
Distributed Multicast Grouping for Publish/Subscribe over Mobile Ad Hoc Networks

Eiko Yoneki and Jean Bacon
University of Cambridge Computer Laboratory

J J Thomson Avenue, Cambridge CB3 0FD, UK
Email: {eiko.yoneki, jean.bacon}@cl.cam.ac.uk

Abstract— Event broker grids that deploy the pub-
lish/subscribe communication paradigm extend the capabilities of
seamless messaging in heterogeneous network environments. In
order to support such mixed network environments, we integrate
publish/subscribe semantics with multicast routing in mobile ad
hoc networks. Dynamic construction of an event dissemination
structure to route events from event publishers to subscribers is
important, especially to support highly dynamic, self-organizing,
mobile peer-to-peer systems. The proposed approach aggregates
content-based subscriptions in a compact data format (Bloom
filters), and ODMRP (On-Demand Multicast Routing Protocol) is
extended to use this context from the middleware-tier to construct
an optimized dynamic dissemination mesh. Thus, dynamic mul-
ticast groups are created by aggregating subscriptions, applying
K-means clustering and other methods. Cooperation between
the middleware-tier and network components allows fine-grained
subscriptions to be represented.

I. INTRODUCTION

Event-based middleware, based on the publish/subscribe com-
munication paradigm, has become popular because asyn-
chronous, many-to-many communication is well suited to con-
structing reactive distributed systems. Most distributed event-
based middleware contains three main elements: a producer
who publishes events (messages), a consumer who subscribes
his interests to the system, and an event broker to match
and deliver the events to the corresponding consumers. Usu-
ally event brokers are connected in an arbitrary topology.
There is a diversity of large scale network environments, and
messages may flow from tiny sensor networks to Internet-
scale peer-to-peer (P2P) systems. Mobile ad hoc networks
(MANET) lie between these extremes. In such hybrid and
mixed network environments, the event-based middleware
takes an important role in providing efficient communication
mechanisms. MANET is a dynamic collection of nodes with
rapidly changing multi-hop topologies that are composed of
wireless links. The combination of mobile devices and ad
hoc networks is best managed by the creation of highly
dynamic, self-organizing, mobile P2P systems. Especially with
the recent evolution of distributed event-based middleware
over P2P overlay network environments, the construction of
event broker grids will extend a seamless messaging capability
over heterogeneous network environments.

Most early event-based middleware systems were based on
the concepts of group (channel) or subject (topic) communica-
tion. These systems categorize events into pre-defined groups.
Some early research projects defined content-based notifica-
tion systems, for example, the Cambridge Event Architecture
(CEA) was content-based and used a programming language
type-system for events [1]. The content-based model [4] allows

subscribers to use flexible subscription languages to declare
their interests with respect to event contents. Events are routed
based on their content and consumer subscriptions. A key
challenge when building large-scale event-based middleware
is efficient propagation of subscriptions among brokers. This
is particularly difficult in systems that support mobility.

There have been efforts to create efficient multicast commu-
nication for MANET (see Section II). When the scale of group
communication is small, multicast can be efficient. However, if
the group gets larger and a multicast group must define a spe-
cific topic for each receiver (e.g., a consumer alert with a fine-
grained subscription), it requires a more efficient communica-
tion mechanism such as publish/subscribe. Publish/subscribe
becomes powerful in MANET environments, when not all the
nodes are in an exclusively ad hoc topology. In this case, some
nodes may be connected to the Internet backbone or may be
relay nodes for different network environments. For example,
a publisher broker node can act as a gateway from a sensor
network, performing data aggregation and distributing filtered
messages to other mobile networks, based on content. Broker
nodes that offer data filtering services can coordinate data flow
efficiently. Thus, to achieve improved asynchronous communi-
cation, the semantics of publish/subscribe must be introduced.
Maintaining group membership and efficient delivery of events
to all members is challenging. Nodes that are mobile have a
limited transmission range; a source-to-destination path could
pass through several intermediate nodes, leading to a dramatic
increase in complexity. Context-awareness is important for
improving the accuracy of data dissemination and performance
in such ubiquitous environments. Many mobile ad hoc routing
protocols take account of contexts such as location, topology,
and mobility patterns to construct optimized routing. Integra-
tion of contexts from application and middleware to network
components is becoming important.

In this paper, we describe an integrated approach to a
content-based message dissemination mechanism, that ex-
tends ODMRP (On-Demand Multicast Routing Protocol) [5].
ODMRP supports optimized data dissemination mechanisms
with context awareness, including location, network topology,
network capabilities (e.g., bandwidth and stability), and mo-
bility. To support publish/subscribe systems it is crucial to
construct the event dissemination structure dynamically. We
optimize the construction by defining an interface to apply
the context from a publish/subscribe system to ODMRP. The
context consists of subscriptions and message advertisements.
We further extend the definition of context to conditions set
by the middleware. The interface is generic; to supply data to

be attached to ODMRP packets and indicate how to process
them. Our proposal is conceptually similar to Active Networks,
which allow users to inject customized programs into the
nodes of the network. Content-based subscriptions at a broker
node are aggregated and summarized into a compact data
format in Bloom filters [3], and the event publisher broker
node operates multicast grouping by examining the propagated
subscriptions, applying K-means clustering and other meth-
ods. This dynamic group construction is one of the difficult
challenges. Context-awareness allows both middleware and
network layer components to exploit information, providing
an efficient and dynamic event routing mechanism for better
performance.

This paper proceeds as follows: section II describes mul-
ticast protocols, section III describes the publish/subscribe
system, section IV reports experimental results, section V
discusses related work, and we conclude with section VI.

II. MULTICAST PROTOCOLS

Multicast has traditionally been used as the transport for mes-
saging systems. However today’s IP-based multicast schemes
are not scalable to support large groups, and a good infras-
tructure to support multicast is not available in wide area
networks. Thus, Application-Level Multicast Routing Proto-
cols (ALMRPs) are replacing group communication over wide
area networks. A typical design is as two layered protocols: a
protocol that maintains routing, above which a multicast tree is
constructed. Most ALMRPs use tree routing for logarithmic
scaling with respect to receiver numbers: as the node con-
nectivity changes, the tree structure changes accordingly. Non
tree routing examples are Narada [12], Bayeux/Tapestry [21]
and CAN [13]. However, the multicast service model is less
powerful than that of a content-based network model, and there
is currently no optimal way of using or adapting the multicast
routing infrastructure to provide a content-based service.

For wireless networks, broadcast is the most natural form
of communication. The publish/subscribe messaging model
maps well onto a decentralized group structure in MANET.
In general, there are three types of routing mechanism in
MANET. Proactive (table driven) protocols use a traditional,
distributed, shortest-path and maintain routes at all times. They
impose a high overhead. Reactive (on-demand) protocols are
initiated by the source. They have lower traffic compared with
proactive protocols, but impose delay in route determination.
Hybrid protocols are an adaptive way of combining proactive
and reactive protocols. One important difference from static
network environments is that routing optimality is not the
highest priority, because of the dynamic environment due to
mobile nodes. Several multicast routing protocols for MANET
have been developed. DVMRP (Distance Vector Multicasting
Routing Protocol) builds a source-based tree. AODV (Ad-hoc
On-Demand Distance Vector Routing Protocol) builds a core-
based tree. CAMP (Core Assisted Mesh Protocol) builds a
mesh interconnection of hosts.

ODMRP applies an on-demand routing technique to avoid
channel overhead and improve scalability (see Fig. 1).
ODMRP results from incorporating FGMP(Forwarding Group

Multicast Protocol) with an on-demand scheme. It attempts to
create a group of forwarding nodes between the source and the
multicast receivers. These forwarding nodes re-broadcast any
packet they receive, to reach all interested multicast receivers.
The multicast mesh is created through a reply-response phase
that is repeated at intervals to keep the routes to the multicast
receivers fresh. The concept of a forwarding group implies
that only a subset of nodes forwards multicast packets (scoped
flooding).

R1

R3

Sender

Receiver

Receiver

S
R2 Receiver

m1

m2

m3 FG3

FG1

FG2

1. Source broadcasts a
Join Request packet

2. Intermediate
nodes rebroadcast

3. To reply to Join Request,
multicast receiver node
broadcasts a Join Table
packet

4. Nodes in the path from
receiver to source, become
part of the forwarding group
(FG)

5.The source gets
Join Table sent by
the receiver

 Join Request Packet
 Join Table Packet

Fig. 1: ODMRP Operation
ODMRP provides a richer connectivity among multicast

members using a mesh-based approach. It supplies multiple
routes for one particular destination, which helps if the topol-
ogy changes or nodes fail. ODMRP takes a soft-state approach
to maintain multicast group members. Nodes need not send
any explicit control message to leave the group. However, there
are issues to be considered, for example an increase in senders
leads to control overhead. For more detail on ODMRP, see [5].

III. PUBLISH/SUBSCRIBE SEMANTIC MULTICAST

The messaging system in MANET should be self organizing.
This is because the topology of a mobile P2P system has to
constantly adjust itself, by discovering new communication
links, and also needs to be fully decentralized due to the lack
of a central access point. In such environments it is best to
create a routing table on demand, as in ODMRP. Accord-
ing to simulation studies, [8], ODMRP performs well with
regard to throughput and control packet overhead. ODMRP
is simple and scalable, through avoiding the drawbacks of
multicast trees such as intermittent connectivity and frequent
tree reconfiguration. We therefore selected ODMRP for the
underlying data dissemination mechanism. It is also an appro-
priate substrate for various on-demand multicast protocols for
MANET. ODMRP improves its performance using mobility
and location information. Many contexts are within the net-
work, and are outside the scope of middleware. On the other
hand, the semantic contexts from the upper layers should be
used to build efficient communication by the network layer
component. Here, there is a need to exchange contexts among
applications, the middleware tier and the network layer, to
build an optimized data dissemination structure.

Subscription Models: One of the key issues in supporting
messaging systems is designing subscription models. Topic-
based addressing is an abstraction of numeric network ad-
dressing schemes. With the content-based subscriptions used
in SIENA and Gryphon [6], delivery depends only on message
content, extending the capability of event notification with
more expressive subscription filters. In Pronto [18], besides

topic-based routing, a filtering function that selects messages
based on their content is supported. The content filter language
is based on the WHERE syntax of SQL92 over XML mes-
sages. Content-based publish/subscribe is essential for better
(filtered) data flow in mobile computing. The most advanced
and expressive form of subscription language is content-based
with pattern matching; such a language is important for event
notification. Common topic-based systems arrange topics in
hierarchies, but a topic cannot have several super topics. Type-
based subscription provides a natural approach to this, if the
language offers multiple sub-typing, thus avoiding explicit
message classification through topics. This works well with
typed languages, but it is complex to deploy this degree of
serialization of objects. Moreover, mobile applications may not
have the concept of objects or typing. Thus, the combination
of hierarchical topics and high speed content filtering could be
a more flexible approach for mobile applications. Research is
also ongoing to structure complex content-based data models
[11] and reflection-based filters. In [17], subscription parti-
tioning is attempted to obtain better system throughput and
less network traffic. A similar approach can be used to create
multicast groups from aggregated subscriptions.

Our proposed system follows the basic model of an event-
based middleware. Publisher, subscriber, and broker are the
elements of the system and content-based subscriptions are
used when ODMRP builds the routing table to disseminate
the events. Content-based routing is computationally more
expensive than explicit-address routing or topic-based routing.
In static P2P network environments, content-based subscrip-
tions are used to construct the routing itself. However, over
dynamic mobile ad hoc network environments, the multicast
channel life is ephemeral and subscriptions are expected to be
more specific. In such network environments, epidemic-style
data dissemination should work better. Channels should be
established dynamically, as in our approach, to realize content-
based publish/subscribe. Note that it is necessary to develop
data structures and algorithms that can introduce efficient
subscription propagation and event matching. XML is a good
candidate, although it lacks typing.

An event is defined using XML schema, and the root
element name identifies the event type. The XML schema for
the event consists of a set of typed elements. Each element
contains a type and a name. The element’s name is a simple
string, while the value can be in any range defined by the
corresponding type. Events themselves can be carried in a
byte stream or in compressed format in ODMRP packets.
A subset of XPath [2] is used as a subscription language.
Complex XPath expressions will be transformed to simplified
and unified formats. The subscriptions are tightly linked to
the corresponding event data structure in the current system,
and an integration with an ontology-based event data model
[20] is in progress. Aggregated subscriptions are kept in a
compact data structure within subscriber brokers. For compact
encoding, Bloom filters are used. The digests of published
events (and event advertisements) are transformed similarly
into compact data structures that travel, with the event, in a

multicast packet header. On arrival at a potential subscriber
broker, a matching operation is applied, to the event digest and
the subscription, to determine whether to join the subscription
to the particular multicast group, and thus to receive further
such events. The publishing broker then creates the multicast
group from the propagated subscriptions; the challenge is
to do this optimally. Brokers can propagate any changes in
subscriptions to ODMRP’s periodic membership refreshing
mechanism.
A. Compact Encoding in Bloom Filters

Subscriptions are aggregated at brokers and transformed into
a compact data format. Advertisements and notifications are
transformed into a compact format that uses XPath as an in-
termediate expression during the transformation. For encoding
data structures, Bloom filters are used.

Bloom Filters: are compact data structures for probabilis-
tic representation of a set in order to support membership
queries. Each filter provides a constant-space approximate
representation of the set. Errors between the actual set and
the Bloom filter representation always take the form of false
positives to inclusion tests. The probability of a false positive
decreases exponentially with linear increase in the number of
hash functions and vector size. A Bloom filter is a bit vector,
and items are inserted by setting the bits corresponding to a
number of independent hash functions.
Subscription and Notification in Bloom filters: Given the
constrained MANET environments, it is mandatory to aggre-
gate the set of subscriptions into a compact set of content
specifications. The proposed subscription summary structure
in Bloom filters is based on the one described in [16], extended
to take advantage of XML events, typed by XML schema and
the XPath subscription language (for more detail, see [19].)
Currently no hierarchical encoding is used. A subscription
summary consists of the five data structures described below,
and a broker’s subscription summary is an array of these data.
(Fig. 2 shows an example).

• Event Type Name (EN): contains the hashed value of the root
element name in the XML schema for the event type.

• Element Association List (EL): stores information about the
elements and attributes in XML schema and actual values that
belong together in a subscription. An EL consists of an array of
bits with a constant number of columns and a variable number
of rows for subscriptions. Columns represent the ordered set of
supported elements and attributes defined in XML schema, and
the rows represent the unique sets of subscriptions. Redundant
ELs are eliminated. Each row in an EL includes associated EC
(Enumeration Constraint), AC (Arithmetic Constraint) and SC
(String Constraint).
� ���������
	���
� � � ��������� ��������� � ! ��� � ��"�# � $�%���� ��&('�� ��&*)�+
"�,*

"(,�-�-
. ,/"(,�0 ,�,/"�"*"�,�,�,*0 ,1"(,*-
. ,/"�"(0 ,�,�,�,*-2"(,/"�,*0 ,�,�,/"(,1"(,*-3,�,�,54/61718 9;:
<;=�> ?3<;=�@ ?A< B*C ?3<;=(C ?3< DEC ?

,F, " " " ,�,�,
G �H' G I ���J' � I �K��� �������L!���� � $�%�� � ��&�'�� ��&�)

Fig. 2: Encoding Subscriptions in Bloom filters

• Enumeration Constraint (EC): holds the constraints of each
enumerated string attribute of a subscription.

• Arithmetic Constraint (AC): holds the constraints of each
arithmetic attribute of a subscription. It consists of two arrays.
The first array consists of two columns and a variable number of
rows. Each row represents non-overlapping sub-ranges of values
specified in subscriptions for the specific attribute. The second
array is used when an arithmetic constraint has an equality
operator for a value that is not in the existing sub-ranges.

• String Constraint (SC): contains information about the con-
straints in the string type. For each different string type
element/attribute, that appears in at least one subscription,
a broker implements a SC structure using three bit vectors
(SCL, SCR, SCX) as Bloom filters. For containment opera-
tions, the specified string value is divided into two substrings,
‘left’ and ‘right’, defined relative to the position of the operator
‘*’. After the string value is divided into the two substrings, the
left (right) substring is hashed and placed in the SCL(SCR)

filter for the specific string. If the constraint specified a prefix
or suffix operation, the specified string value is hashed, and the
result is inserted in the SCX filter. In case of equality without
a containment operation, the whole string is considered as if a
suffix operation had been performed, and the hashed result is
placed in SCX .

B. Global Grouping
Clustering in ad hoc networks often indicates clustering of
the nodes, in which case hierarchical routing schemes can
manage efficient broadcast. Such clustering schemes are
based on the location or topology of the nodes. We attempt
clustering of subscriptions based on their semantics. Here,
publisher broker nodes define multicast groups from the
propagated subscriptions.

Cluster analysis classifies similar objects into groups
where each object within the cluster shares heterogeneous
features. The quality of clustering depends on the definition
of similarity and the calculation complexity. Cluster analysis
is divided into hierarchical and non-hierarchical methods.
K-means [9] is a heuristic non-hierarchical clustering
method, which partitions data into K clusters. K needs to be
determined at the onset, and the algorithm is relatively simple.
In hierarchical methods, the final number of clusters is not
known ahead of time. There are two types of hierarchical
clustering: agglomerative and divisive. In agglomerative
clustering, each object is initially placed in its own group.
The two closest groups are combined into a single group, and
so on. In divisive clustering, all objects are initially placed
into a single group. The two objects that are in the same
group but are farthest apart are used as seed points for two
groups. All objects in this group are placed into the new
group that has the closest seed. This procedure continues until
a threshold distance is reached. Hierarchical clustering may
produce relatively good results but it may require maximum
O(N2) calculation time. Established clusters are not easily
re-classified, thus hierarchical clustering methods may not be
a good choice for incremental conceptual classification.

Our subscription clustering has much in common with
subscription partitioning and routing in wide area networks.
In [17], there are two approaches to partitioning the overall
publish/subscribe operations among multiple servers: either

partition the event space or partition the set of subscription
filters. In the Event Space Partitioning (ESP) approach,
given the number of servers is Ns, the d-dimensional space
is partitioned into Ns disjoint subspaces, each assigned to
a different server. A subscription is hosted by a server if
its filter intersects the server’s associated subspace. Filter
Set Partitioning (FSP) is a dual partitioning approach that
always assigns each subscription to a single server. Similar
subscriptions, i.e. subscriptions matched by the same events,
are grouped together and assigned to the same server to
allow for the construction of compact and effective summary
filters. Summary filters from multiple servers may overlap
and an event is forwarded to every server whose summary
filter contains the event. Fig. 3 depicts the difference between
these two approaches for 2-dimensional subscription filters.

Partition 1 Partition 2

ESP
Partition 1

Partition 2

FSP

Fig. 3: Event Space Partitioning and Filter Set Partitioning

Our goal is similar to the FSP approach, in that the members
of a large set of existing subscriptions are hashed, via their
signature strings, into appropriate buckets. A weight is then
assigned to each bucket, that is the product of the number of
unique strings and the total number of subscriptions falling
in that bucket. For content-based publish/subscribe, the FSP
approach has demonstrated good load balancing both statically
and dynamically, while significantly reducing network traffic.
The purpose of clustering for multicast grouping is to reduce
the network load, and it is not necessary to create hierarchical
clusters, even if the propagated subscription can be part of
a constructed hierarchy. Another aspect is that subscriptions
may reach the publishing broker nodes over a period of time.
Aggregation of subscriptions takes place over time and space.
Responses from the subscriber brokers arrive at the publisher
broker node one by one, which makes the construction of
multicast groups more complex. If the groups are to cover
coarse-grain subscriptions, more noise will be delivered to
the broker, whereas if the multicast groups are to correspond
to fine-grain subscriptions, many groups will be created.
However, if nodes can have high mobility, using fine-grain
subscriptions may reduce the overhead of group membership
maintenance. The goal is to define a channel per entity;
however there is no obvious one-size-fits-all solution. It is
challenging to define the balance between multicast groups
and content-based subscriptions, and the optimized methods
will depend on the application characteristics. Three different
approaches are currently applied in order to obtain heuristic
experimental results.
The least constrained subscription: This approach is taken
under the assumption that subscriptions are client-specific
in mobile ad hoc network environments; important alert
messages are an example. Thus, a subscriber who subscribes

to everything, causes flooding and breaks the assumption.
Aggregated subscriptions in a graph: Aggregated
subscriptions are described in a graphical representation,
which retains the hierarchical patterns. Fig. 4 shows an
example of the content subscription graph. When the publisher
broker publishes messages it searches all subscriptions in the
graph and, if it matches at least one of them, it publishes the
message.

 PGMFORUM

player=GregNorman

Hole=18
player=*N*

totalscore<100

/PGMFORUM[hole=18][totalscore<100]
/PGMFORUM[hole=18][player=*N*]
/PGMFORUM[hole=18][player=*Norman]
/PGMFORUM[hole=18][player=GregNorman]
/PGMFORUM[hole=18][currentrank<10]

currentrank<10
player=*Norman

Fig. 4: Content Subscription Graph for Multicast Group

Grouping by K-means Clustering: This approach aims to
set effective groups for efficient communication including the
splitting/combination of groups resulting from the K-means
operation. K-means clustering generates a specific number of
disjoint, flat (non-hierarchical) clusters, and the algorithm is
used for similarity-based grouping. The K-means method is
relatively fast, and the calculation time is O(tkn) (n: number
of objects, k: number of clusters, and t: number of repeats;
normally t << n). The ultimate goal is to divide the objects
into K clusters such that some metric relative to the centroids
of the clusters is minimized. The metric to minimize, and
the choice of a distance measure, will determine the optimal
cluster structure. Our choice of metric is the sum of the average
distance to the centroids over all clusters. We compute the
distance measure by selecting the parts of the Bloom filters
that represent subscriptions and converting them from XML
elements and attributes into real values. We also assign a
weight to each object, that can be related to some function
of its variance, but we currently assign weight values on an
experimental basis. If the weight has approximately the same
value for all objects to be clustered, it may not be a valuable
indicator and should be small. However, if it varies consider-
ably among the objects, it may be an important discriminator
and should be relatively large. The typical operation is:

• Place K points representing initial group centroids among
subscriptions.

• Assign each subscription to the group containing the
closest centroid.

• When all subscriptions have been assigned, recalculate
the positions of the K centroids.

• Repeat Steps 2 and 3 until the centroids no longer
move. This produces a separation of the subscriptions
into groups from which the metric to be minimized can
be calculated.

A basic problem of K-means is that the number of groups has
to be known. Thus, some heuristic step is applied. K-means
algorithms converge to a local optimum over a number of
iterations, and in practice they converge quickly. Nevertheless,

the processing can be stopped after any iteration, resulting in
a feasible partition into K groups. This also provides an easy
way to accommodate changes of grouping, simply running
a number of re-balancing iterations when new subscribers
arrive or subscriptions change. The EL data and associated SC,
EC, and AC data in the Bloom filters (See Section III.A for
data types) are used for clustering, and weights are computed
for the assigned elements. Note that the event source that
triggered the multicast group formation is also an input for
K-means clustering. K-means is usually not suitable for non-
convex clusters, which makes it difficult to generalize the
clustering algorithms. However, one purpose of using the K-
means algorithm is to exclude subscriptions that are distant
from the main group of subscribers. K is currently computed
from the number of elements and attributes in a cluster.

These algorithms perform well for highly heterogeneous
subscriptions, and they also scale well. For dynamic sub-
scriptions, iterative clustering algorithms (K-means) seem to
be most appropriate. Here, hierarchical clustering algorithms
have poorer performance than iterative clustering, but have the
advantage of monotone improvement: when more multicast
groups become available, the new groups are formed by
subdividing the existing ones.

C. Routing by Pub/Sub ODMRP

The routing between a broker and publishers/subscribers
can be achieved by unicast protocols. This paper focuses on
the routing between the broker publishing an event and the
brokers subscribing to it. In general, there are two approaches
to disseminating events to the corresponding subscribers.
The first is flooding the message by broadcast, followed by
filtering at the broker. The second is match-first, and requires
a precomputed destination list, that is broadcast to all brokers,
followed by routing using the list. The flooding protocol is
simple but may lead to network congestion. Match-first is
not scalable, because the routing table must be shared by all
brokers, and preprocessing may not work well in MANET
environments. A MANET environment’s dynamic network
condition may cause frequent reconfiguration of routing
tables. A further possibility is a distributed-approach by the
brokers, where the brokers examine the message content and
forward messages using their routing table. Our approach
is to integrate the latter with an extention of ODMRP that
applies scoped flooding.

P FG

S2

S1

//[hole18] [player=*Norman]

//[hole=18]
[player=Woods] +

//[hole=18][totalscore<100]

//[hole=18]
[player=Norman]
[totalscore=98]

NR

//[hole=18]
[player=Nicklaus] +

Summarization

FG

FG

NR

Join Request (JR)
Join Table (JT)

Event Notification in
Bloom filters

 Summarized Subscriptions
in Bloom filers

NR
 //[hole=12] [player=Norman]

//[hole=10]

Fig. 5: Pub/Sub ODMRP Operation

The protocol operation of Pub/Sub ODMRP is described
below (see Fig. 5). First, a publisher broker node (P) pe-

riodically broadcasts a Join Request (JR) packet over the
network. The digest of the event to be sent in the Bloom filter
expression is embedded in the JR packet. A node receiving
a non-duplicate JR packet stores the upstream node ID and
rebroadcasts the packet. The subscriber broker nodes (NR as
non-matching subscriber and S as matching subscriber), that
keep the subscriptions in Bloom filters, have the correct bits
set for the subscription to be recognized at receiver nodes.
Once a subscriber broker node decides to join the group,
it updates the publisher entry in its member table. A Join
Table (JT) packet is broadcast periodically and the subscription
information is attached to the JT packet. An intermediate node
(router node), receiving the JT packet, compares its node
ID with the entries of the forwarding group table. If there
is a match, it becomes a member of the forwarding group
(FG). Optionally the subscription information is kept along
with the routing information, and is used as a filter for data
forwarding. The JT packet is propagated by each forwarding
group member until it reaches the publisher broker node via
the shortest delay path. This process creates a mesh among
all forwarding group members. The publisher broker node
operates global grouping from aggregated subscriptions.

After the group establishment and route construction pro-
cess, a publisher broker can transmit ‘Data packets’ to sub-
scriber brokers via selected routes and forwarding groups.
Intermediate nodes relay a ‘Data packet’ only when it is not
a duplicate and its forwarding group membership has not
expired. This whole operation minimizes traffic overhead and
prevents sending packets along stale routes. See [19] for further
details of routing.

IV. EXPERIMENTS

Evaluation of the proposed system is complex. It is affected
by the complexity of subscriptions and events, the efficiency
of global subscription aggregation, mobility patterns, network
traffic load, the false positive rate of Bloom filters etc. In
this paper, we show the basic characteristics of our approach
in terms of Pub/Sub ODMRP overhead, clustering effects,
and mobility impact (see [19] for more experimental results).
We extended a Java based ns-2 simulator adding extended
ODMRP. Experimental results have been obtained on the
following two data dissemination models:
• our proposed Pub/Sub ODMRP;
• ODMRP (N channels multicast for N subscriptions).

100 nodes with 20 publishers and 50 subscribers are randomly
placed over a 1000m x 1000m area. A publisher broker sends
100 messages, that match 60 % of subscriptions. The route
refresh interval is set to 5 seconds, and the forward group
timeout interval is 25 seconds, chosen as a less influential
value for the experimental environment.

A. Conversion Overhead in Pub/Sub ODMRP

The messaging system using Pub/Sub ODMRP requires con-
version from messages to XPath expressions. Ultimately both
subscriptions and messages in XPath expressions are trans-
formed to Bloom filters. We measured the conversion overhead

in relation to the complexity of the XML schema. This was
done separately from the network simulation experiments and
the result indicates that the conversion overhead stays at a
constant value within the range of 200 nesting elements in the
XML schema. The comparison process between the message
digest and the aggregated subscriptions at the subscriber broker
is a fraction of this, since it compares simple bit sets.

0

0.5

1

1.5

2

2.5

3

3.5

0 ms 250 ms 500 ms 750 ms 1000 ms

Message sending interval

M
es

sa
ge

s
pe

r s
ec

on
d

Pub/Sub ODMRP

ODMRP

Fig. 6: Throughput Comparison

Fig. 6 shows the throughput of the messaging systems.
The throughput is measured when all messages have been
delivered to the target subscriber brokers. The conversion time
from XPath to Bloom filters is included. Pub/Sub ODMRP
improves performance when the message interval cancels out
the conversion overhead. ODMRP’s maximum throughput is
lower than the average throughput of Pub/Sub ODMRP.
B. Clustering Method Comparison

Fig. 7 shows Algorithmic comparisons for global clustering
in publisher brokers. K-means creates more channels than
the graph form of aggregated subscriptions but the overall
traffic over the networks is reduced. This shows that K-means
provides efficient grouping.

0

5

10

15

20

0 10 20 30 40 50

of subscriptions

of

 m
ul

tic
as

t g
ro

up
s Graph K-means

0

20

40

60

80

100

0 10 20 30 40 50

of subscriptions

N
et

w
or

k
tra

ffi
c

(K
by

te
s) Graph K-means

Fig. 7: Cluster Algorithms Comparisons

C. Mobility and Reliability

The proportion of messages delivered correctly is related to
node mobility in Fig. 8. Random way-point is used in the
simulation for the node mobility pattern. When node mobility
is high, loss of messages is inevitable. Note that the delivery
ratio is high at human walking speed (5km/hr). The delivery
ratio of Pub/Sub ODMRP shows similar values to ODMRP.
See [19] for more experiments.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 20 30 40 50 60 70 80 90

Mobility speed (km/h)

Pa
ck

et
 d

el
iv

er
y

ra
tio

Pub/Sub ODMRP

ODMRP

Fig. 8: Message Delivery Ratio

V. RELATED WORK

In the past decade many publish/subscribe systems have been
reported, including CEA [1], SCRIBE [14], and SIENA [4].
SCRIBE is a topic-centric publish/subscribe messaging system
using Distributed Hash Tables (DHT) over Pastry [15]. Several
publish/subscribe systems, e.g. SIENA, implement some form
of content-based routing. SIENA is a notification service
scalable to wide-area networks. Routing strategies in SIENA
use two classes of algorithm: advertisement forwarding and
subscription forwarding. SIENA has an extension to support
mobility by an explicit operation to relocate clients. None
of these systems support extremely dynamic mobile environ-
ments such as mobile P2P networks.

Several middleware systems have been developed to support
wireless ad hoc network environments, e.g. STEAM [10] and
IBM WebSphere MQ [7]. STEAM provides a proximity-
based group communication. These systems construct pub-
lish/subscribe above existing transport protocols. Our approach
uses cross layering between middleware-tier and network
components. In wireless ad hoc network environments, much
research currently focuses on datagram routing in both unicast
and multicast routing. However, no definite solution to define
publish/subscribe semantics using these protocols has been
provided. Given the characteristics of mobile ad hoc networks,
the use of distributed hash tables in a messaging system to
locate objects may not work in dynamic environments. Thus,
our approach is unique in taking advantage of the broadcast
nature of wireless ad hoc networks and creating dynamic
multicast channels by grouping subscriptions.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we extended multicast communication to a
publish/subscribe semantic cast mechanism. The MANET
environment is highly dynamic, and communication optimiza-
tion needs to be done by means of a cross-layer approach.
Our key contribution is the creation of an interface between
the middleware tier and network components. Content-based
subscriptions in a compact data format (Bloom filters) travel
within multicast headers, and ODMRP uses this context to
construct an optimized dynamic dissemination mesh. A dy-
namic multicast group is created and maintained by aggregated
subscriptions over the network by applying K-means clustering
and other methods. In dynamic MANET environments, the
multicast channel lifetime is ephemeral and subscriptions are
expected to be more specific. In such network environments,
our approach would achieve efficient group communication.

Cooperation between middleware-tier and network compo-
nents provides fine-grained subscriptions. Experimental re-
sults highlight that performance is improved by introducing
a publish/subscribe scheme; the network traffic is reduced
and the reliability is improved by the mesh topology. The
evaluation could address other aspects such as more complex
subscriptions and the brokers’ topology, and more complex ex-
periments are in progress. A complete event-based middleware
involves more than supporting asynchronous communication
and we are working on issues such as reliability, persistence,
fault-tolerance, and security.

Acknowledgment. This research is funded by EPSRC (Engi-
neering and Physical Sciences Research Council) under grant
GR/557303.

REFERENCES

[1] Bacon, J. et al. Using Events to build Distributed Applications.
Proc. IEEE SDNE, 1995.

[2] Berglund, A. et al. XML Path Language (XPath) 2.0. Working
Draft. W3C, http://www.w3c.org/TR/xpath20/, 2001.

[3] Bloom, B. Space/time Trade-offs in Hash Coding with Allow-
able Errors. CACM, 13(7), 1970.

[4] Carzaniga, A. et al. Achieving scalability and expressiveness
in an Internet-scale event notification service. Proc. 19th ACM
Symp. on Principles of Distributed Computing, 2000.

[5] Chiang, C. et al. On-Demand Multicast Routing Protocol. Proc.
WCNC, 1999.

[6] IBM. Gryphon: Publish/Subscribe over Public Networks.
http://researchweb.watson.ibm.com/gryphon/gryphon.html.

[7] IBM. WebSphere MQ: Connecting your applications without
complex programming. WebSphere White Papers, 2003.

[8] Lee, S. et al. A Performance Comparison Study of Ad Hoc
Wireless Multicast Protocols. Proc. IEEE INFOCOM, 2000.

[9] MacQueen, J. B. Some Methods for classification and analysis
of multivariate observations. Proc. 5th Berkeley symposium
observation, Pro-Statistics and Probability, 1967.

[10] Meier, R. et al. STEAM: Event-based middleware for wireless
ad hoc networks. Proc. DEBS, 2002.

[11] Muhl, G. et al. Filter Similarities in Content-Based Pub-
lish/Subscribe Systems. Proc. ARCS, 2002.

[12] The Narada Event Brokering System .
http://grids.ucs.narada.edu/ptliupages/projects/narada.

[13] Ratnasamy, S. et al. Application-Level Multicast using Content-
Addressable Networks. Proc. NGC, 2001.

[14] Rowstron, A. et al. SCRIBE: The design of a large-scale event
notification infrastructure. Int’l. Workshop of NGC, 2001.

[15] Rowstron, A. et al. Pastry: Scalable Decentralized Object
Location, and Routing for Large-Scale Peer-to-Peer Systems.
Middleware, 2001.

[16] Triantafillou, P. et al. Subsciption Summaries for Scalability
and Efficiency in Publish/Subscribe Systems. DEBS, 2002.

[17] Wang, Y. et al. Subscription Partitioning and Routing in
Content-based Publish/Subscribe Systems. Proc. 16th Symp. on
Distributed Computing, 2002.

[18] Yoneki, E. and Bacon, J. Gateway: a Message Hub with Store-
and-forward Messaging in Mobile Networks. Proc. ICDCS-
MCM, 2003.

[19] Yoneki, E. and Bacon, J. An Adaptive Approach to Content-
Based Subscription in Mobile Ad Hoc Networks. Proc. PerCom-
MP2P, 2004.

[20] Yoneki, E. et al. Towards Peer-to-Peer Event Broker Grid in
Hybrid Network Environments. Proc. DOA-GADA, 2004.

[21] Zhuang, S. et al. Bayeux: An architecture for scalable and fault-
tolerant wide-area data dissemination. Proc. NOSSDAV, 2001.

