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Abstract. A dramatic increase of event monitoring capabilities by wireless sen-
sors requires new, more sophisticated, event correlation over time andspace. This
new paradigm implies composition of events in ubiquitous computing environ-
ments and event Correlation will be a multi-step operation from event sources to
final subscribers, combining information collected by wireless devices into higher
level information or knowledge. We define generic composite event semantics,
which extend traditional event composition with data aggregation in wireless sen-
sor networks (WSNs). This work bridges data aggregation in WSNs with event
correlation services over distributed systems. We use interval-based semantics for
event detection, defining precisely complex timing constraints.

1 Introduction
In event-based middleware systems, an event correlation service allows consumers to
subscribe to patterns of events (composite events). This provides an additional dimen-
sion of data management, and improvement of scalability andperformance in dis-
tributed systems. Particularly in wireless networks, providing event correlation as a
middleware service helps to simplify the application logicand reduce its complexity.
Event correlation is also important for constructing reactive distributed applications.

The recent evolution of ubiquitous computing has brought with it a significant in-
crease of event monitoring capabilities by wireless devices and sensors. Such systems
require new, more sophisticated, event correlation over time and space. The integration
of a smart WSN with a large network increases its coverage and potential application
domain. In WSNs, a sink node is a sensor node with gateway functions to link to exter-
nal networks such as the Internet. Sensed information is normally distributed via a sink
node. A sink node may also be an gateway node to an intermediate ad hoc network,
which may deliver the sensor data to the Internet. Fig.1 depicts WSNs connecting to the
Internet, where an ad hoc network conveys sensed data to the Internet.

This new platform enables the seamless use of the various resources in physically
interacting environments. A consensus is emerging that themost appropriate system ar-
chitecture to support such platforms is service management, with communication based
on the publish/subscribe paradigm. For example, a publisher broker node can act as a
gateway from a WSN, performing data aggregation and distributing filtered data to other
networks based on contents. Event broker nodes that offer data aggregation services can
coordinate data flow efficiently. Especially when event-based communication is imple-
mented via a peer-to-peer (P2P) overlay network, the construction of event broker grids
will extend the seamless messaging capability over scalable heterogeneous network en-
vironments. Event Correlation will be a multi-step operation from event sources to the



final subscribers, combining information collected by wireless devices into higher level
information or knowledge. Mobile devices can be deployed inremote locations without
a network infrastructure.

In existing middleware and applications, the semantics of operators for composite
events is not defined in a uniform manner leading to a number ofproblems. Event con-
sumption rules are mostly done as part of an implementation,without a clear semantic
definition. Most extant approaches to define event correlation lack a formal mechanism
to define complex temporal and spatial relationships among correlated events. Thus, a
unified semantics has to be defined to resolve this ambiguity.Temporal ordering in real-
time is a critical aspect of event correlation in wireless adhoc network environments.
Neither logical time nor classical physical clock synchronization algorithms may be
applicable. In order to determine the direction of movementof a real world entity, tem-
poral ordering of events originating from different devices has to be established. Events
can be triggered by physical phenomena, such as glaciers andearthquakes, and the or-
der of occurrence of sensed data is again important.
Event Aggregation, Filtering and Correlation: Some event-based middlewares offer
content-based filtering and provide flexible query languages. These allow subscribers
to select events of interest, based on the values of their contents. A query can apply
to different event types but the aim is to select individual events. On the other hand,
event correlation addresses the relationship among, or pattern of, instances of differ-
ent event types. WSNs have led to new issues to be addressed in event correlation. In
WSNs the requirement is to summarize current sensor values insome or all of a sensor
network. TinyDB [10] is an inquiry processing system for sensor networks and takes
a data centric approach. Each node keeps the data and executes retrieval and aggrega-
tion (in-network aggregation), with on-demand based operation to deliver the data to
external applications. TinyLIME[3] enhances LIME (Linda In Mobile Environments)
to operate on TinyOS. In TinyLIME, LIME is maintained on eachsensor node together
with a partition of a tuple space. A coordinated tuple space is created across the nodes,
connecting with the base station in one hop. It does not currently provide any data
aggregation function, only a data filtering function based on Linda/LIME at the base
station node. On the other hand, TinyDB supports data aggregation via SQL query, but
redundancy/duplication handling is not clear from available documents.

Middleware research for WSNs has been active recently, but most research focuses
on in-network operation for specific applications. In this paper, we take a global view of
event correlation over entire distributed systems. We define generic correlation seman-
tics, combining traditional event composition and data aggregation in wireless sensor
networks. For the event detection semantics, we introduce aparameterized algebra. Pa-
rameters include time, selection, consumption, and subsetrules. This approach defines
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Fig. 1: Bridging WSNs to the Internet



unambiguous semantics of event detection and supports resource constrained environ-
ments. We introduce interval-based semantics for event detection defining precisely
complex timing constraints among correlated event instances. In resource constrained
network environments, the event algebra must be restrictedso that only a subset of all
possible occurrences of complex events will be detected, and this can be achieved by
applying appropriate parameters. This paper continues as follows: Section 2 describes
the event model, Section 3 defines composite event semanticsand section 4 discusses
temporal ordering. The formal definition and proof of the event algebra is out of the
scope of this paper. Section 5 presents results of experiments. In Section 6 we describe
related work, and Section 7 contains conclusions and directions for future research.

2 Event Model
In this section, we define our event model. A primitive event is the occurrence of a
state transition at a certain point in time. Each occurrenceof an event is called an event
instance. Each event has a timestamp associated with the occurrence time. Composite
events are defined by composing primitive or composite events with a set of operators.
Timestamps: A timestamp is a mandatory attribute of an event defined within a time
system, while the event occurrence time is a real-time defined by the occurrence of
the event. Thus, the timestamp is an approximation of the event occurrence time. Most
point-based timestamps consist of a single value indicating the occurrence time. In[7],
the time when an event is detected is given as an interval-based timestamp, which cap-
tures clock uncertainty and network delay with two values: the low and high end of
the interval. Although an interval format is used, it represents a single point (point-
interval-based timestamp). In addition, we define a (composite) event with duration and
give a new interval-based timestamp to a composite event based on interval semantics.
A point-interval-based timestamp is an accurate representation, and it is distinct from
interval-based timestamps representing the duration of events.
Spacestamp: We introduce spacestamp, as an optional attribute of an event, indicating
certain location, relative location, grouping and so forth(e.g., position information (lat-
itude, longitude, elevation) by GPS, global node id). This information can be used for
ordering events within the given space.

2.1 Duration
Reference[1] argues that all events have duration and considers intervals to be the basic
timing concept. A set of 13 relations between intervals is defined, and rules governing
the composition of such relations controls temporal reasoning. On the other hand, most
event systems consider events as instantaneous, that is, the time associated with the
event is an instant rather than an interval. A durative eventcan be seen as capturing the
uncertainty over the time of occurrence and the time of detection of an event rather than
modelling an event that persists over time. In this sense, durative events are akin to the
point-interval-based-timestamps described above. The durative event model considers
that instantaneous events are durative events with minimumduration, thus reconciling
the models. We would regard an ‘event’ that persists over time as akin to a state, with an
event at the start and one at the end of the time period. This could also be defined as a
composite event. Composite events are built up from events occurring at different times,
therefore the associated real-time is usually that of the last of its contributory primitive
events. This is natural in a context where the prime focus is on event detection, since



typically a composite event will be detected at the time thatits last contributory event
is detected. However, this does lead to logical difficultiesin the case of some composite
events. Determination of the duration of composite events requires the semantics of
composition and time system information such as a point-based or an interval-based
time model.

2.2 Duplication

It is important to distinguish between multiple instances of a given event type and du-
plicates of a given event instance. The expressiveness of some event specification lan-
guages has been limited by not distinguishing between eventtypes and instances of
those types.[8] attempts to define conditions and constraints on attributesof events in
correlation rules rather than defining operators on event instances. Especially in sen-
sor networks, in order to avoid loss of events by communication instability, duplicates
of events may be produced to increase reliability. Duplicates have to be handled dif-
ferently depending on the application, and contexts withinapplications. For example,
in object tracking, the most recent reading from a sensor is valid, and events prior to
that will be obsolete, except for the historical record. On the other hand, in a transaction
event in which a customer cancels an order, a duplicate eventshould be ignored because
a transaction is being repeated. Thus, the semantics of event composition have to ad-
dress handling of duplicates.[9] take the approach of defining constraints on attributes
of events and detect occurrences of events, before correlation conditions are evaluated.
We propose duplicate handling in two ways: adding a selection operator as an event
composition operator and adding subset policies as parameters.

3 Event Correlation Semantics
We define composite events by expressions built from primitive and composite events
and algebraic operators. The operators of the event algebraare defined informally in
this section. We also support parameters, which help to define unambiguous semantics
of event detection and support resource constrained environments. In wireless ad hoc
networks, the event algebra must be restricted so that only asubset of all possible oc-
currences of complex events will be detected. We provide basic operators that have the
potential of expressing the required semantics and are capable of restricting expressions.
Also, an interval semantics supports more sensitive interval relations among events in
environments where real-time concerns are more critical, such as wireless networks or
multi-media systems. The temporal operators introduced in[1] are not uniformly de-
fined in many applications. We define complex timing constraints among correlated
event instances. An example is shown in Fig.2 (see full definition in [16]).

 

Fig. 2: Temporal Condition for Composite Events



3.1 Composite Event Operators
The event operators are defined informally as follows:

• Conjunction A + B: Event A and B occur in any order.
• Disjunction A | B: Event A or B occurs.
• Concatenation A B: Event A occurs before event B where timestamp constraints areA

meets B, A overlaps B, A finishes B, A includes B, and A starts B.
• Sequence A ; B: Event A occurs before B where timestamp constraints areA before B,

and A meets B. (A ; B)T denotes that an interval T between event A and B.
• Concurrency A||B: Event A and B occur in parallel.
• Iteration A∗: Any number of event A occurrences.
• Negation −AT : No event A occurs for an interval T.(A; B) − C denotes that event A is

followed by B and there is no C in the duration of (A;B).
• Selection AN : The selectionAN defines the occurrence defined by N.A

AV G

T denotes
taking the average during an interval T.

• Spatial Restriction AS: Event A occurs if it is a spatial restriction defined in S, that can
be defined as a specific location or a group identifier etc.
- E.g.ACB03FD: The area codeCB03FD identifies the zone around Computer Laboratory
in Cambridge. Event A is valid only when spatial condition is satisfied.

• Temporal Restriction AT : Event A occurs within T.BT denotes a valid interval for B.

Example: The temperature of rooms with windows facing south is measured every
minute and transmitted to a computer placed on the corridor.T denotes a temperature
event andTAV G

30
denotes a composite event of an average of the temperature during 30

minutes.(Troom1 + Troom7)
AV G
30

denotes to take an average of room 1 and 7.

3.2 Interval Semantics
We give a timestamp to a composite event based on interval semantics. In most event
algebras, each event occurrence, including composite events, is associated with a single
time point. This may result in unintended semantics for someoperator combinations,
for example nested sequence operators. In Fig.3, time flows from left to right, and each
row shows the occurrence of a primitive event. When single point detection is used, an
instance of event B;(A;C) is detected if A occurs first, followed by B and C. The reason
is that these occurrences cause a detection of A;C, which is associated with the occur-
rence of B;(A;C). With interval semantics, the sequence A;Bcan be defined to occur
only if the intervals of A and B are non-overlapping. No occurrence of B;(A;C) would
be detected.

A
B
C
A;C

B;(A;C)
B;C

A;(B;C)

A: move into the area above 1000m, B: temperature goes down to -4°C
C: move into the area above 2000m

Single Point Interval Semantics

Fig. 3: Point and Interval
3.3 Event Context
Adding the policy defining the constraints provides a way to modify the operator seman-
tics. This parameter-dependent algebra can accommodate different policies on event



consumption. First, each operator is given a principle definition of the constraints on
the participating occurrences of events that characterizethe operator. Then a number
of event contexts are defined that act as modifiers to the simple operator semantics.
These contexts specify constraints on how occurrences may be selected. As a result,
each combination of an operator and a context can be seen as a separate operator with
a specific meaning.
Consumption Policy: Three event consumption policies can be defined;unrestricted,
recentandchronicle. Snoop[2] uses these contexts, but it is not capable of applying an
individual context to different event operators. The parameter dependent algebra clari-
fies the situations. The following gives an informal definition for detecting A;B.
• Unrestricted: All instances of A and B are valid.
• Recent: If an instance of B can be combined with several instances of A toform instances of

A;B, the only recent instance of A is valid.
• Chronicle: Only the oldest instance of A is valid, which is never valid in the future.

Subset Policy: defines the subset of events to detect. Ideally theSubset Policyshould in-
terfere as little as possible with unrestricted semantics.None of the removed instances
should have a crucial impact on the detection of an enclosingdetection. At the same
time, operations such as conjunction and sequence must be able to identify non-valid
instances early, before the end time of the instance is reached. The main task of theSub-
set Policyis to make an effective algebra, feasible to implement in resource constrained
environments. The basis of theSubset Policyis that the restricted event stream should
be a subset that does not contain multiple instances with thesame end time.

Precision Policy: defines the precision of the events to be detected. The dynamic
spatial-temporal data from WSNs is generated at a rapid rate and all the generated
data may not arrive at the aggregation node over the networksdue to the lossy/faulty
nature of the sensor network. On the other hand, if some imprecision of the collected
data could be tolerated by the application, defining the precision available is important.

For example,High, Default, Lowcan map to:
• the ratio of sensor nodes that are awake:80%, 20%, 5%
• the delivered time-series data:100%, 70%, 50%
• the interval of data collection:1 second, 10 seconds, 60 seconds
• the frequency of data report:Urgent, Periodical, Available.

3.4 Event Detection
The current detection mechanism is based on an imperative algorithm, which is exe-
cuted once every time instant. The main loop selects subexpressions dynamically and
computes the current instance of a target composite event from the current event and
stored past information. For example,E denotes the event expression to be detected,
and subexpressions ofE are indexed1 to k in bottom-up order. The operation result is
E

k(= E). Each operation in the expression needs its own indexed state variables (e.g.,
past events, time instant, and spatial information). A canned detection component can
be created for common use. We implemented a prototype using asimple automata with
support of parameterized values and time constraints.

4 Temporal Ordering
Sensor networks are used to monitor real world phenomena andfor such monitoring ap-
plications, physical time is crucial. In global computing environments, such sensor data



flow over heterogeneous networks. We cannot assume a global clock, or globally syn-
chronized physical clocks, to correlate events. Moreover when the store-and-forward
paradigm is used for communication, message propagation delay is unavoidable. Tradi-
tional message ordering based on a transport layer protocolis not applicable. Thus, we
use timestamps embedded in events for correlation, which provide a real-time mecha-
nism. Temporal ordering of events is highly influenced by theevent detection method,
timestamping methods and the underlying time systems.

In many real world scenarios, wireless networks may be deployed with relay nodes
to the Internet and it is possible that relay nodes can connect to Global Positioning
System (GPS). GPS may be the key for providing accurate time adjustment at certain
nodes that are less resource constrained within wireless adhoc networks. We define
two categories of network environments; where NTP is deployed with GPS, such as
the Internet domain, and where networks are isolated in ad hoc mode without GPS or
any other deterministic time synchronization mechanism. For the first category, we use
interval-based point timestamps for primitive events, where the interval low and high
end values are computed as described in[7] to allow for clock uncertainty and network
delay. For timestamping composite events we use interval-based semantics, unlike[7]
where a new timestamp is taken on the detection of a compositeevent. For the second
category, several time synchronization mechanisms have been proposed. Among those,
we investigated the one described in[14]. The idea of the algorithm is not to synchro-
nize the local computer clocks of the devices but instead to generate timestamps from
a local clock. When such locally generated timestamps are passed between devices,
they are transformed to the local time of the receiving device. We propose a simplified
protocolLightweight Local Clock Propagation, which is on-demand based timestamp
synchronization. The basic idea is that each node calculates its processing time using a
local clock, and at the sink node, the sum of the processing times is subtracted from the
event arrival time to estimate the occurrence time. Comparable timestamps are there-
fore created at sink nodes instead of network-wide. This requires the two assumptions:
network delay is negligible (e.g. the node is close to the radio or network deployment is
dense) and clock drift is negligible (e.g. the node carries an oscilloscope that guarantees
less than 10 ppm drift).

Thus our proposal is a coordinated approach with and withoutthe use of GPS.
Sensor events could be aggregated at gateway nodes with transformed timestamps and
passed towards a subscriber node in the Internet environment, where GPS-based time
synchronization is deployed.

5 Experiments

Below are experiments results for composite event detection with time restriction, sub-
set rule, and an object tracking system. Surface meteorological data from the NOAA
Aeronomy Laboratory TRMM profile system recorded in 1999 areused as base data
for the experiments described in Section 5.1-2. The data contain wind, temperature,
relative humidity, pressure and solar radiation. The data from each instrument were
sampled every 0.5 second. Every 10 seconds, a 10 second average was transmitted to a
base station. As part of the 10 second average, a timestamp was added to the data. The
clock is kept in UT time, and is set to the GPS time standard every week. The logged
data were assembled to the individual event and a discrete event generator simulates
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Fig. 5: Subset Rule
the event occurrences as if sensed data are reported from thesensor network in single
hop communication range. In the first experiment, each eventis duplicated. There is
no loss of events in both experiments. The composite event used in the experiments is
as follows: humidity below 60% (H) followed by temperature over 30% (T) within 10
seconds, which denotes(H;T )10.
5.1 Time Restriction
Consider as an example, the event expression(H;T )4: before the current time instant
10, there have been six occurrences of H. If aT4 instance occurs in the current time
instance, and the start time of this instance is 9 or 10, it should be combined withh6

(occurred at time instant 7) to form an instance ofH;T4. If the start time is 8, it should
be combined withh5 (at 6), etc. Since an instance ofT4 with an end time of 10 must
start no earlier than 6, it follows that it must be combined with eitherh3 (at 4),h4 (at
5), h5, or h6, and thus there is no need to storeh1 (at 1) andh2 (at 2). Throughout
the detection of this expression, all instances of H that endmore than 4 time units ago,
except the one with the latest start time, can be discarded. Fig. 4 shows a simulation
of memory usage with the number of event states to be kept. Forthe detection policy,
the most recent instance of H is used. The time restriction value is set to 10, which
may be relatively a large number. The time restriction is a similar concept of event
detection with a sliding window, but with our approach, semantics are unambiguous and
capability of individual definition for each event gives another advantage. Our approach
ensures that detection of composite events can be efficiently implemented with limited
resources, which can be an critical element for embedded applications. The number of
detected composite events is also illustrated in Fig. 4 thatshows only half of composite
events being detected when time restriction is specified. Ifundetected composite events
imposes loss of information, then the time restriction number should be reduced.

5.2 Subset Rule
Fig. 5 illustrates the memory usage when the H’s subsetHS . The event instances with
the same end time is removed and the Subset Rule keeps exactlyone with maximal start
time. Because the composite event(HS ;T ) is equivalent to(H;T ), in an environment
with the Subset Rule all the composite events, supposed to bedetected in unrestricted
environments should be detected. In Fig. 5, both cases show the same results for com-
posite event detection. On the other hand, with the Subset Rule less states are kept.

5.3 Object Tracking
We developed a prototype of an object tracking system using the Active BAT data (see
[17] for more detail). Fig.6 shows the specific period, when two people are positioned
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at the machine room. The composite event(Brian+Andy)machine-room, where ‘Brian
and Andy are together at the machine room’ is detected between the time unit 1523 and
1529.

6 Related Work

Much composite event detection work has been done in active database research. SAMOS
[5] uses Petri nets, in which event occurrences are associated with a number of parameter-
value pairs. The transition from centralized to distributed systems led to the need to deal
with time. [2] presents an event-based model for specifying timing constraints to be
monitored.[9] proposes an approach that uses the occurrence time of various event in-
stances for time constraint specification. GEM[11] allows additional conditions, includ-
ing timing constraints, to combine with event operators forcomposite event specifica-
tion. Composite events service in an event-based middleware system reduces the com-
munication within the system and potentially gives a higheroverall efficiency, which is
addressed in[12]. Hayton et al.[6], on composite events in the Cambridge Event Archi-
tecture, describe an object-oriented system with an event algebra that is implemented
by nested push-down FSA to handle parameterized events.

Temporal message ordering has been an issue in traditional networks such as for
system monitoring and in distributed event systems. In existing systems, the semantics
of event order often depends on the application logic. For real-time support, a com-
mon solution in wired networks provides a virtual global clock that bounds the value
of the sum of precision and granularity within a few milliseconds. The 2g-Precedence
model is enhanced for distributed event ordering and composite event detection using
2g-precedence-based sequence and concurrency operators[15]. However, in open dis-
tributed environments, not all servers are interconnectedand event ordering based on
NTP may lead to false event detection. Interval-based time systems define event or-
der based on intervals. In[7], timestamps of events can be related to UTC (Universal
Coordinated Time) with bounded accuracy, and event timestamps are modeled using
accuracy intervals. They use NTP that provides reference time injected by a GPS time
server and, in addition, returns reliable error bounds. Forwireless network environ-
ments,[13] presents a GPS based virtual global clock, which is used for timestamping
events, and deploys a similar concept to 2g-precedence. Post-facto synchronization[4]
is based on unsynchronized local clocks but limits synchronization to the transmit range
of the mobile nodes.



7 Conclusions and Future Work
Our event correlation semantics supports a new paradigm coming from the recent evo-
lution of ubiquitous computing with a rapid increase of event monitoring capability by
wireless devices. The main focus is on supporting time and space related issues such
as temporal ordering, duplicate handling, and interval-based semantics, especially for
wireless network environments. Event management will be a multi-step operation from
event sources to final subscribers, combining information collected by wireless devices
into higher-level information or knowledge in a global computing environment. Work
is ongoing on the transformation of event algebra, so that complex expressions can be
more efficiently implemented in resource constrained devices over wireless ad hoc net-
works. We are working on a complete implementation, including various timestamping
environments.
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