumed to be local variables.

all rights to the message after calling the mailbox’s put() method (because the
latter too has a @free annotation on its formal parameters).

The transform() method does not require its supplied arguments to be
free. This means that execute() is permitted to use the message object after
transform() returns. Note also that transform() is not marked with @pausable,
which guarantees us that it does not call any other pausable methods.

3 Core Language

Fig. 3 shows our core syntax, a Java-like intra-procedural language. The language
is meant for the isolation checking phase only; it focuses solely on message types
and its statements have a bearing on variable and heap aliasing only. We confine
ourselves to purely intra-procedural reasoning for speed, precision and localising
the effect of changes to code (whole program analyses sometimes show errors in
seemingly unrelated pieces of code).

Primitive fields and normal Java objects, while tracked for the CPS transfor-
mation phase, are not germane to the issue of isolation checking. A program in
this language is already in A-normal form (all intermediate expressions named).

Isolation Qualifiers and Capabilities. We mentioned earlier that isolation
qualifiers (α, β) are specified in the form of annotations on method parame-
ters and return values. Like normal types, they represent the capabilities of the
arguments expected (an object must be at least as capable). Internally to the
method, the qualifiers represent the initial capability for each parameter object;
the object’s capability may subsequently change (unlike its Java type). Other
objects’ capabilities are inferred by a data-flow analysis (Sec. 5). In all cases, we
enforce the invariant that there can be at most one heap pointer to any message
object.

The list below informally describes object capabilities (Fig. 8 has the precise
semantics). It bears repeating that they reflect a lattice composed of two boolean



110 S. Srinivasan and A. Mycroft

properties – root node or not and, whether or not its pointer-valued fields are
assignable (structurally modifiable).

free: The free capability is granted to the root of a tree by new and by cut, and
to a method parameter marked as @free. A free object is guaranteed to be
a root, but not vice-versa. It is field-assignable to another non-safe object
and can be used as an argument to a method with any qualifier.

cuttable: This capability is granted to an object obtained via a field lookup
of another non-safe object, from downgrading a free object by assigning it
to a field of another (it is no longer a root) and to a method parameter
marked @cuttable. This capability permits the object to be cut, but not
to be assigned to another object (because it is not necessarily a root). This
capability is transitive: an object is cuttable if its parent is.

safe: The safe capability is granted to a method parameter marked @safe or
(transitively) to any object reachable from it. A safe object may not be
structurally modified or further heap-aliased or sent to another actor.

The qualifiers on method parameters impose the following interface contracts on
callers and callees:

@free: This allows the method to treat the parameter (transitively the entire
tree rooted there) as it sees fit, including sending it to another actor. The
type system ensures that the caller of the method supplies a free argument,
and subsequently forbids the use of all local variables that may point to any
part of the tree (reachable from the argument).

@cuttable: The caller must assume that the corresponding object may be cut
anywhere, and must therefore forget about all local variables that are reach-
able from the argument (because the objects they refer to could be cut off
and possibly sent to another actor).

@safe: The caller can continue to use a message object (and all aliases into it)
if it is passed to a @safe parameter. The callee cannot modify the structure.

The cut operator severs a subtree from its (cuttable) parent thus:

y = cut(x.sel)
def
= y = x.sel; x.sel = null;

Crucially, and in addition, it marks y as free; ordinarily, performing the two
operations on the right hand side would only mark y as cuttable. The cut oper-
ator works identically on fields and arrays. Because it is a single operation and
because messages (and their array-valued components) are tree-structured by
construction, the subtree can be marked free.

Remark 1. The most notable aspect of this calculus is that we amplify the re-
quirement that at most one actor owns a given message into the stronger one
that at most one dynamically active method stack frame may refer to a free
message. This is justified by the requirements that (i) a free object is a root
object and (ii) the rules on passing it to a method expecting a @free parame-
ter cause all local variables pointing to it to be marked inaccessible. Therefore
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inter-actor communication primitives of the form send and receive are treated
as simple method calls; in other words, all that is required of an inter-actor
messaging facility like the mailbox is that they annotate their parameters and
return values (for send and receive operations respectively) with free, thereby
trivially isolating the intricacies of inter-actor and inter-thread interaction, Java
memory model, serialization, batched I/O, scheduling etc.

Remark 2. One could readily add an intermediate qualifier between @cuttable
and @safe, say @cutsafe, which permits all modifications except cutting. That
is, it could allow additions to the tree and nullification, but not extraction via
cut for possible transfer of ownership.

In addition to matching object capabilities with isolation qualifiers on method
parameters, Kilim enforces a rule to eliminate parameter-induced aliasing: argu-
ments to a method must be pairwise disjoint (trees may not overlap) if any one
of them is non-safe, and the return value, if any, must be free and disjoint from
the input parameters.

3.1 Why Qualifiers on Variables Are Not Enough

One might hope that a simple type system à la PacLang [17] can be created by
associating variables of Message type with isolation type qualifiers, which change
with the program point. However, such type systems do not take relationships
between variables into account. For example, if we know that x and y are aliases,
or y points within the structure rooted at x, then passing x to a method accepting
a free message (e.g. Mailbox.put()) must result in not only x but also y being
removed from the objects accessible from the scope of the actor.

In other words, while it is convenient to think of variables as having a qualifier
such as @free, it is really the objects that have such a qualifier. We need to
analyse methods to infer variable dependencies; the next two sections expand on
this subject.

We split isolation checking into two phases for exposition, although the imple-
mentation performs them pointwise on the control flow graph. These two phases
are covered in Sec. 4 and Sec. 5.

4 Heap Graph Construction

A program may create an unbounded set of message objects at run-time. A
compile-time analysis of such a program requires that we first create an abstract
model of the heap, called a heap graph. Each node of this (necessarily finite) graph
represents a potentially infinite set of run-time objects that have something in
common with each other at a given program point, and different heap analyses
differ on the common theme that binds the objects represented by the node.

We base our heap graph abstraction on a simple variant of shape analysis [37];
we claim no novelty. Our contribution is the set of design choices (isolation
qualifiers, tree-structure, local analysis, the cut operator) that make the problem
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G : 〈L, E〉 Heap graph is a pair of local var info L and edges E

L ∈ P(〈Var ,LNode〉) L = relation between local variable names and nodes
(LNode is logically the nodes of the graph)

E ∈ P(〈Node, sel,Node〉) E = a set of Node-Node edges labelled with field names

LNode ∈ P(V ar) Heap Graph node; in this formalism the name of the node
consists of the set of local variable names that may
point to it.
Well-formedness: 〈x, N〉 ∈ L ⇔ x ∈ N

Node ∈ P(V ar) ∪ {∅} Labelled nodes plus summary node.

Convenience:

L(x)
def
= {N | 〈x, N〉 ∈ L} set of LNodes to which a local variable might point.

Fig. 4. Heap Graph formalism following [37]

simpler and faster to reason about; it is a shape-enforcement rather than a
general analysis problem.

A heap graph G (see Fig. 4) is a pair 〈L, E〉; L is the set of associations
between variable names and nodes, and E represents the set of labelled edges
between nodes. A node may be pointed to by more than one variable and is
identified by a label that is merely the set of variable names pointing to it (a
reverse index).

Fig. 5 shows example heap graphs at two program points. The sample heap
graph l1 is represented algebraically as follows5:

L = { 〈a, {a}〉, 〈b, {b, d}〉, 〈d, {b, d}〉, 〈c, {c, d}〉, 〈d, {c, d}〉, 〈e, {e}〉 }
E = { 〈{a}, f, {b, d}〉, 〈{a}, f, {c, d}〉, 〈{b, d}, g, {e}〉, 〈{c, d}, g, {e}〉 }
The common theme among run-time objects represented by a shape analysis

node is that they are all referred to by the set of variables in the node’s label,
at that program point, for any given run of the program – a node is an aliasing
configuration.

In addition to the labelled nodes mentioned thus far, there is one generic
summary node with the special label ∅ that represents all heap objects not
directly referred to by a local variable. When a node ceases to be pointed to by
any variable, its label set becomes empty and it is merged with the summary
node (hence ‘∅’—by analogy with the empty set symbol).

Note that edges originate or end in labelled nodes only; the heap graph does not
know anything about the connectivity of anonymous objects (inside the ∅ node)

The most important invariant in heap graph construction is that there can-
not be an edge between two nodes whose labels are not disjoint. Without the
invariant, an edge such as 〈{x, y}, f, {x, u}〉 would represent the following im-
possible situation. x and y point to the same set of run-time objects (at that

5 Parallels to shape analysis [37]: G is their static shape graph, L is Ev with a layer of
subscripting is removed; we write 〈y, {x, y, z}〉 for their 〈y, nx,y,z〉.
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   a = new; b = new; c = new
   if ...
     a.f = b
     d = b
   else
     a.f = c
     d = c
   e = d.g
l
1
:

   d = null
   b.g = null
l
2
:

a

b,d

c,d

e

f

f g

g

a

b

c

e

f

f g

l
1
:

l
2
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Fig. 5. Sample heap graphs at l1 and l2. Only edges E are shown; L is implicit.

program point, on any run of the program). These objects in turn are connected
to another bunch of objects, referred to by x and u. This is clearly not possible,
because x’s objects have both an outgoing and an incoming edge while its alias-
ing partners (y and u) only have one or the other edge. Non-disjoint alias sets
can coexist in the graph, as long as they do not violate this invariant.

Given the control flow graph CFG mentioned earlier, we use the following
equations to construct the heap graph G after every program point. The anal-
ysis is specified in terms of an iterative forward flow performed on the lattice
〈G, ⊆〉. We merge the heap graphs at control-flow join points to avoid the expo-
nential growth in the set of graphs (like [37], unlike [29]). This means all transfer
functions operate on a single heap graph (rather than a set of graphs).

Ginit
out = 〈 { }, { } 〉

Gl
in =

⋃
{Gl′

out | (l′, l) ∈ CFG}
Gl

out = � · �(Gl
in)

The second equation merges the graphs from the CFG node’s incoming edges
(simple set union of node and edge sets). � · � represents the transfer functions
for each CFG node (Fig. 6). Note that if goto and return do not have transfer
functions; they are turned into edges of the CFG.

The transfer functions are simpler than the ones in shape analysis because they
do not deal with sharing (attempts to share are faulted in the isolation checking
phase). Note that the heap graph may have nodes with multiple incoming edges,
but it reflects a may-alias edge, not an edge that induces sharing. The node
labelled e in Fig. 5 represents two disjoint sets of run-time objects, one of which
has incoming edges from the {b, d} set of objects and the other from {c, f}.

The transfer function for x := y.f deserves some attention. It associates x
with all nodes T pointed to by y.f , which may or may not have been created
as yet by the analysis procedure. Fig. 7 covers both possibilities. In the case
where a node does not exist, it is treated as if it belongs as a discrete blob inside
the summary node, implicitly referred to by y.f (the grey region in Fig. 7). In
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Notation: V (any Node), S (source Node), T (target Node)

Sx
def
= S ∪ {x}

Sy
x

def
=

{
S ∪ {x} if y ∈ S
S otherwise

kill(G, x)
def
= L′ = { 〈v, V ′〉 ∈ L | v �= x ∧ V ′ = V \ {x} ∧ 〈v, V 〉 ∈ L}

E′ = { 〈S \ {x}, sel, T \ {x}〉 | 〈S, sel, T 〉 ∈ E}
�entry(mthd)� G L′′ =

⋃
i { 〈pi, {pi}〉 }

where pi is the ith parameter of mthd
E′′ = {}

�x := new� G G′ : 〈L′, E′〉 = kill(G, x)
L′′ = L′ ∪ 〈x, {x}〉, E′′ = E′

�x := y� G G′ : 〈L′, E′〉 = kill(G, x)
L′′ = { 〈v, V y

x 〉 | {v, V } ∈ L′}
E′′ = { 〈Sy

x , sel, T y
x 〉 | 〈S, sel, T 〉 ∈ E′}

�x.f := y� G E′ = E \ { 〈S, f, ∗〉 ∈ E | x ∈ S }

E′′ =
{

E′ if y ≡ null
E′ ∪ { 〈S, f , T 〉 | x ∈ S ∧ y ∈ T} otherwise

L′′ = L

�x[·] := y� G E′′ =
{

E if y ≡ null
E ∪ { 〈S, ‘[·]′ , T 〉 | x ∈ S ∧ y ∈ T} otherwise

L′′ = L

�x := y.sel� G

G′ : 〈L′, E′〉 = kill(G, x)
L′′ = L′

∪ { 〈t, Tx〉 | 〈t, T 〉 ∈ L′ ∧ 〈y, S〉 ∈ L′ ∧ 〈S, sel, T 〉 ∈ E′}
∪ { 〈x, Tx〉 | 〈y, S〉 ∈ L′ ∧ 〈S, sel, T 〉 ∈ E′}

E′′ = ( E′ \
⋃

{〈y, sel, ∗〉 ∈ E′ })
∪ { 〈y, sel, Tx〉 | 〈y, sel, T 〉 ∈ E′}
∪ { 〈Tx, sel, U〉 | 〈T, sel, U〉 ∈ E′}

�x := cut(y.sel)� �y.sel := null� ◦ �x := y.sel�

�x := m(�v)� G G′ : 〈L′, E′〉 = kill(G, x)
L′′ = L′ ∪ { 〈x, {x} 〉 }
E′′ = E′

Fig. 6. Transfer functions � · � for heap graph construction. They transform G : 〈L, E〉
to G′′ : 〈L′′, E′′〉. ‘∗’ represents wildcards and sel represents field and array access.

this case, the node is materialized [37] out of the summary node and all edges
outgoing from that node are replicated and attached to the newly materialized
node. This replication is necessary because we do not have precise information
about which portion of the anonymous heap (represented by the summary node)
is responsible for the outgoing edges (the grey blob, or the non-grey portion).
Note that we do not have to replicate the incoming edges because we know that
nodes are not shared and that the newly materialized node is already pointed
to by the y.f edge.



Kilim: Isolation-Typed Actors for Java 115

Shape analysis provides strong nullification and disjointness [37], as illustrated
in Fig. 5 by the transition from heap graph at l1 to that of l2. Unfortunately,
shape analysis cannot do the same for arrays: setting “x[i] = y” tells us nothing
at all about x[j]. However, cut performs strong nullification even on arrays,
because our type system ensures that the array’s components are disjoint both
mutually and from the variable on the right hand side.

Remark 3. There is an important software engineering reason for having cut,
instead of relying on shape analysis to inform us about disjointness: we want
to make explicit in the code the act of cutting a branch from the tree and
giving the subtree a free capability. Most methods do not need to cut; they can
have the default @safe qualifier, which allows them to (transitively) modify the
arguments, but not cut or send the object.
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Fig. 7. Example heap graph before and after transformation by �x := y.f�. Double
lines show the newly materialized node and edge. The grey blob is the portion of the
anonymous heap that is the implicit target of y.f .

5 Isolation Capability Checking

Having built heap graphs at every program point, we now associate each labelled
node n in each heap graph with a capability κ(n), as mentioned earlier. All run-
time objects represented by n implicitly have the same capability.

Fig. 8 shows the monotone transfer functions operating over the capability
lattice in a simple forward-flow pass. At CFG join points, the merged heap
graph’s nodes are set to the minimum of the capabilities of the corresponding
nodes in the predecessor heap graphs (in the CFG). For example,

a = new // κ(a) := free
if ...

b.f = a // κ(a) := cuttable
// join point. κ(a) := min(free, cuttable)

send(a) // ERROR: κ(a) is not free
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Assumption 1: the current method’s signature is free mthd(�p : �α).
Assumption 2: E and L used (e.g.) in dependants result from Heap Graph analysis for
the current instruction.

�entry(mthd)� κ = [�p κ→ �α]

�x := new T � κ = κ[x κ→ free]

�x := y� κ = κ[x κ→ κ(y)]

precondition : κ(y) = free
�x.f := y� κ = κ[y κ→ cuttable]

�x := y.f� κ = κ[x κ→ s]

s =
j

safe if κ(y) = safe
cuttable if κ(y) ∈ {free, cuttable}

precondition : βi � κ(yi) ∧ (∀i �= j)(disjoint(yi, yj) ∨ βi = βj = safe)

�x := m(�y)� κ = κ

"
dependants(yi) ∪ {yi} κ→ ⊥, if (βi = free)
dependants(yi)

κ→ ⊥, if (βi = cuttable)

# h
x

κ→ free
i

(assumption: m’s signature is free m(�β). Return value is always free)

precondition : κ(y) ∈ {free, cuttable}
�x := cut(y.f)� κ = κ[x κ→ free]

precondition : κ(x) = free ∧ ∀i(αi = cuttable =⇒ disjoint(x, pi))
�return x� κ = κ (no change)

where:
κ(n) : LNode → Capability gives the Capability associated with a node n ∈ LNode
(Capability, �) = ⊥ � safe � cuttable � free

κ(v)
def
= min(κ(n)), n ∈ L(v)

κ[v κ→ c : Capability]
def
= κ[n → c], n ∈ L(v)

dependants(v)
def
= {v′ |n ∈ L(v) ∧ n′ ∈ L(v′) ∧ n′ ∈ reachset(n)}

where reachset(n) =
S

{n, , n′}∈E{n′} ∪ reachset(n′)

disjoint(x, y)
def
= x �= y ∧ (x �∈ dependants(y) ∧ y �∈ dependants(x)

Fig. 8. Transfer functions for capability inference. Standard precondition: variables
used as rvalues must be valid (i.e. �⊥).

Isolation qualifier β

κ(y) free cuttable safe

free κ′ = κ[y κ→ ⊥, �z
κ→ ⊥] κ′ = κ[y κ→ ⊥] κ′ = κ

cuttable κ′ = κ[y κ→ ⊥] κ′ = κ

safe κ′ = κ

Fig. 9. Effect of the call m(y) – where m’s signature is m(β p)) – on the capabilities
of y and on the dependants �z of y. A blank indicates the call is illegal.
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Note that the function κ has been overloaded to work for both variables and
nodes; a variable’s capability is the minimum capability of all the nodes to which
it points.

The transfer function for method calls may be better understood from Fig. 9.
The matrix matches capabilities of the argument with the corresponding pa-
rameter’s isolation qualifier and each cell of the matrix reflects the effect on the
capabilities of objects reachable from the argument.

5.1 Soundness

A formal proof of correctness is left to future work. Below, we outline the in-
tuitions that justify our belief that the system is correct, and which we expect
could form the basis of a proof.

Firstly, we require all built-in functions that can transfer a message (or a tree
of such messages) from one actor to another do so via a free parameter or re-
sult. Therefore it is necessary to ensure that when an object is so transferred,
no part of it remains accessible by the caller after the call – i.e. all local vari-
ables that can reference it can no longer be used. Of course, using conventional
stack frames, there may remain pointers into the transferred structure, but the
critical requirement is that all variables that may refer to these are marked with
capability ⊥. This effect is achieved by a combination of heap graph analysis
followed by the capability dataflow propagation.

Secondly, we need to ensure that all operations in the language preserve the
invariant that messages are tree-structured and that only the root of a message
is ever marked as free. This requires a careful examination of each language
primitive. Critical cases are:

– x := cut(y.f). If y is a well-formed tree, the modified y and x are also
well-formed.

– x.f := y. This is the only form that can create heap aliases and its precon-
ditions ensure that no more than one heap alias is created for any object.
Further, y simultaneously loses the property of being a root and being free.

The correctness of the heap graph analysis rests on it being a special case of
shape analysis (we can omit the “heap-sharing” flag).

Together, the argument is that each single step of evaluation preserves the
property that only the root of a message can ever be free.

As a consequence each heap node is only accessible from at most one method
in one actor as free, and therefore accessible from at most one actor.

5.2 Interoperation with Java

Java classes identified by the marker interface Message are treated as message
types. We have treated Java objects and Messages as immiscible so far. This
section describes the manner in which they can be mixed and the effect of such
mixing on correctness.
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Immutable classes such as String and Date already satisfy our interference-
freedom version of isolation—even though, in the JVM they may be implemented
as references shared by multiple actors, this sharing is benign. However, if the
programmer wants to share a class between actors and is aware of the implica-
tions of sharing such a class (the mailbox is an example), he can have the class
implement a marker interface Sharable. The weaver does not perform any checks
on objects of such and therefore permits multiple heap-aliases. Clearly, this is
a potential safety loophole. Objects derived from fields of Sharable objects are
treated as regular Java objects, unless they too are instances of a Sharable class.

If a method parameter is not a message type, but is type compatible (upcast
to Object, for example), then the absence of an annotation is treated as an
escape into unknown territory; the weaver treats it as a compile-time error.
For existing classes whose sources cannot be annotated, but whose behaviour is
known, the programmer can supply “external annotations” to the weaver as a
text file (Fig. 1):

class java.lang.String implements Sharable

interface java.io.PrintStream {
void println(@safe Object o);

}

This scheme works as if the annotations were present in the original code.
Clearly, it only works for non-executable annotations (type-qualifiers used for
validation); @pausable cannot be used as it results in code transformations.
Further, externally annotated libraries are not intended to be passed through
Kilim’s weaver; the annotations serve to declare the library methods’ effects on
their parameters.

The @safe annotation implies that the method guarantees that the parameter
does not escape to a global variable or introduce other aliases (such as a collection
class might), guarantees that are ordinarily given by message-aware methods.

Kilim accommodates other object types (needed for creating closures for the
CPS transformation phase), but does not track them as it does message types.
We take the pragmatic route of allowing ordinary Java objects (and their arrays)
to be referenced from message classes but give no guarantees of safety. We do
not implement any run-time checks or annotations or restrictions (such as a
classloader per actor) on such objects.

Finally, the weaver limits static class fields to constant primitive or final
Sharable objects and prevents exceptions from being message types.

6 Creating Scalable, Efficient Actors

Traditional threading facilities (including those available in the JVM) are tied
to kernel resources, which limits their scalability and the efficiency of context
switching. We map large numbers of actors onto a few Java threads by the simple
expedient of rewriting their bytecode and having them cooperatively unwind
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their call stack. Unwinding is triggered by calls to Actor.pause or Actor.sleep
(the mailbox library calls these internally).

A scheduler then initiates the process of rewinding (restoring) another actor’s
call stack, which then continues from where it left off. Much of the mechanics of
transformation has been covered in an earlier paper [33]; this section summarises
and highlights some of the important engineering decisions.

Unwinding a call stack involves remembering, for each activation frame, the
state of the Java operand stack and of the local variables and the code offset to
which to return. A call stack can unwind and rewind only if the entire call chain
is composed of methods annotated with @pausable. Each pausable method’s
signature is transformed to include an extra argument called a fiber (of type
Fiber), a logical thread of control. The fiber is a mechanism for a method to
signal to its caller that it wants to return prematurely. The fiber also acts as a
store for the activation frame of each method in the call hierarchy as the stack
unwinds. The activation frame of a method consists of the program counter (the
code offset to jump back to), the operand stack and the local variables. When
the callee pauses (calls Actor.pause() or mailbox.get()), the caller examines
the fiber, learns that it is now in a pausing state, stores its activation frame on
the fiber and returns. And so on all the way up past the call chain’s starting
point, the actor’s execute() method. This way, the entire call stack with its
control and data elements is reified onto the fiber. The process is easily reversed:
each method consults the fiber upon entry, jumps directly to the resumption
point and restores its state where necessary.

This is conceptually equivalent to a continuation passing style (CPS) transfor-
mation; it is however applied only to pausable methods and produces single-shot
continuations. The transform inlines local subroutines (reachable from the jsr
instruction and used in try-finally blocks). Finally, the A-normal form of the CFG
helps deal with the restriction imposed by the JVM that one cannot branch to
an offset between new and the corresponding constructor invocation.

Transforming Java bytecode has the advantage that its format has remained
constant while the source language has undergone tremendous transformations
(generics, inner classes and soon, lambda functions and closures). It also allows
us to perform local surgery and to goto into a loop without modifying any of
the original code. Finally, it is applicable to other JVM-based languages as well
(e.g. Scala).

Fig. 10 shows a sample CFG of a pausable method that makes a call to an-
other pausable method, before and after the transformation performed by Kilim’s
weaver. The CFG shows extended basic blocks (multiple out-edges that account
for JVM branching instructions and exception handlers), with the invoke in-
struction to a pausable method separated out into its own block. We will hence-
forth refer to this basic block as a call site.

The weaver adds one prelude node at entry, modifies each call site and adds
two edges, one from the prelude to the call site to help recreate the stack and
another from the call site to the exit to pause and unwind the stack. It also adds
a node at the entry to every catch handler. None of the original nodes or edges
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Fig. 10. CFG before and after transform

are touched, but the weaver maintains the JVM-verified invariant that the types
and number of elements in the local variables and operand stack are identical
regardless of the path taken to arrive at any instruction. This means that we
cannot arbitrarily jump to any offset without balancing the stack first. For this
reason, the stack and variables may need to be seeded with an appropriate
number of dummy (constant) values of the expected type before doing the jump
in the prelude.

6.1 Implementation Remarks

While the general approach is similar to many earlier approaches [5, 25], we feel
the following engineering decisions contribute to the speed and scalability of our
approach.

We store and restore the activation frame’s state lazily in order to incur the
least possible penalty when a pausable method does not pause. Unlike typical
CPS transformations, we transform only those methods that contain invocations
to methods marked @pausable. Our heap analysis phase also tracks live vari-
ables, duplicate values and constants. The latter two are never stored in the
fiber; they are restored through explicit code. These steps ensure the minimum
possible size for the closure. To the extent we are aware, these analyses are not
performed by competing approaches.

In contrast to most CPS transformations on Java/C# bytecode, we chose to
preserve the original call structure and to rewind and unwind the call stack.
One reason is that CPS transformations also typically require the environment
to support tail-call optimisation, a feature not present in the JVM. Second, the
Java environment and mindset is quite dependent on the stack view of things:
from security based on stack inspection to stack traces for debugging. In any
case, the process of rewinding and unwinding the call stack turned out to be
far less expensive than we had originally suspected, partly because we eagerly
restore only the control plane, but lazily restore the data plane: only the topmost
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activation frame’s local variables and operand stack are restored before resuming.
If the actor pauses again, the intermediate activation frames’ states are already
in the fiber and do not need to be stored again.

Some researchers have used exceptions as a longjmp mechanism to unwind
the stack; we use return because we found exceptions to be more expensive by
almost two orders of magnitude. Not only do they have to be caught and re-
thrown at each level of the stack chain, they clear the operand stack as well. This
unnecessarily forces one to take a snapshot of the operand stack before making
a call; in our experience, lazy storage and restoration works better.

We chose to modify the method signatures to accommodate an extra fiber
parameter in contrast to other approaches that use Java’s ThreadLocal facility
to carry the out-of-band information. Using ThreadLocals is inefficient at best
(about 10x slower), and incorrect at worst because there’s no way to detect at
run time that a non-pausable method is calling a pausable method (unless all
methods are instrumented).

We have also noticed that the @pausable annotation makes explicit in the
programmer’s mind the cost of pausing, which in turn has a noticeable impact
on the program structure.

7 Performance

Erlang is the current standard bearer for concurrency-oriented programming
and sets the terms of the debate, from micro-benchmarks such as speed of pro-
cess creation and messaging performance, to systems with an incredible 9-nines
reliability [2]. Naturally, a comparison between Kilim and Erlang is warranted.

Unfortunately, no standard benchmark suites are yet available for the actor
paradigm. We evaluated both platforms on the three most often quoted and much
praised characteristics of the Erlang run-time: ability to create many processes,
speed of process creation and that of message passing.

All tests were run on a 3GHz Pentium D machine with 1GB memory, running
Fedora Core 6 Linux, Erlang v. R11B-3 (running HIPE) and Java 1.6. All tests
were conducted with no special command-line parameters to tweak performance.
Ten samples were taken from each system, after allowing the just-in-time com-
pilers (JITs) to warm up. The variance was small enough in all experiments to
be effectively ignored.

Kilim’s performance exceeded our expectations on all counts. We had assumed
that having to unwind and rewind the stack would drag down performance that
could only be compensated for by an application that could make use of the JIT
compiler. But Kilim’s transformation, along with the quality of Java’s current
run-time, was able to compete favourably with Erlang on tasking, messaging
and scalability.

Process creation The first test (Fig. 11(a)) measures the speed of (lightweight
Erlang) process creation. The test creates n processes (actors) each of which
sends a message to a central accounting process before exiting. The test measures
the time taken from start to the last exit message arriving at the central object.
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Fig. 11. Erlang vs. Kilim times. X-axis: n actors (n2 messages), Y-axis: Time in ms
(lower is better).

Kilim’s creation penalty is negligible (200,000 actors in 578ms, a rate of 350KHz),
and scaling is linear. We were unable to determine the reason for the knee in the
Erlang curve.

Messaging Performance. The second test (Fig. 11(b)) has n actors exchanging n2

messages with one another. This tests messaging performance and the ability to
make use of multiple processing elements (cores or processors). Kilim’s messaging
is fast (9M+ messages in 0.54 μ sec, which includes context-switching time) and
scales linearly.

Exploiting parallelism. The dual-core Pentium platform offered no tangible im-
provement (a slight decrease if anything) by running more than one thread with
different kinds of schedulers (all threads managed by one scheduler vs. indepen-
dent schedulers). We tried the messaging performance experiment on a Sun Fire
T2000 machine with 32G total memory, eight cores on one chip and four hard-
ware threads per core. We compared the system running with one thread vs.
ten. Fig. 12 demonstrates the improvement afforded by real parallelism. Note
also that the overall performance in this case is limited by the slower CPUs
running at 1.4 GHz.

Miscellaneous numbers. We benchmarked against standard Java threads, RMI
objects and Scala (2.6.1-RC1) (within one JVM instance). We do not include
these numbers because we found all of them to be considerably slower: a simple
binary ping-pong test with two objects bouncing a message back and forth has
Kilim 10x faster than Scala’s Actor framework [22] (even with the lighter-weight
react mechanism), 5x faster than threads with Java’s Pipe*Stream and 100x
faster than RMI between collocated objects (RMI always serialises its messages,
even if the parameters are non-referential types). Larger scales only worsened
the performance gap.

Interpreting the results. One cannot set too much store by micro-benchmarks
against a run-time as robust as that of Erlang. We are writing real-world appli-
cations to properly evaluate issues such as scheduling fairness, cache locality and
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memory usage. Still, these tests do demonstrate that Kilim is a promising step
combining the best of both worlds: concurrency-oriented programming, Erlang
style, and the extant experience and training in object-oriented programming.

8 Related Work

Our work combines two orthogonal streams: lightweight tasking frameworks
and alias control, with the focus on portability and immediate applicability (no
changes to Java or the JVM).

Concurrent Languages. Most concurrency solutions can—on one axis—be
broadly classified as a language versus library approach [11]. We are partial
to Hans Boehm’s persuasive arguments [6] that threads belong to the language,
not a library. While most of the proposed concurrent languages notably sup-
port tasks and messages, few have found real industrial acceptance: Ada, Erlang
and Occam. For the Java audience, Scala provides an elegant syntax and type
system with support for actors provided as a library [22]; however, lack of isola-
tion and aliasing are still issues. Scala has no lightweight threading mechanism,
although the combination of higher-order functions and the react mechanism
is a far superior alternative to callback functions in Java. JCSP [35], a Java
implementation of CSP [23] has much the same issues.

The Singularity operating system [18] features similar to ours: lightweight
isolated processes and special message types that do not allow internal aliasing.
The system is written in a new concurrency-oriented language (Sing#), and
a new run-time based on Microsoft’s CLR model but with special heaps for
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exchanging messages. While ours is a more of an evolutionary approach, we look
forward to their efforts becoming mainstream.

Tasks and Lightweight Threads. None of the existing lightweight tasking frame-
works that we are aware of address the problems of aliased references.

The word “task” is overloaded. We are interested only in tasking frameworks
that provide automatic stack management (can pause and resume) and not run
to completion, such as Java’s Executor, FJTask [27]) and JCilk [14]. That said,
we have much to learn from the Cilk project’s work on hierarchical task struc-
tures and work-stealing scheduling algorithms.

The Capriccio project [4] modified the user-level POSIX threads (pthreads)
library to avoid overly conservative pre-allocation of heap and stack space, re-
lying instead on a static analysis of code to infer the appropriate size and lo-
cations to dynamically expand heap space. They report scalability to 100,000
preemptively-scheduled threads.

Pettyjohn et al [30] generalise previous approaches to implementing first-class
continuations for environments that do not support stack inspections. However,
their generated code is considerably less efficient than ours; it relies on exceptions
for stack unwinding, it creates custom objects per invocation site, splits the code
into top-level procedures which results in loops being split into virtual function
calls.

Many frameworks such as RIFE [5], and the Apache project’s JavaFlow [25]
transform Java bytecode into a style similar to ours. RIFE does not handle
nested pausable calls. Kilim handles all bytecode instructions (including jsr)
and is significantly faster for reasons explained earlier (and in [33]).

Static Analysis. Inferring, enforcing, and reasoning about properties of the heap
is the subject of a sizable proportion of research literature on programming
languages. We will not attempt to do this topic justice here and will instead
provide a brief survey of the most relevant work. We heartily recommend [24],
an “action plan” drawn up to address issues caused by unrestricted aliasing in
the context of object-oriented programming languages.

Alias analysis concentrates on which variables may (or must) be aliases, but
not on how sets of aliases relate to each other, an important requirement for
us. We also require strong nullification and disjointness-preservation, something
not available from most points-to analyses (e.g. [31]), because their method of
associating abstract heap nodes with allocation points is equivalent to fixing the
set of run-time objects that a variable may point to.

Shape analysis provides us the required properties because it accommodates
dynamic repartitioning of the set of run-time objects represented by an alias
configuration. However, the precision comes at the expense of speed. Our an-
notations provide more information to the analysis and pave the way for more
modular inter-procedural analyses in the future.

Our approach is most closely related to Boyland’s excellent paper on alias
burying [10], which provides the notions of unique (identical to our free) and
borrowed, which indicates that the object is not further aliasable (cuttable and
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safe, in our case). Boyland does not speak of safety from structural modifica-
tions, but this is a minor difference. The biggest difference in our approach is
not the mechanics of the analysis, but in our design decision that messages be
different classes and references to them and their components be unique. Making
them different helps in dealing with versioning and selective upgrades (for exam-
ple, one can have separate classloaders for actors and messages). Allowing free
mixing of non-unique and unique references makes it very difficult to statically
guarantee safety unless one extends the language, as with ownership types. This
is an important software engineering decision; the knowledge that every message
pointer is always unique and not subject to lock mistakes ensures that code for
serialization, logging, filtering and persistence code does not need to deal with
cycles, and permits arrays and embedded components to be exposed.

Type systems are generally monadic (do not relate one variable to another)
and flow-insensitive (a variable’s type does not change), although flow-sensitive
type qualifiers [19] and quasi-linear types [26] are analogous to our efforts. Quasi-
linear types have been successfully for network packet processing [17]; however
packet structures in their language do not have nested pointers.

Ownership types [12, 7, 8] limit access to an object’s internal representations
through its owners. External uniqueness types [13] add to ownership types a
linearly-typed pointer pointing to the root object. Each of these schemes offers
powerful ways of containing aliasing, but are not a good fit for our current
requirements: retrofitting into existing work, working with unencapsulated value
objects and low annotation burden. An excellent summary of type systems for
hierarchic shapes is presented in [16].

StreamFlex [32] relies on an implicit ownership type system that implements
scoped allocation and ensures that there are no references to an object in a higher
scope, but allows aliasing of objects in sibling and lower scopes. Their analysis
relies on a partially closed world assumption. The type system is eminently suited
for hooking together chained filters; it is less clear to us how it would work for
long-lived communicating actors and changing connection topologies.

There are clearly domains where internal aliasing is useful to have, such as
transmitting graphs across compiler stages. Although gcc’s GIMPLE IR is tree-
structured, one still has to convert it back to a graph, for example. A type system
with scoped regions, such as StreamFlex’s, permits internal aliasing without
allowing non-unique pointers to escape from their embedded scope.

There are several works related to isolation. Reference immutability anno-
tations [34, 21] can naturally complement our work. The Java community has
recently proposed JSR-121, a specification for application level isolation; this
ensures all global structures are global only to an isolate.

9 Conclusion and Future Work

We have demonstrated Kilim, a fast and scalable actor framework for Java. It
features ultra-lightweight threads with logically disjoint heaps, a message-passing
framework and a static analysis that semantically distinguishes messages from
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other objects purely internal to the actor. The type system ensures that messages
are free of internal aliases and are owned by at most one actor at a time. This is
in contrast to the current environment in all mainstream languages: heavyweight
kernel threads, shared memory and explicit locking.

The techniques are applicable to any language with pointers and garbage
collection, such as C#, Scala and OCaml.

Our target deployment platform is data-centre servers, where a user request
results in a split-phase workflow involving CPU, disk and possibly dozens of re-
mote services [15]; this application scenario helps distinguish our design choices
from extant approaches to parallel and grid computing, which are oriented to-
wards CPU-intensive problems such as protein folding.

Our message-passing framework lends itself naturally to a seamless view of lo-
cal and distributed messaging. Integrating our platform with distributed naming
and queueing systems is our current focus.

Another promising area of future work of interest to server-side frameworks
is precise accounting of resources such as database connections, file handles and
security credentials; these must be properly disposed of or returned even in the
presence of actor crashes. We expect to extend the linearity paradigm towards
statically-checked accountability of resource usage.
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