
Mechanical Consistency Analysis for Business Contracts and Policies

Alan S. Abrahams, David M. Eyers, and Jean M. Bacon

University of Cambridge
Computer Laboratory

Cambridge, Cambridgeshire, United Kingdom
{Alan.Abrahams,David.Eyers,Jean.Bacon}@cl.cam.ac.uk

Abstract

The EDEE system provides a framework through which businesses may store the data pertaining to business events,
contracts and organizational policies, within a single repository using the unifying notion of an occurrence. A collection
of stored queries (cf. SQL views) is maintained. Each query describes the desirable, undesirable, and not-undesirable
occurrences under the provisions (obligations, prohibitions, and privileges or immunities) of the contracts and policies of
an organization. Desirable occurrences are those that are obliged according to some obligation. Undesirable occurrences
are those that lead to violation, as per some explicit or implicit prohibition. Not-undesirable occurrences are those that
explicitly do not lead to violations, as specified by some privilege or immunity. This paper proposes a mechanism for
the dynamic derivation of the overlaps between provisions. We show, through a worked example, that by determining
the covering relationships between stored queries we can mechanically discover inconsistencies in business contracts and
organizational policies between obligations and privileges, and between different descriptions of obligations.

Keywords occurrence, contracts, policies, conflict detection, conflict resolution.

1 INTRODUCTION

Prudent business enterprises operating in e-service environments need to check proposed business contracts against their
organizational rules, to ensure that their intentions do not violate internal regulations. The E-commerce application De-
velopment and Execution Environment, or EDEE, system [3] unifies storage of data pertaining to real business events,
prospective actions and business policy through the notion of occurrences and queries over these occurrences.

In this paper, we propose a framework for storing contracts and policies, and for checking their consistency. We view
both contracts and policies as sets of provisions. A provision specifies an obligation, prohibition, privilege (immunity), or
power. In the case of obligations, prohibitions, and privileges, each provision embeds a query which describes, respec-
tively, the desirable, undesirable, or not-undesirable occurrences. For powers, the provision describes which conventional
occurrences bring about legal relations, such as additional obligations, prohibitions, and privileges. Our system facilitates
dynamic addition of provisions, and through automatic derivation of overlaps between stored queries, can ascertain conflicts.

The notions of covering relationships between queries, and dirtying relationships between data and queries, are used to
find run-time overlaps. We say that a query is covered by another stored query if the results of the former are a subset of the
results of the latter for any data-set. Some questions of coverage are decidable statically, but others depend on application
semantics: some covering relations change when new data is added, in a context-specific manner. We say a query is dirtied
by new data (input dirt) if the new data changes a criterion (cf. text of a WHERE clause in an SQL SELECT statement) of the
query. For example, upon the addition of the new chief clerk, John James, to the database, the query ‘deliveries to the chief

International Conference on Electronic Commerce Research (ICECR-5)



Mechanical Consistency Analysis for Business Contracts and Policies 2

clerk’ is dirtied as the results must now also include any ‘deliveries to John James’. Any such deliveries would be what
we term output dirt. The materialized view literature [9] talks of dirt in the sense of our output dirt. Whereas materialized
views would only change when any actual deliveries to John James were added, covering relationships may change even
in the absence of any deliveries stored in the database: queries may come into overlap, or become partially or completely
disjoint as new data is added. As we will demonstrate, changes in the covering relationships may bring obligations for a
particular debt stored in the database into conflict.

This paper shows how conflicts may be detected at the time contracts are added to the database, or when inserted
data brings provisions into conflict. The examples we present show how we discover two major types of conflict: conflicts
between obligations and privileges, and conflicts between different descriptions of what occurrences are required to fulfill
an obligation. The first type of conflict is demonstrated in an example which depicts a conflict between a obligation to pay
within a certain time, and a privilege (derived from an obligation of lesser strictness) to pay within a more lenient time-
scale. The second type of conflict – inconsistent descriptions of how to service a particular debt – are illustrated for various
example cases: obligations specifying different times to pay, and obligations specifying different people to deliver to.

In many cases conflicts are unavoidable and there is no possibility of satisfying both obligations. However, some
conflicts are less problematic in that the conflict is a only a potential one, and it is possible to fulfill both ‘conflicting’
obligations. Nevertheless, even for this weaker case, companies often prefers to remove the potential conflict entirely, to
avoid possible future disputes. Conflict can be removed by violating or voiding the source obligations that lead to the
conflict. Conflict resolution is treated in [2]; this paper concentrates only on conflict detection. The new conflict detection
cases illustrated here supplement the earlier cases dealt with in [1].

We begin with a review of related work (Section 2). Then, via an application scenario (Section 3) we describe how
operational data, specific and general provisions, and queries may be stored. We illustrate how inconsistent provisions can
be found (Section 4) and look at the times at which potential and actual conflicts can be detected (Section 5).

2 RELATED WORK

Previous contract assessment approaches, such as [5, 7], apply Petri Nets or Finite State machines to determine contract
status. Contracts are reduced to directed graphs that capture the business procedure, but leave provisions implicit. To
allow inspection and analysis, provisions need to be explicitly captured within the business database. Explicit storage of
provisions can then be exploited for consistency checking, contract performance assessment, and management review of
which provisions pertain to items or occurrences.

It is instructive to contrast EDEE with traditional expert systems approaches to business logic. The occurrence database
is the working memory of the system; production rules in EDEE are maintained in a list of queries over this database. These
queries are explicitly stored criteria describing sets of items and occurrences. As such, they are more similar to SQL views,
than to the throw-away queries executed by an SQL engine.

The EDEEQL extension of SQL [3] leads to an occurrence structure with a simple tabular form able to store business
events and provisions of contracts and policies. It avoids the need to specify schemas explicitly for each occurrence class,
thus increasing the dynamic configurability of the system. This particular storage approach has been chosen for semantic
rather than performance reasons. The representation allows us to determine when parties participate in the same occurrence,
but unlike full graph-based representations (for example, the Hydra database system [4]), we cannot directly locate more
distant associations.

An underlying database system manages storage and retrieval of occurrences and queries. The coverage checking
mechanism proposed in this paper optimizes the execution of these stored queries. Due to the common goal of incremental
state re-computation, it has many similarities to the RETE [8] and TREAT [17] expert system optimization algorithms.
The most striking difference is that our approach places an emphasis on dynamic compilation and analysis of coverage.
This allows us to go beyond the fact/pattern (object/query) matching in RETE and TREAT to also perform pattern/pattern
(query/query) matches as well.

International Conference on Electronic Commerce Research (ICECR-5)



Mechanical Consistency Analysis for Business Contracts and Policies 3

Table 1: A tabular schema for storing various occurrences

Commentary Occurrence Role Participant
John James being the chief clerk for SkyHi being chief clerk1 chief clerk John James

occurred on 1 Aug 2002
SkyHi ordering the consignment ordering1 orderer SkyHi

ordered consignment1
Steelmans delivered the consignment to SkyHi delivering1 deliverer Steelmans
on 1 September 2002 delivered consignment1

recipient SkyHi
occurred on 1 Sep 2002

3 APPLICATION SCENARIO

We introduce an application scenario, describe how operational data, provisions, and queries are stored, then illustrate via
worked examples how conflicts between a contract and a company’s standard terms and conditions are determined.

In our scenario, SkyHi Builders is a construction company. Steelmans Warehouse is a supplier of high-grade steel.
SkyHi, having recently won a tender to build a new office block, enters into a contract with Steelmans, whereby Steelmans
is to deliver a consignment (say, consignment1) of steel. At the time of entering the contract John James is the chief
clerk. We select some hypothetical clauses from this contract: Clause C.1 SkyHi is obliged to pay Steelmans before
10 September 2002 and Clause C.2 Steelmans must deliver the consignment to John James. We also take two
clauses from the January 2001 version of SkyHi’s standard terms and conditions (i.e. general business policies): Clause
P.3 SkyHi is obliged to pay suppliers within 20 days of delivery, and Clause P.4 All orders must be delivered to
the chief clerk.

3.1 Storing Operational Data

Let us say John James is chief clerk, SkyHi has ordered the consignment, and, Steelmans, the supplier, has delivered the
consignment to SkyHi. Let being chief clerk1, ordering1, and delivering1 denote instances (hence the 1
added to create a unique identifier) of occurrences of type being a chief clerk, ordering, and delivering respectively. Table
1 shows the occurrence, role, participant schema employed in EDEE to store this operational data. For readability we have
included values like John James, SkyHi, and Steelmans in our tables instead of foreign key references. Similarly
we show occurrence primary keys in forms such as being chief clerk1, instead of foreign key references into a table
describing the occurrence type (being chief clerk). Finally we omit repeated key values in adjacent rows.

3.2 Storing Specific and General Provisions of Contracts and Policies

To store contractual provisions – e.g. “it is obliged that [X pay Y before date Z]”, “it is prohibited that [X pay Y before date
Z]”, “it is permitted that [X pay Y after date Z]” – in a relational database we need to handle their embedded propositional
content [3, 12]. This section demonstrates the storage of obligations and privileges; the storage of prohibitions is dealt with
elsewhere [1].

3.2.1 Storing Specific and General Obligations

Consider Clause C.1 from the application scenario presented above, which encodes a specific obligation of SkyHi to pay
Steelmans before 10 September 2002. Clearly, to store the obligation, we cannot simply store an occurrence, say paying1,

International Conference on Electronic Commerce Research (ICECR-5)



Mechanical Consistency Analysis for Business Contracts and Policies 4

Table 2: Schema for storing a specific obligation

Occurrence Role Participant
being obliged1 obliged query9

purpose consignment1
isAccordingTo ClauseC1

being obliged2 obliged query17
purpose ordering1
isAccordingTo ClauseC2

(query9 = first occurrence of paying Steelmans before 10 September 2002. See Figure 1)

(query17 = first occurrence of delivering to John James. See Figure 3)

of “SkyHi paying Steelmans before 10 September 2002” because paying1 is a concrete instance and might not yet have
occurred anyway. We instead store the obligation as being obliged1 in Table 2, and indicate the obliged occurrences
using a pointer to a database view (query) describing the set of obliged (desirable) occurrences, which is query9 in Figure
1. query9 asks for the first payment, since it is exactly one payment that is promised. The query may be empty in cases
where the obligation has not been fulfilled, and no payments fitting the description have been made 1.

In a similar manner, we can capture the specific obligation encoded in Clause C.2 as being obliged2 in Table
2. being obliged2 is an obligation to deliver to John James, pertaining to the order ordering1, and arising from
Clause C.2.

The purpose role of each obligation associates the obligation with its purpose: that is, specifies what the performance
mandated by the obligation is for. In the case of the obligation in Clause C.1 of our application scenario, the obligation
is an obligation to pay for consignment1; in Clause C.2 the obligation is to deliver for ordering1. The purpose
role is roughly comparable to the sake(. . .) predicate employed by Kimbrough [12].

The isAccordingTo role of each obligation captures the notion that each obligation is a prima facie obligation that
exists according to a particular textual or verbal utterance that is contained in some identified document or discourse. We
say that obligations are prima facie because they may be voided by other clauses (see [2]).

To encode a general obligation policy, such as that defined in Clause P.3 of our obligation scenario we define a
function. A function takes as its domain a set of occurrences of a given description, and produces, in its range, occurrences
of a particular form. To capture Clause P.3, we might have:

being obliged function1:
occurrences of a supplier delivering →
occurrences of SkyHi being obliged to pay within 20 days of the occurrence of delivering

That is to say, being obliged function1, maps occurrences of delivering to occurrences of being obliged. In
tabular form, we may record the rule that, according to Clause P.3 of SkyHi’s standard terms and conditions, deliveries
bring about (prima facie) obligations to pay within 20 days, as shown in Table 3 2. To capture the fact that these rules
(functions) are subjective determinations of legal consequence made by particular laws, we use an isAccordingTo
attribute to store the clause identifier for each rule, and we capture also the utterer, or provenance in a document, of the
clause. The occurrence being in1 denotes that Clause P.3 is contained in a particular version of the standard terms and
conditions for SkyHi.

Taking the delivery, delivering1, made by Steelmans to SkyHi on 1 September this yields the following identified
obligation to pay, originating from the application of being obliged function1 (in the standard terms and condi-

1Technically, to ensure that a given payment satisfies only one obligation we should allocate payments to obligations, as shown in [3]. However, as this
is not pertinent to our current discussion, we omit that complication here.

2The notation |queryX| denotes a bound variable: merely substitute the item covered by queryX for |queryX|. For example, delivering1 is
covered by query23, thus we transform |query23| to delivering1

International Conference on Electronic Commerce Research (ICECR-5)



Mechanical Consistency Analysis for Business Contracts and Policies 5

Table 3: Representing the general rule that a delivery brings about an obligation to pay within 20 days of delivery

Occurrence Role Participant
being obliged function1 domain query23

isAccordingTo clauseP3
obliged query24

being in1 contents clauseP1
container standard terms version1
purpose query27

(query23 = occurrences of [delivering])

(query24 = first of [occurrences of [paying] where [< [participants in role [=occurred on]
in |query23|] + 20 days] is [=occurred on]] in [ascending] [temporal] order)

(query27 = [participants in role [=delivered] in |query23|])

Table 4: Representing the general rule that an order brings about an obligation to deliver that order to the chief clerk

Occurrence Role Participant
being obliged function2 domain query25

isAccordingTo clauseP4
obliged query22
purpose |query25|

being in2 contents clauseP4
container standard terms version1

(query25 = occurrences of [ordering])

(query22 = first of [occurrences of [delivering] where [participant in role [=chief clerk] in
[occurrences of [being chief clerk]]] are [=recipient]]). See Figure 4)

tions) to delivering1:

being obliged3 = (legal consequence)
source_rule : being_obliged_function1 (provenance)
source_occurrence : delivering1 (evidence)
obliged : query12 (first occurrence of paying by 21 Sep 2002; see Figure 2)
purpose : consignment1

being obliged3 (where 3 has been chosen as a unique identifier) captures the particular legal consequence brought
about from applying rules of exact provenance, to specific evidence. The link between a rule (function), a happening, and the
resultant conclusions is recorded by storing the sources of the conclusion as its source rule and source occurrence
attributes. Note that query12 (which is first of [occurrences of [paying] where [<21 Sep 2002]]
is [=occurred on]] in [ascending] [temporal] order) was obtained by substituting delivering1 for
|query23| in the parameterized query, query24 as introduced in Table 3, and resolving [participants in role
[=occurred on] in [=delivering1] + 20 days] to get 21 Sep 2002. Further, consignment1 in role
purpose was obtained by substituting delivering1 for |query23| in the parameterized query, query27, to obtain
[participants in role [=delivered] in [=delivering1]], which resolves to consignment1.

The general obligation policy, from Clause P.4, that all orders be delivered to the chief clerk, can be depicted as
being obliged function2, as shown in Table 4. As can be seen, Clause P.4 maps occurrences of ordering to
obligations to deliver the order to the chief clerk.

For the order, ordering1, then, we can deduce the following specific obligation arising from Clause P.4 of the

International Conference on Electronic Commerce Research (ICECR-5)



Mechanical Consistency Analysis for Business Contracts and Policies 6

Table 5: Capturing the rule that not paying for the consignment before 10 September leads to violation

Occurrence Role Participant
violating function1 domain query28

violated being obliged1

(query28 = occurrences of [counting] where [>=10 September] is [=occurred on] intersection occurrences
of [counting] where [0] is [=count] intersection occurrences of [counting] where [query9] is

[=counted]).

(query9 is embedded in the obligation being obliged1 of Table 2, and defined in Figure 1).

standard terms and conditions:

being obliged4 = (legal consequence)
source_rule : being_obliged_function2 (provenance)
source_occurrence : ordering1 (evidence)
obliged : query22 (first occurrence of delivering to the chief clerk; see Figure 4)
purpose : ordering1

ordering1, in the role purpose in being obliged4, is taken by substituting ordering1 for |query25| in
the purpose role in being obliged function2 of Table 4.

Associated with every obligation are the conditions under which that obligation is fulfilled, and the conditions under
which it is violated or not-violated. Obligation fulfillment conditions are dealt with in [1], [2]. Here we restrict our attention
to violation and non-violation conditions.

In an obligation to pay for the consignment before 10 September 2002, the obligation is violated in the case that we
count, on or after 10 September 2002, no (zero) payments for the consignment before 10 September 2002. That is, an
occurrence of counting, on or after 10 September 2002, where zero payments for the consignment before 10 September
2002 are counted, brings about an occurrence of the obligation being violated. This is shown as violating function1
in Table 5.

3.2.2 Storing Privileges

Contractual provisions describe desirable, undesirable, and not-undesirable situations. The previous subsection showed
how obligations are used to specify desirable occurrences, and how undersirable events, such as not paying by a deadline,
may be captured by specifying what occurrences bring about violations. We now look at how not-undesirable events may
be defined by specifying what types of events do not result in violations. The party that is immune from being in violation
is said to have a privilege.

All obligations in law seem to confer the following implicit privilege (immunity): the duty-bound party is immune from
being in violation of the obligation as long as s/he still has opportunity to fulfill it. Taking the obligation to pay by the
21st of September, there is an implicit privilege to pay at any time before that date - that is, there being no deliveries at any
stage before 21st of September does not result in violation. More formally, there are zero occurrences of violating whose
source occurrence is a counting of zero (0) payments, where the counting occurs before 21 st September. This is
shown in Table 6.

The next section describes how the semantics of a query may be stored in a database.

International Conference on Electronic Commerce Research (ICECR-5)



Mechanical Consistency Analysis for Business Contracts and Policies 7

Table 6: Capturing the rule that not paying for the consignment before 21 September does not lead to violation

Occurrence Role Participant
counting1 counted query26

count 0

(query26 = occurrences of [violating] where [occurrences of [counting] where [<21 September] is
[=occurred on] intersection occurrences of [counting] where [=0] is [=count] intersection occurrences

of [counting] where [query12] is [=counted]] is [=source occurrence]).

(query12 is embedded in the obligation being obliged3, and defined in Figure 2).

query2

query4

query3

  occurrences

    where [=Steelmans]

    is [=payee]

  occurrences

    where [<10 Sep 2002]

    is [=occurred_on]

] in [ascending] [temporal] order

query9

query6

query7

query8

query1

query1

query5

    of [paying]

    of [paying]

first of [

Figure 1: Parse tree for query that returns the first payment to Steelmans before 10 September 2002.

3.3 Storing Queries

To make queries that return occurrences more concise, we use our own language, EDEEQL[3]. Queries may be stored in
occurrence-role-participant tabular form by assigning a query-identifier for each criterion’s occurrence entry, and storing its
type and value in the role and participant columns respectively. The criterion-value may be constant or a reference to an
embedded query. The EDEEQL parser takes the textual form of the query and converts it to its tabular semantic form.

Take for example the query that returns the first payment for consignment1, before 10 September 2002, by SkyHi
to Steelmans (Query9 in the Participant column, for the row with being obliged1, in Table 2). Figure 1 and Table 7
illustrate the parse tree for query9, and show its nested sub-queries. The amount of the payment, and the requirement that
the payment be allocated to a particular debt [3], are omitted for simplicity in this depiction of the query.

The second query we need to store is “first occurrence of paying for consignment1 before 21 September 2002”
(query12 in the obliged role for being obliged3 which was shown earlier). The complete parse tree for this query,
excluding the repeated query sub-expressions from Figure 1 and Table 7, is given in Figure 2 and Table 8.

Finally, we also store the query query17 (from being obliged2) as shown in Figure 3 and Table 9, and we store
the query query22 (from being obliged4) as shown in Figure 4 and Table 10. The nature of the item to be delivered
is omitted for the sake of simplicity in the representations of these queries.

4 FINDING INCONSISTENT PROVISIONS

Deontic logic is the logic of actuality versus ideality, and deals with obligations and permissions. [2] contrasts our dynamic,
occurrence-centric approach to the static view of Standard Deontic Logic. Notwithstanding these differences, previous work

International Conference on Electronic Commerce Research (ICECR-5)



Mechanical Consistency Analysis for Business Contracts and Policies 8

Table 7: Storage schema for ‘first payment to Steelmans before 10 th September’

QueryID CriterionType Value
query1 type paying
query2 identified-concept Steelmans
query3 identified-concept payee
query4 occurrence query1

participant query2
role query3

query5 less-than 10 Sep 2002
query6 identified-concept occurred on
query7 occurrence query1

participant query5
role query6

query8 intersectand query4
intersectand query7

query9 set-criterion query8

  occurrences

    where [<21 Sep 2002]

    is [=occurred_on]

] in [ascending] [temporal] order

query12

query6

query11

query1

query10

    of [paying]

first of [

Figure 2: Parse tree for query that returns the first payment before 21 September 2002

in both deontic logic [13, 15, 16, 11] and the field of policy management [18, 14], points us to various possible types of
conflicts between contractual provisions:

1. a set of occurrences may be both prohibited and permitted.

2. a set of occurrences may be both obliged and prohibited. Dynamic detection of such conflicts between obligations
and prohibitions has been dealt with in [1].

3. an entity may be liable (in a Hohfeldian sense [10]) to fall into some legal state, but immune from falling into that
state. For example, a party may be regarded as falling into violation, according to the contract, if they deliver 10
minutes late, but the de minimus rule of British law [19, p144] may, in contrast, see them as not falling into violation
for such an immaterial deviation. Another example, which we shall deal with in more detail (Section 4.1), is the
conflict between an obligation (that sees a violation existing if some occurrence doesn’t happen by a deadline) and a
privilege (which sees no violation happening in those circumstances).

4. a party may be empowered to bring about a legal state, but forbidden from doing so. A party is empowered if they are
legally capable of bringing about a state of affairs. Being empowered does not necessarily imply being permitted to
bring about that state of affairs [11].

5. a party may be obliged to bring about a legal state of affairs, but not empowered to do so.

6. a party may be obliged to bring about a state of affairs, but unable (e.g. through resource limitations) to bring about
that state.

International Conference on Electronic Commerce Research (ICECR-5)



Mechanical Consistency Analysis for Business Contracts and Policies 9

Table 8: Storage schema for ‘first payment to Steelmans before 21 st September’

QueryID CriterionType Value
query10 less-than 21 Sep 2002
query11 occurrence query1

participant query10
role query6

query12 set-criterion query11

query14

query16

query15

  occurrences

    where [=John James]

    is [=recipient]

] in [ascending] [temporal] order

query17

query13
    of [delivering]

first of [

Figure 3: Parse tree for the query that returns the first occurrence of delivering to John James

There is also a further type of conflict not, to our knowledge, mentioned in the earlier literature:

7. obligations towards a single debt which contradict, or are unclear, as to what must be performed. The conflict is
detected if the descriptions of the performances required to service an obligation for a particular debt are completely
inconsistent or only partially overlapping.

Extending our previous work on conflict detection across business contracts and policies [1], we now illustrate, through
worked examples, how we can detect inconsistencies of types 3 and 7.

4.1 Conflict between an obligation and a privilege (Type 3 conflict)

The fact that query9 (first payment for consignment1 before 10 September 2002) is a subset of query12 (first
payment for consignment1 before 21 September 2002) is provable as follows 3:

1. By Rule 3 [< 10 September 2002] (query5) is covered by query [< 21 September 2001] (query10)

2. By Rule 7 [occurrences of [paying] where [< 10 September 2002] is [=occurred on]] (query7)
is covered by [occurrences of [paying] where [< 21 September 2002] is [=occurred on]]
(query11)

3. By Rule 6 query8 is covered by query11

4. By Rule 11 and step 3 it is evident that query9 is covered by query12.

Now, a conflict becomes evident. Since the count of query9 will always be zero when the count of query12
is zero (because the former query is a subset of the latter), it appears, looking at violation function 1 of Table
5 and counting1 of Table 6, that Clause C.1 sees a violation in the case of no pre-September-10 th deliveries being
counted after 10th September, whereas Clause P.3 sees no such violation in those circumstances, because Steelmans has
the privilege that they may take until 21st September to make the delivery. The conflict is illustrated diagrammatically in
Figure 5.

3Each of the rules mentioned here is defined in detail in the Appendix.

International Conference on Electronic Commerce Research (ICECR-5)



Mechanical Consistency Analysis for Business Contracts and Policies 10

Table 9: Storage schema for ‘first delivery to John James’

QueryID CriterionType Value
query13 type delivering
query14 identified-concept John James
query15 identified-concept recipient
query16 occurrence query13

participant query14
role query15

query17 set-criterion query16

query13

query19

  occurrences

    where [participants in

      role [=chief_clerk]

      in [occurrences of

        [being_chief_clerk]]

] in [ascending] [temporal] order

query22

query15

query21

query18

query20

    of [delivering]

    are [=recipient]

first of [

Figure 4: Parse tree for the query that returns the first occurrence of delivering to the chief clerk

4.2 Inconsistent descriptions of what is obliged (Type 7 conflict)

Inconsistencies often arise as to what is required to settle a debt. Here the descriptions of what must be done in ex-
change for something else overlap only partially or are completely non-overlapping. In our application scenario, the obli-
gation to pay for consignment1 by 10 September (being obliged1) is inconsistent with the obligation to pay for
consignment1 by 21 September (being obliged2) because it is unclear what must be done to settle the debt for
the consignment. Notice, however, that the obligation to pay for consignment1 by 10 September (being obliged1)
would not be inconsistent with the obligation to pay for another consignment, consignment2, by 21 September (call this
say, being obliged4), because the obligations are towards different debts and there is therefore no discrepancy as to
what to do to satisfy a particular debt. To check for this type of conflict between obligations we therefore need to check a
given obligation only against other obligations that are towards exactly the same debt.

Assume we have stored in our database both the obligation to pay for consignment1 by 10 September (through the
occurrence being obliged1), and the obligation to pay for consignment1 by 21 September (being obliged3) as
shown above. These obligations both pertain to the same consignment and are towards the same debt (consignment1).
It can be seen above that being obliged1 nests query9 and being obliged3 nests query12. Since, as shown in
Section 4.1, these two queries (query9 and query12) only partially overlap, there is a conflict between any obligations
towards a particular debt that are associated with these queries, because the descriptions as to what to undertake to meet
the obligation do not overlap exactly. It should be clear from this example that the conflict between the obligations is
detectable in advance of any actual payments: even if there are currently no payments in the database, we can still determine
analytically (as shown in Section 4.1) that there is only partial overlap between these two queries.

The conflict between the two statements of the obligation is most easily pictured visually, as show in Figure 6.
Note again that both obligations shown in this diagram are for a single purpose or debt: both are directed at paying for
consignment1. Clearly, a payment before 10 th September can fulfill both being obliged1 and being obliged3,
but a payment between 11th and 21st September violates being obliged1 yet fulfills being obliged3.

International Conference on Electronic Commerce Research (ICECR-5)



Mechanical Consistency Analysis for Business Contracts and Policies 11

Table 10: Storage schema for ‘first delivery to the chief clerk’

QueryID CriterionType Value
query18 identified-concept chief clerk
query19 identified-concept being chief clerk
query20 identified-concept query18

role query19
query21 occurrence query13

participant query20
role query15

query22 set-criterion query21

Similarly, assume we had an obligation in the contract to pay for consignment3 on 4 th October and an obligation
in the standard terms and conditions to pay for consignment3 on 10 th October. These obligations to pay for that debt
contradict as it is unclear what to do to satisfy the obligations because the descriptions of the required performances do not
overlap at all. This is illustrated in Figure 7.

Notice that, even though they may be towards the same purchased item, there is no conflict in installment payments
because each payment is for a different installment (i.e. a different purpose). Consider the obligation to pay £5 for a
consignment, consignment4, on 4th October and a further £10 for consignment4 on 10 th October. Here, the first
obligation relates to installment1 (on consignment4) and the second to installment2 (on consignment4);
even though the payments differ, the obligations do not conflict because they are for different purposes (installment1
and installment2 respectively). It may be that summing the payments or performing a net-present-value computation
shows that the total paid for consignment4 is in excess of that agreed, but identifying and resolving such over- or
under-payment issues is a separate matter, may be dependent on organization-specific policy, and is not treated here.

5 TIME OF CONFLICT DETECTION

In our example of a conflict between contradictory obligations relating to payment for consignment1, the conflict was
detected in advance of any actual payment, when it manifested itself at the time of delivery. The occurrence of delivering
brought about a specific obligation (being obliged3), according to the companies standard terms and conditions, which
resulted in an actual conflict with an earlier contractual obligation (being obliged1). Conflict detection at an earlier
stage than performance should also be provided: we should be able to mechanically detect the potential conflict between
the contract and the standard terms and conditions at the time the contract is being made, or at the time the standard terms
and conditions are being altered, rather than merely at the time of delivery.

It is possible at contract- and policy-making time to determine what set of future occurrences would allow a contractual
clause to be consistent with standard terms and conditions. Figure 8 illustrates how we can deduce what set of deliveries
would result in the contractual obligation for ordering1 being consistent with the obligation from the standard terms and
conditions for ordering1. This calculation relies upon the application of the Rule 10 (from the Appendix): remembering
that - (minus) is the inverse operation of + (plus), we can prove that deliveries which occur on [21 September - 20 days] are
the only deliveries which allow the obligation for ordering1 from our contract to be consistent with our standard terms
and conditions. Deliveries on any date other than that would make the obligations out of alignment with each other since
the occurrences mandated by the obligations would no longer exactly overlap.

Figure 9 shows the various opportunities for conflict detection over the phases of contracting, for our example of the
obligation to pay for delivery. Potential conflict may be detected at the time of contracting or policy-making; actual conflict
between prospective views of different clauses describing the obligation may be detected at the time of delivery (the time
of instantiation of specific, individual obligations); and actual conflict between retrospective views of the different clauses
may be detected at the time of violation of one of the clauses.

International Conference on Electronic Commerce Research (ICECR-5)



Mechanical Consistency Analysis for Business Contracts and Policies 12

Conflict
(difference of opinion as to existence of violation)

10
th

 S
ep

t a
t 0

h0
0

21
st

 S
ep

t a
t 0

h0
0

TIME
Violation of obligation
to pay for delivering1

No violation of obligation
to pay for delivering1

Occurrences of counting, on or after 10th Sept, zero payments to
Steelmans before 10th Sept

i.e. count query9 = 0

Occurrences of counting, before 21st Sept, zero payments to
Steelmans before 21st Sept (thus none before 10th Sept either)

i.e. count query12 = 0 and count query9 = 0

co
un

tin
g1

(im
m

un
ity

 fr
om

 v
io

la
tio

n)

violating_function1
(liability to violation)

Figure 5: Conflict between an obligation (liability to violation) and an privilege (immunity from violation)

Table 11: Dirtied queries and their output dirt

Dirtied Query Output Dirt
query19 being chief clerk1
query20 John James

(query19 = [occurrences of [being chief clerk]])

(query20 = participants in role [=chief clerk] in [occurrences of [being chief clerk]])

Let us now look at an additional (simpler) example, which demonstrates how potential conflicts may be detected at the
time of contracting.

First let us assume that John James is chief clerk (as depicted in Table 1). When being chief clerk1 is added to
the database, we coverage-check it to determine which queries have their results altered by this data:

1. By Rule 1 being chief clerk1 is covered by [occurrences of [being chief clerk]] (query19)

2. By Rule 9 The query [occurrences of [being chief clerk]] (query19) dirties [participants in
role [=chief clerk] in occurrences of [being chief clerk]] (query20). Substituting the in-
put dirt for the dirtied criteria (shown underlined) yields the partial re-evaluation query: [participants in
role [=chief clerk] in [being chief clerk1]]. Evaluation of this partial re-evaluation query yields
the output dirt John James. query20 therefore covers John James and we can insert this fact in our cache of
dirtied queries and their output dirt, as shown in Table 11.

Assume we have stored in our database both the obligation to deliver to John James (being obliged2) and the
obligation to deliver to the chief clerk (being obliged4) as shown above. As shown earlier, the first obligation nests
query17 (of Figure 3), and the latter nests query22 (of Figure 4). Both obligations are in respect of ordering1 (that

International Conference on Electronic Commerce Research (ICECR-5)



Mechanical Consistency Analysis for Business Contracts and Policies 13

00
h0

0,
 1

0t
h 

S
ep

t

00
h0

0,
 2

1s
t S

ep
t

Payments before
10th September

(query9)

Payments before
21st September

(query12)

TIME

A payment on the 8th of September
(fulfils both obligations)

A payment on the 11th of September
(violates one obligation, but fulfils the other)

Figure 6: Inconsistent obligations: Different descriptions of occurrences that can satisfy debt for consignment1

is, have ordering1 as their purpose). Assuming John James is the chief clerk, it can be shown that query22 partially
overlaps query17:

1. By Rule 5 [=John James] (query14) is covered by any query covering John James. John James is covered by
query20 (participants in role [=chief clerk] in occurrences of [being chief clerk]),
as shown in the last row of the ‘dirtied queries and output dirt’ cache shown in Table 11. Therefore query20 covers
query14.

2. By Rule 7 and step 1 we see the query occurrences of [delivering] where [participants in role
[=chief clerk] in occurrences of [being chief clerk]] are [=recipient] (query21) cov-
ers occurrences of [delivering] where [=John James] is [=recipient] (query16).

3. By Rule 11 and steps 1 and 2 query22 partially overlaps query17

As the obligations being obliged2 and being obliged4 have the same purpose, but refer to potentially
different performances – because query17 and query22 overlap only partially – there is potential for conflict. The
potential conflict can be visualized as shown in Figure 10: the set of deliveries to anyone who is ever a chief clerk includes
the set of deliveries to John James (who is currently chief clerk) and the set of deliveries to Mary Moses (who may in the
future be chief clerk). Consider the case where John James is promoted to operations manager and Mary Moses becomes
chief clerk. In this circumstance the contract mandates delivery to John James, but the standard terms and conditions
mandate delivery to Mary Moses.

It should be noticed that here we have detected the potential conflict at the time of contracting. Notice that the potential
conflict only becomes an actual conflict when John James ceases to be chief clerk, since at that time ‘deliveries to John
James’ becomes disjoint from ‘deliveries to the chief clerk’. Assuming we recorded in the database a new fact, that John
James is now disjoint from the set of clerks: i.e. that query14 is now disjoint from query20, then the conflict becomes
actual and unavoidable as deliveries to John James is now disjoint from deliveries to the chief clerk, as shown in Figure 11.

The example of obligations to deliver, given above, reinforces the organizational design principal that, unless the indi-
vidual possesses unique properties and is personally required, reference should be made to roles, rather than to particular
individuals who hold those roles. Specifications that mention roles are more resilient to changes in role-players as individu-
als vacate their positions in organizations [6]. Similarly, referring to an item by its attributes, instead of by its identity, may
improve stability as new instruments, machines or technologies replace older ones.

International Conference on Electronic Commerce Research (ICECR-5)



Mechanical Consistency Analysis for Business Contracts and Policies 14

00
h0

0,
 5

th
 O

ct

00
h0

0,
 1

1t
h 

O
ct

00
h0

0,
 4

th
 O

ct

00
h0

0,
 1

0t
h 

O
ct

Payments on
4th October

Payments on
10th October

TIME

A payment on the 4th of October
(violates one obligation, but fulfils the other)

A payment on the 10th of October
(violates one obligation, but fulfils the other)

A payment on the 8th of October
(violates both obligations)

Figure 7: Inconsistent obligations: Different descriptions of occurrences that can satisfy debt for consignment3

6 CONCLUSION

We have proposed a coverage-determination mechanism for queries within e-service environments. We discussed the data
and query storage techniques employed by the EDEE system, and through worked examples, demonstrated how our approach
efficiently determined conflicts which appeared dynamically between obligations and privileges, and between obligations
towards a given debt, defined across business contracts and organizational policies.

ACKNOWLEDGMENTS

This research is supported by grants from the Cambridge Commonwealth and Cambridge Australia Trusts, the Overseas
Research Students Scheme (UK), and the University of Cape Town Postgraduate Scholarships Office. We are grateful to
Microsoft Research Cambridge for funding a continuation of the research.

Thanks are due to Dr Ken Moody for helpful comments on the draft.

References

[1] A. Abrahams, D. Eyers, and J.M. Bacon. A coverage-determination mechanism for checking business contracts against
organizational policies. In Proceedings of the Third VLDB Workshop on Technologies for E-Services (TES’02), 2002.

[2] A.S. Abrahams and J.M. Bacon. The life and times of identified, situated, and conflicting norms. In Sixth International
Workshop on Deontic Logic in Computer Science (DEON’02), Imperial College, London, UK, May 2002.

[3] A.S. Abrahams and J.M. Bacon. A software implementation of Kimbrough’s disquotation theory for representing and
enforcing electronic commerce contracts. Group Decision and Negotiations Journal, Forthcoming.

[4] R. Ayres and P. J. H. King. Querying graph databases using a functional language extended with second order facilities.
In Advances in Databases, Proceedings of the 14th British National Conference on Databases, (BNCOD 14), pages
189–203, Edinburgh, UK, July 1996. Springer.

[5] R.W.H. Bons, R.M. Lee, R.W. Wagenaar, and C.D. Wrigley. Modelling inter-organizational trade procedures using
documentary petri nets. In Proceedings of the Hawaii International Conference on System Sciences, 1995.

International Conference on Electronic Commerce Research (ICECR-5)



Mechanical Consistency Analysis for Business Contracts and Policies 15

21
st

 A
ug

20 days 10
th

 S
ep

t

TIME

Obligations:

Clause P.3 Pay within 20 days of delivery

Consistent Instantiation of Clause P.3: Pay before 10 Sept

Inverse of being_obliged_function1

Clause C.1 Pay before 10 Sept

occurrences of paying before 10 Sep (ie query9)

occurrences of paying before 10 Sep (ie query9)

any occurrence of delivering on 21 Aug
(10 Sep minus 20 days)

Figure 8: Deducing which operational occurrences would allow consistent obligations for the obligations pertaining to
ordering1

[6] N. Damianou, N. Dulay, E. Lupu, and M. Sloman. The Ponder policy specification language. Lecture Notes in
Computer Science, 1995:18–38, 2001.

[7] A. Daskalopulu, T. Dimtrakos, and T.S.E. Maibaum. E-contract fulfillment and agents’ attitudes. In Proceedings
ERCIM WG E-Commerce Workshop on the Role of Trust in E-Business, Zurich, October 2001.

[8] C. Forgy. Rete: A fast algorithm for the many patterns/many objects match problem. Artificial Intelligence, 19(1):17–
37, 1982.

[9] A. Gupta and I. S. Mumick. Maintenance of materialized views: Problems, techniques, and applications. Data
Engineering Bulletin, 18(2):3–18, 1995.

[10] W.N. Hohfeld. Fundamental Legal Conceptions as Applied in Judicial Reasoning. Greenwood Press Publishers, 1978.

[11] A.J.I. Jones and M. Sergot. A formal characterisation of institutionalised power. Journal of the Interest Group in Pure
and Applied Logic, 4(3):427–443, 1996.

[12] S.O. Kimbrough. Reasoning about the objects of attitudes and operators: Towards a disquotation theory for the
representation of propositional content. In Eight International Conference on Artificial Intelligence and the Law
(ICAIL 2001), St Louis, Missouri, May 2001.

[13] R.M. Lee. Bureaucracies as deontic systems. ACM Transactions on Office Information Systems, 6(2):87–108, April
1988. Special Issue on the Language/Action Perspective.

[14] E.C. Lupu and M. Sloman. Conflicts in policy-based distributed systems management. IEEE Transactions on Soft-
ware Engineering, 25(6):852–869, November/December 1999. Special Section: Managing Inconsistency in Software
Development.

International Conference on Electronic Commerce Research (ICECR-5)



Mechanical Consistency Analysis for Business Contracts and Policies 16

occurrence (paying1) of paying on 14 Sept

occurrence (delivering1) of delivering on 1 Sept

1
0

th
 S

e
p

t

1
4

th
 S

e
p

t

2
1

s
t 

S
e

p
t

TIME

Contract or policy making

Performance

Monitoring of Performance

Conflict Detection

Define Clause P.3 Pay within 20 days of delivery

Define Clause C.1 Pay on or before 10 Sept

Instantiation of Clause P.3: Pay on or before 21 Sept

potential conflict between Clause P.1 and instantiations of Clause P.3

actual conflict between prospective views of Clause P.1 and an instantiation of Clause P.3

actual conflict between retrospective views of Clause P.1

and an instantiation of Clause P.3

violation, according to Clause C.1, of obligation to pay for delivering1

absence of violation, according to Clause P.3, of obligation to pay for delivering1

(in light of paying1) fulfilment, according to

Clause P.3 of obligation to pay for delivering1

Figure 9: Time of conflict detection over the phases of contracting

[15] D. Makinson. On the formal representation of rights relations. Journal of Philosophical Logic, 15:403–425, 1986.

[16] D. Makinson. Rights of peoples: Point of view of a logician. The Rights of Peoples, 1988.

[17] D. P. Miranker. TREAT: A better match algorithm for AI production system matching. In Proceedings of the 6th
National Conference on Artificial Intelligence, pages 42–47, Seattle, WA, July 1987. Morgan Kaufmann.

[18] J.D. Moffett and M.S. Sloman. Policy conflict analysis in distributed system management. Journal of Organizational
Computing, April 1993.

[19] C.P. Thorpe and J.C.L. Bailey. Commercial Contracts. Kogan Page Limited, 1999.

A COVERAGE CHECKING RULES

Below are the rules used for determining coverage relationships between queries in our examples (the complete list is
available on request).

International Conference on Electronic Commerce Research (ICECR-5)



Mechanical Consistency Analysis for Business Contracts and Policies 17

Occurrence Universe

deliveries to
chief clerk

deliveries to
John James

deliveries to
Mary Moses

Figure 10: Potentially inconsistent obligations: Different descriptions of occurrences that are obliged under ordering1

Rule 1 An item is covered by queries with matching type criteria.

Rule 2 Transitively, a query is covered by any coverer of its coverers.

Rule 3 A temporal equal-to query Q, is covered by an equal-to, less-than or greater-than query P if P’s equal-to,
less-than, or greater-than criterion is, respectively, equal to, greater than, or less than Q’s equal-to
criterion. A temporal less-than query Q, is covered by numeric less-than queries where the less-than criterion is
greater than the less-than criterion of Q. A temporal greater-than query Q, is covered by temporal greater-than
queries where the greater-than criterion is less than the greater-than criterion of Q.

Rule 4 A participant, occurrence, or role is covered by concept-identification queries where the identified-concept
criterion is identical to the participant, occurrence, or role identifier.

Rule 5 A concept-identification query is covered by any query that covers its identified-concept criterion.

Rule 6 An intersection query Q, is covered by any intersection query P, if each of P’s intersectands covers some
non-zero number of Q’s intersectands. Similarly, an intersection query Q is covered by a query P, if P covers
some non-zero number of Q’s intersectands.

Rule 7 For two participant queries4, P covers Q if P’s role criterion covers Q’s and P’s occurrence criterion covers
Q’s. Similarly for occurrence queries5.

Rule 8 An ordinal (sequence) query is covered by its set criterion. e.g. first [occurrences of [paying]] is
covered by occurrences of [paying].

Rule 9 A query, Q, dirties any participant or occurrence query that has Q as its participant criterion, occurrence
criterion, or role criterion.

Rule 10 An item, y, in the range (i.e. output) of a programming language operation, Ω, is covered by Ω(Ω −1(y)), where
Ω−1 is the inverse operation of Ω. For example, consider the Java operation (in this case a user-defined abstract
method) symbolsStartingWith() which maps a first letter to (the infinite set of) strings that start with that

4EDEEQL syntax is: participant query = PARTICIPANTS IN ROLE role criterion IN occurrence criterion
5EDEEQL syntax is: occurrence query = OCCURRENCES OF occurrence criterion WHERE participant criterion IS |

ARE role criterion

International Conference on Electronic Commerce Research (ICECR-5)



Mechanical Consistency Analysis for Business Contracts and Policies 18

Occurrence Universe

deliveries to
John James

deliveries to
chief clerk

deliveries to
Mary Moses

Figure 11: Actual conflict between an obligation to deliver an order to John James (who is not chief clerk anymore) and an
obligation to deliver the order to the chief clerk

letter. This has the inverse operation firstLetterOf() which maps a string to its first letter 6. Assume the
item, y, which we wish to coverage-check, is the string ‘Brian’. We notice that, being a string, it is in the do-
main (input) of the inverse operation firstLetterOf() and, therefore, it is in the range (output) of the op-
eration symbolsStartingWith(). Applying the inverse operation firstLetterOf() to ‘Brian’ we get
the result ‘B’. We therefore know that the operation symbolsStartingWith() when invoked using the spe-
cific parameter ‘B’, covers (among other things) the string ‘Brian’. That is, we have used the inverse operation,
firstLetterOf(), to show that ‘Brian’ is covered by the description symbolsStartingWith(‘B’). If
the operation function, Ω, is injective – i.e. one-to-one: no two different inputs give the same output – then we can
conclude that, for any parameter other than the computed parameter (i.e. for any parameter other than ‘B’ in this
example), the description is disjoint from the item y. e.g. We can conclude that symbolsStartingWith(<>B)
is disjoint from ‘Brian’. This method of using inverse operations to find descriptions (operations and the specific
parameter values) that cover or are disjoint from an item can be generally applied. Furthermore, as far as we are
aware, this is be a novel mechanism of finding descriptions for items.

Rule 11 Provided the ordering criteria are identical for ordinal queries P and Q, and both P and Q select the first x elements
by such criteria, P covers Q if P’s set criterion covers Q’s set criterion.

6Notice that, because symbolsStartingWith() produces an infinite number of results per input in its domain, it cannot have a physical Java
implementation, but it could be defined as an abstract method. In contrast, its inverse mapping method, firstLetterOf(), which produces only one
result per input, can have a physical Java implementation. In general, computing the inverse operation for a given operation is non-trivial, and we provide
no facilities for automated generation of operation inverses. It is assumed that the developer manually specifies the name and definition of the inverse
operation when defining a operation, and that the system provides a commonly used set of operations and their inverses. Automatic determination of
inverse methods is a potential area of future research.

International Conference on Electronic Commerce Research (ICECR-5)


