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Abstract. This paper presents a distributed middleware architecture
based on a service-oriented approach, to manage high volume sensor
events. Event management takes a multi-step operation from event sources
to final subscribers, combining information collected by wireless devices
into higher-level information or knowledge. An event correlation service
provides sophisticated event filtering, aggregation and correlation over
time and space in heterogeneous network environments. An experimental
prototype in the simulation environment with real world data produced
by the Active BAT system is shown.

1 Introduction and Background

The majority of current middleware for Wireless Sensor Networks (WSNs) is
based on the data centric approach, and a fundamental idea naturally came from
database management systems (DBMS). The database community has taken the
view that declarative programming, through a query language, provides the right
level of abstraction for accessing, filtering, and processing relational data. The
middlewares that take a database approach such as [3] provides an interface for
data collection but they do not provide general purpose distributed computa-
tion. For example, it is complex to implement arbitrary aggregation and filtering
operators and communication patterns with query languages. Thus, more gen-
eral interfaces for global network programming are desirable.

Recent evolution of ubiquitous computing with a dramatic increase of event
monitoring capabilities by wireless devices and sensors requires an open plat-
form for users to utilize seamlessly various resources in physically interacting
environments, unlike the traditional closed network setting for specific applica-
tions. There has been an effort to architect middleware for such environments
using service oriented architecture (e.g. RUNES [6] and P2PComp [1]). When
designing the middleware for sensor networks, heterogeneity of information over
global distributed systems must be considered. The sensed information by the
devices is aggregated and combined into higher-level information or knowledge.

Service Oriented Architecture (SOA) is a well proven concept for distributed
computing environments. It decomposes applications, data, and middleware into
reusable services that can be flexibly combined in a loosely coupled manner. SOA
maintains agents that act as software services performing well-defined opera-
tions. This paradigm enables the users to be concerned only with the operational
description of the service. All services have a network addressable interface and



communication via standard protocols and data formats (i.e., messages). SOA
can deal with aspects of heterogeneity, mobility and adaptation, and offers seam-
less integration of wired and wireless environments.

Generic service elements are context model, trust and privacy, mobile data
management, configuration, service discovery, event notification, and the follow-
ing are the key issues addressed for our design.

• Flexible discovery mechanisms for ad hoc networks, which provide the reli-
able discovery of newly or sporadically available services.

• Support for adaptive communication modes, which provides an abstract com-
munication model underlying different transport protocols. Notably, event-
based communication is suitable for asynchronous communication.

Peer-to-peer networks and grids offer promising paradigms for developing
efficient distributed systems and applications. Grids are essentially P2P sys-
tems. The grid community recently initiated a development effort to align grid
technologies with Web Services: the Open Grid Services Architecture (OGSA)
[4] lets developers integrate services and resources across distributed, heteroge-
neous, dynamic environments and communities. The OGSA model adopts the
Web Services Description Language (WSDL) to define the concept of a grid ser-
vice using principles and technologies from both the grid and Web Services. The
architecture defines standard mechanisms for creating, naming, and discovering
persistent and transient grid-service instances. The convergence of P2P and Grid
computing is a natural outcome of the recent evolution of distributed systems,
because many of the challenging standards issues are quite closely related.

The Open Services Gateway Initiative (OSGi) [5] is focused on the appli-
cation layer and open to almost any protocol, transport or device layers. The
three key aspects of the OSGi mission are multiple services, wide area networks,
and local networks and devices. Key benefits of the OSGi are that it is platform
independent and application independent. In other words, the OSGi specifies an
open, independent technology, which can link diverse devices in the local home
network. The central component of the OSGi effort is the services gateway. The
services gateway enables, consolidates, and manages voice, data, Internet, and
multimedia communications to and from the home, office and other locations.

We propose a distributed middleware architecture that envisages an inte-
grated service oriented architecture to manage high volume sensor events in
global computing. The current mainstream deployment of sensor networks col-
lects all the data from the sensor networks and stores them in the database
and data analysis is preceded from there. The proposed architecture deploys
distributed gateways to collaborate data management over hybrid network en-
vironments. The publish/subscribe paradigm is used for asynchronous commu-
nication, performing data aggregation and distributing filtered data to other
networks based on contents. We simulate distributed gateways with the real
world data produced by the Active BAT system [2].

This paper continues as follows: section 2 describes the middleware architec-
ture, section 3 briefly recalls the durative event model defined in our previous
work [7], section 4 reports an experimental prototype, section 5 describes related
works and it concludes with section 6.



2 Middleware Architecture

We have developed a generic reference architecture applicable to any ubiquitous
computing space. The middleware contains separate physical, sensor compo-
nents, event broker, service, and service management layers including an open ap-
plication interface. An implementation of a reference architecture is in progress.

A service is an interesting concept to be applied in WSNs. It may be a role
on a sensor node, or a function providing location information. Services allow
cascading without previous knowledge of each other, and enable the solution of
complex tasks, where functional blocks are separated in order to increase flexi-
bility and enhance scalability of sensor network node functions. A key issue is to
separate the software from the underlying hardware and to divide the software
into functional blocks with a proper size and functionality. Another important
issue is that the sensed data should be filtered, correlated, and managed at the
right time and place when they flow over heterogeneous network environments.
It is not easy to provide reliable and useful data among the massive information
from WSNs. An event correlation based on our previous work [7] is integrated
with service composition.

2.1 Service Semantics

Service semantics is an important issue, in addition to the service definition, so
that services can be coordinated in the space. The model of the real world is
of a collection of objects, where objects maintain state using sensor data, and
applications’ queries and subscriptions are a relevant sets of objects. Fig.1 shows
an example of object mappings among applications, middleware and sensor com-
ponents. Objects are tightly linked to event types in an event broker. Exploiting
semantics will let the pervasive space’s functionality and behaviour develop and
evolve. Space specific ontologies will enable such exploitation of knowledge and
semantics in ubiquitous computing.
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Fig. 1: Mapping Real World to Applications

2.2 Layer Functionality

Fig.2 depicts the overview of the middleware, and the brief functionality of each
layer is shown below.

Physical Layer: This layer consists of the various sensors and actuators.
Sensor Component Layer: A sensor component layer can communicate with
a wide variety of devices, sensors, actuators, and gateways and represent them
to the rest of the middleware in a uniform way. A sensor component effectively
converts any sensor or actuator in the physical layer to a software service that
can be programmed or composed into other services. Decoupling sensors and
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Fig. 2: Middleware Architecture with Wireless Sensor Data

actuators from sensor platforms ensures openness and makes it possible to in-
troduce new technology as it becomes available.
Event Broker Layer: This layer is a communication layer between Sensor com-
ponents and the Service layer. It supports asynchronous communication using
the publish/subscribe paradigm. Event filtering, aggregation, and the correlation
service is a part of this layer.
Service Layer: This layer contains the Open Services Gateway Initiative (OSGi)
framework, which maintains leases of activated services. Basic services represent
the physical world through sensor platforms, which store service bundle defini-
tions for any sensor or actuator represented in the OSGi framework. A sensor
component registers itself with the service layer by sending its OSGi service def-
inition. Application developers create composite services via the Service Man-
agement Layer’s functions to search existing services and using other services
to compose new OSGi services. Canned services, which may be useful globally,
could create a standard library.
Service Management Layer: This layer contains an ontology of the various
services offered, and the appliances and devices connected to the system. Service
advertisement and discovery use service definitions and semantics to register or
discover a service. Service definitions are tightly related to the event types used
for communication in the Event Broker Layer including composite formats. The
reasoning engine determines whether certain composite services are available.
Application Interface: An application interface provides open interfaces for
applications to manage services, including the management of contexts.

3 Durative Events and Interval-based Semantics

In [7], we defined a unified semantics, combining traditional event composition
and data aggregation in WSNs. For event detection, we introduced a parame-
terized algebra. Parameters include time, selection, consumption, precision, and
subset policies. This approach defines unambiguous semantics of event detection
and supports resource constrained environments. The semantics is integrated
with the service composition engine in the middleware described in Section 2.

In our event model, a primitive event is the occurrence of a state transition at
a certain point in time. Each event has a timestamp associated with the occur-
rence time. The timestamp is an approximation of the event occurrence time.
In most event algebras, each event occurrence, including composite events, is



associated with a single value indicating the occurrence time. This may result
in unintended semantics for some operator combinations, for example nested
sequence operators. We define a composite event with duration and give a new
interval-based timestamp to a composite event based on an interval semantics.
An interval-semantics supports more sensitive interval relations among events
in environments where real-time concerns are more critical, such as wireless
networks or multi-media systems. An event can have a space stamp indicating
certain location, relative location, and grouping (e.g. position (x,y,z), global id).
Complex timing constraints among correlated event instances are precisely de-
fined (see Appendix in [7]).

Composite events are defined by expressions built from primitive and com-
posite events and algebraic operators. Operators consist of Conjunction, Dis-
junction, Concatenation, Sequence, Concurrency, Iteration, Negation, Selection,
Spatial Restriction, and Temporal Restriction (See [7] for the detail). We also sup-
port parameters, which help to define unambiguous semantics of event detection
and support resource constrained environments. In resource constrained network
environments, the event algebra must be restricted so that only a subset of all
possible occurrences of complex events will be detected, and this can be achieved
by applying appropriate parameters. The following example illustrates the use
of the operators to describe composite events.
Example: The temperature of rooms with windows facing south is measured
every minute and transmitted to a computer placed on the corridor. T denotes
a temperature event and T

AV G
30

denotes a composite event of an average of the
temperature during 30 minutes. (Troom1+Troom7)

AV G
30

denotes to take an average
of room 1 and 7.

4 Prototype with the Active BAT System

Sentient computing is a type of ubiquitous computing which uses sensors to per-
ceive its environment and react accordingly. A use of the sensors is to construct
a world model, which allows location-aware or context-aware applications to
be constructed. One research prototype of a sentient computing system was the
work at AT&T Laboratories in the 1990s and the research continues at our Com-
puter Laboratory by means of the Active BAT system [2]. This is a low power,
wireless, indoor location system accurate up to 3cm. It uses an ultrasound time-
of-light trilateration technique to provide accurate physical positioning.

Users and objects carry Active BAT tags. In response to a request that the
controller sends via short-range radio, a BAT emits an ultrasonic pulse to a grid
of ceiling mounted receivers. At the same time that the controller sends the radio
frequency request packet, it also sends a synchronized reset signal to the ceiling
sensors using a wired serial network. Each ceiling sensor measures the time in-
terval from reset to ultrasonic pulse arrival and computes its distance from the
BAT. The local controller then forwards the distance measurements to a cen-
tral controller, which performs the trilateration computation. Statistical pruning
eliminates erroneous sensor measurements caused by a ceiling sensor hearing a
reflected ultrasound pulse instead of one that travelled along the direct path from
the BAT to the sensor. The SPIRIT (SPatially Indexed Resource Identification
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Fig. 3: Active BAT

and Tracking) [2] provides a platform for maintaining spatial context based on
raw location information derived from the Active BAT location system. It uses
CORBA to access information and spatial indexing to deliver high-level events
such as ’Alice has entered the kitchen’ to listening context aware applications.
SPIRIT models the physical world in a bottom up manner, translating abso-
lute location events for objects into relative location events, associating a set of
spaces with a given object and calculating containment and overlap relationships
among such spaces, by means of a scalable spatial indexing algorithm. However,
this bottom-up approach is not as powerful in expressing contextual situations.

4.1 Distributed Gateways

The current Active BAT system employs a centralized architecture, and all the
data are gathered in the database, where computational power is cheap. The
Active BAT system, as described, is expensive to implement in that it requires
large installations, has a centralized structure. The centralized structure allows
for easy computation and implementation, since all distance estimates can be
quickly shipped to a place where computational power is cheap. Moreover, the
active mobile architecture facilitates the collection of multiple simultaneous dis-
tance samples at the fixed nodes, which can produce more accurate position
estimates relative to a passive mobile architecture.

It is inherently scalable both in terms of sensor data acquisition and man-
agement as well as software components. However, when constructing real-time
mobile ad hoc communications with resource-constrained devices, a distributed
coordination must be supported, so that mobile device users can subscribe cer-
tain information promptly. We simulate each room and corridors hold gateway
nodes (see the location map Fig.4), which is capable to participate in event bro-
ker grids. The software design follows the service-oriented architecture described
in Section 2. Thus, each local gateway node performs event filtering and corre-
lation. Each local node registers the service that associates states with abstrac-
tions such as ’Andy in the room SN04’. These states are decomposed to the units
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Fig. 4: Active BAT Location Map



operable by the event broker grid, where event correlation and aggregation and
filtering are supported. The details of high-level language for service composition
substantially event type definition is still under development, and out of scope
of this paper. The used data is taken on May 20th in 2003 for 24 hours. The
total number of original events received by the ceiling units is around 400,000,
and a sample is shown in Fig.5. On average a sighting probably gets around 10
receptions, of which perhaps 2 will be 100% noise, 2 or so will be too noisy and
will be rejected and the rest will be used for the final estimate.The format is:

---------- Position Start 
TIME: [02 0c 30 bb fa c5] 
DABR: 2 1000.582092 1044.230957 2.320667 31052.382812 1.302316 1 - 
DABR: 22 999.148926 1043.030518 2.319667 4677.762695 2.356863 1 - 
DABR: 23 999.549744 1044.223877 2.319667 2388.645020 2.217386 1 - 
DABR: 24 999.149475 1045.423706 2.323667 4777.290039 1.539556 1 - 
DABR: 24 999.149475 1045.423706 2.323667 3383.913574 2.123533 2 - 
Temperature: 27Curtailed: 0 
RESULT: 0 1000.422546 1045.085571 1.182180 0.673943 1.631099 1.966668 0.511598 00 11 
 
TIME: (UNIX TIME in hex) 
DABR: (Receiver chain)(Rec x pos)(Rec y pos)(Rec z pos)(amplitude)(range)(set)(state) 
RESULT: (error flag)(x)(y)(z)(error).... 

Fig. 5: Active BAT Raw Events

The ’set’ value can be 1 or 2 and represents whether the pulse was the first
received or the second (so the pulses marked 2 are irrelevant to positioning, but
there for other uses). A ’1’ pulse can be assigned a state A (accepted and used
in the positioning calculation) or R (rejected and not used). After the position
calculation, the total number of events around 200,000 are created (see Fig.6).
This shows BAT data after the location of the user is calculated, which consists
of timestamp, user, area, coordination (X, Y, Z) and orientation.

    30408.802618,10,SN09,1002.335327,1033.320801,1.261441,-22.443605 
    30408.856115,10,SN09,1002.520386,1033.289429,1.251856,-20.335649 
    30409.063099,10,SN09,1002.533203,1033.279297,1.285185,-20.326197 
    30409.112594,10,SN09,1002.732910,1033.234863,1.270585,-22.712467 
    30409.315079,10,SN09,1002.921448,1033.175903,1.271525,-54.598316 
    30409.370575,10,SN09,1002.994690,1033.126587,1.283121,-56.499645 
    30409.564561,10,SN09,1003.170227,1033.044556,1.298443,-52.581676 

 Fig. 6: Active BAT Location Events

4.2 Experiments

We performed several event correlations, and among those, we show the use of
durable events below. Fig.7 depicts the number of events over the local gate-
way nodes without durable event and Fig.8 shows the same operation with
durable event compositions. During this experiment, 21 BAT holders partici-
pated. The result shows dramatic reduction of event occurrences by the use of
durable events, where the state of the target object is maintained.
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Fig. 7: Events over Locations
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Fig.9 and Fig.10 depict the events identified on the BAT holders Andy and
Brian. Andy’s office is most likely the location 3 (room SN04), where the highest
number of events is recorded. Brian’s office is the location 8 (room SN10), where
also the large number of events is produced. See the numbers corresponding to
the location is described in Fig.4. Fig.9 and Fig.10 show the events over the
location, however they do not indicate when they occurred.
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Fig. 9: Events over Locations
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Fig. 10: Durable Events over Location

Fig.11 and Fig.12 depict the events over the timeline (24 hours). Most ac-
tivities are recorded during the day time. Durable events composition over the
timeline (24 hours) shows significant reduction of the number of events.
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Fig. 12: Durable Events over Time
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Fig.13 traces Andy and Brian over the time and location between time unit
1500 and 3300. One unit is 15 seconds, and 7 hours and half duration of activities
is shown. It looks like Andy and Brian spent a lot of time in the location 8 (room
SN10), where Brian’s office as well at the both corridors.

Fig.14 shows the specific period, when they were positioned at the corridor
west. The composite event (Brian;Andy)corrwest is detected at time unit 2564.
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Fig. 14: Composite Event - (Brian;Andy)corrwest

In Fig.15, the detection of composite event (Andy+Brian)SN25(machine) is
shown at the time unit between 1523 and 1529. A local gateway can detect this
correlation, if the composite event is subscribed through the event broker. This
composition could be a part of services provided by the service grid.
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4.3 Temporal Ordering in Active BAT System

The applications derived from Active BAT have high accuracy and real-time
tracking requirements. Problems of time synchronization and coordination amongst
beacons are easily resolved, because these systems are wired and have a central-
ized controller. The timestamp is derived from a Global Clock Generator (GCG),
which is a hardware clock that sends ‘ticks’ to every component of the system
over a serial link. When a location is computed, the location message is times-
tamped using the GCG. In general, GCG delay is in the order of microseconds,



and the slowest part of the system is the bit that waits for ultrasound to prop-
agate (speed of sound) after a position is requested but before a position can
be calculated. This delay is used to measure the distance between the BAT and
the receiver at the ceiling. Once the location is calculated, the message then has
to travel up to SPIRIT (order of milliseconds), and the event will be generated.
However, no reliable information on that delay is considered. However, when
gateways are distributed temporal ordering of events requires more complex
time synchronization. The implementation of temporal ordering mechanism de-
scribed in [7] is in progress. The current experiment assumes that all timestamps
are properly synchronized.

5 Conclusions and Future Works
For WSN applications, distributed programming abstractions and middleware
will be key technologies. In this paper, we introduce a middleware architecture
and present an experimental prototype of object tracking with real world data
produced by the Active BAT system. The tracking system uses the proposed mid-
dleware, which provides an event correlation service. Our integrated approach of
event correlation, filtering and aggregation can express the complex composite
event for tracking conditions. Event management will be a multi-step operation
from event sources to final subscribers, combining information collected by wire-
less devices into higher-level information or knowledge in a global computing
environment. Event broker grids should seamlessly disseminate relevant infor-
mation generated by deeply embedded controllers to all interested entities in
the global network, regardless of specific network characteristics, leading to a
solution to construct large distributed systems over dynamic hybrid network
environments. We are working on a complete implementation including various
timestamping environments and different communication protocols.
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