
Gateway:A Message Hub with Store-and-forward Messaging in Mobile Networks

Eiko Yoneki and Jean Bacon

University of Cambridge Computer Laboratory,
William Gates Building, J J Thomson Avenue

Cambridge CB3 0FD, UK
{Eiko.Yoneki, Jean.Bacon}@cl.cam.ac.uk

Abstract
To obtain good performance in messaging over mobile networks,
we have developed a Gateway. Gateway is a message hub
that transmits information using store-and-forward messaging and
provides powerful optimization and data transformation. The
SmartCaching component provides generic caching in an N-tier
architecture, an essential function of Gateway. Gateway can be
integrated into Pronto, a middleware system for mobile applica-
tions with messaging as a basis [15]. Pronto then offers: 1) a
lightweight client of Message Oriented Middleware (MOM) based
on Java Message Service(JMS), 2) Gateway for reliable and ef-
ficient transmission between mobile devices and a server, and 3)
Serverless JMS based on IP multicast. Integration of Gateway
within Pronto provides a solution for mobile application-specific
problems such as resource constraints, network characteristics,
and data optimization.

1. Introduction

A large-scale distributed system must offer load shar-
ing and reduction for good performance. Computing de-
vices are increasingly mobile at the client end and the diver-
sity of clients and networks creates complex requirements
for mobile/wireless based applications. The communica-
tions service provided by middleware is especially impor-
tant for integrating such hybrid environments into coherent
distributed systems. The characteristics of mobile comput-
ing [4] and wireless networks, and the corresponding re-
quirements on middleware, are shown below:
• Mobile devices have small ROM/RAM footprints and

low usage of CPU cycles and power. A middleware
client library should have a small memory footprint.

• Wireless networks have become increasingly packet-
oriented. With a packet- oriented bearer such as GPRS
(General Packet Radio Service) or UMTS (Universal
Mobile Telecommunications System), users typically
pay only for the time they communicate data. Reduc-
ing data size for transmission is crucial.

• Because of low bandwidth, high latency, and frequent
disconnections, a middleware should provide an in-
terface to applications that allows the maintenance of
communication during the disconnect operation. De-
pendable caching is essential.

• A data source can be interpreted in different for-
mats and semantics depending on the specifications
of mobile devices and wireless networks. Semantic
transcoding technology [10] should give advantages for
efficient data flow.

• There are various bearers such as 2G, 2.5G, 3G, Blue-
tooth, and IEEE 802.11 and many devices are non-
programmable. A middleware needs to offer an inter-
face which provides a communication abstraction.

• There are different operating systems on mobile de-
vices and a multi- platform middleware should be im-
plemented in a platform independent language.

The architecture of a distributed system at this level needs
careful consideration, and it is essential to provide the
core function for such a system as semantics-based middle-
ware. We have developed Pronto [15], a middleware sys-
tem for mixed environments which include mobile applica-
tions. The basis of Pronto is a Message Oriented Middle-
ware (MOM) [6] based on Java Message Service (JMS) [12]
in both centralized and decentralized forms. JMS works
well in an environment where network connections some-
times break, and the available bandwidth can vary within
a short time. JMS provides the architecture for MOM;
it encourages loose coupling between message producers
and message consumers with a high degree of anonymity,
thus removing static dependencies in the distributed envi-
ronment. The decentralized form, Serverless JMS, uses IP
multicast and performs best over ad-hoc networks, and also
for high-speed transmission of a large number of messages
to distribute the workload of a server to several servers. Fig-
ure 1 shows a system overview, illustrating different deploy-
ments of Pronto. In Pronto the client library, MobileJMS
Client, is optimized as a mobile-specific JMS client for con-

Proceedings of the 23 rd International Conference on Distributed Computing Systems Workshops (ICDCSW’03)
0-7695-1921-0/03 $17.00 © 2003 IEEE

 JMS
 Server

 SmartCaching

Mobile
 JMS
 Client

Local
Gateway

Message
Database

JMS
(TCP/IP)

RemoteGateway

Device Specific
Communication

 Application
 on
 MobileDevice

Application
 on
MobileDevice

Application
 on
 Mobile
 Device

JMS (TCP/IP)

 Subscriber

 Publisher

Plug-in Components

Transport Message

Transform Message

 CacheManager

Transport

SMS

Email

Server
-less
JMS

SMS

Email

IPnet ServerlessJMS

CacheSnapshot

Subscribe
Cache

RMI

Smart
Caching

 Smart
 Caching

Figure 1: System Overview with Gateway and SmartCaching in Pronto

strained mobile devices. We have also developed an intelli-
gent Gateway that resides between mobile applications and
servers. Gateway is a message controller which gives reli-
able transmission and efficiency, taking advantage of plug-
in components for caching, device specific transport, and
message transformation. The SmartCaching component
is designed to provide generic caching with subscribe and
snapshot services. It is a central function for message stor-
age in Gateway. Gateway and SmartCaching are key tech-
nologies for improving messaging among mixed mobile-
tier environments in dynamic connectivity scenarios. Gate-
way can be well integrated with JMS in Pronto and Pronto
allows the building of a dynamic, reliable, and flexible sys-
tem with significant performance improvements. This pa-
per presents the design and implementation of Gateway and
SmartCaching.

2. Gateway
 Gateway

Transform
 Interface

 Encode/Decode

Creates

Configuration

Transport
 Interface

 SmartCaching

 MobileJMS ClientCreates

Transport Interface Wrapper

SMS, Email, WAP etc.

Transform Interface Wrapper

Compression, Transcoding

Implements Implements

Figure 2: Gateway Components

In messaging, there has been an effort to support a
mobile-tier structure by adding an edge server to manage
mobile devices. Gateway takes a different approach by

providing multiple message hubs for transmitting informa-
tion using store-and-forward messaging, thus giving more
powerful optimization of data reduction and transformation.
This makes it possible to construct a distributed messaging
system over JMS servers. The main Gateway components
are shown in Figure 2. Gateway is designed as a framework
to perform plug-in functions for which two interfaces are
defined:
• Transport: an interface for mobile device transport
• Transform: an interface for message transformation

The plug-in functions should follow these interface defi-
nitions and their internal details are not discussed further.
Gateway initially creates Transport and Transform objects,
according to the configuration; a sample is shown in Figure
3. It contains the class names that implement the transport
and transform interface, and the target topic names indicate
the message groups to be transformed. The Encode-Decode
component carries out the message transformation as de-
fined in the configuration. Gateway is also a MobileJMS
client and can reside in a mobile device. SmartCaching is
used to store messages. The implementation is 100% in
Java.

<?xml version="1.0" encoding="UTF-8"?>
<configuration>
 <cache state="1" size=100 />
 <transport state="1">
 <bearer name="sms" classname="transport.SMSTransport" topic="Stock"/>
 <bearer name="email" classname="transport.EmailTransport"/>
 . . .
 </transport>
 <transform state="1">
 <transformer name="compress" classname="compression.Compression"/>
 <transformer name="image" classname="transform.Image" topic="Grey"/>
 <transformer name="audio" classname="transform.Audio" topic="News"/>
 . . .
 </transform>

Figure 3: Configuration for Plug-In Components

Proceedings of the 23 rd International Conference on Distributed Computing Systems Workshops (ICDCSW’03)
0-7695-1921-0/03 $17.00 © 2003 IEEE

2.1 Gateway Operation
Gateway distributes messages to other Gateways and to

applications. Many gateways can be used, as appropriate for
the network environment and client characteristics. Mes-
sages commonly contain requests to and responses from
data sources which must identify the needs of requesters.
Cascading Gateways provide distributed filtering to mini-
mize network traffic and the message transformation pro-
cess. As the distance from the source increases the data
becomes more localized. The operation flow of Gateway is
shown in Figure 1.

A part of Gateway acts as a publisher and subscriber us-
ing a MobileJMS Client to serve as a proxy of a message
controller. Another part performs a series of message trans-
formations on subscribed and published messages. Gate-
way defines a Transport interface to perform the device-
specific communication and provides a store-and-forward
communication model that offers load sharing and load re-
duction for good performance.

2.2 Local and Remote Gateway
Gateway itself is defined as an interface, with two im-

plementations LocalGateway and RemoteGateway. Lo-
calGateway can run as a separate thread or within the ap-
plication and performs caching and transcoding through
plugged-in components. RemoteGateway is currently im-
plemented as a RMI [14] UnicastRemoteObject and can run
as a separate process. Mobile devices can take advantage of
both Gateways depending on the application. Deployment
possibilities are shown in Figure 1.

2.3 Plug-In Components
Caching, compression, and semantic transcoding are

good candidates to reduce data size and network traffic.
Security (encrypting/decrypting data) functions can also be
plugged in. Semantic transcoding offers more than a simple
data reduction. The information itself is made more abstract
(to provide compaction), and the data should be evaluated
whenever necessary. In a mobile/wireless environment, a
reduction of data size on the network dramatically increases
performance, and the concept of semantic transcoding is
important. Here, the data are linked to an annotation. Anno-
tations [10] can be text corresponding to a video clip, a sum-
mary of a document, or a linguistic annotation of the content
for voice synthesis or greyscale/downsized/low-resolution
image data.

2.4 Non-Programmable Transport
Transport is an interface to manage non-programmable

devices. The registration of a Transport interface to Gate-
way activates a subscription to a JMS server on the speci-
fied topic. Messages that are delivered from the server to
Gateway will be forwarded to Transport, which looks up
the device and session lists and sends messages accordingly.

Messages published via Transport are forwarded to a JMS
server. Figure 4 shows the control flow of the Transport
interface.

Transport
 register

 publish
 onMessage
 topic?
 send(,.)

SubscriberList
DeviceList

Publish

Subscribe
onMessage

 Gateway

publish(message,topic)
 JMS
Server

Figure 4: Non-Programmable Device and Gateway

2.5 SmartCaching
Gateway embeds SmartCaching to store JMS messages.

The JMS durable subscription is used to receive messages
continuously even while the client is out of contact. On
request types such as subscribe or snapshot, Gateway stores
subscribed messages accordingly. See Section 3 for generic
SmartCaching.

2.6 Disconnect Operation
Most work dealing with the disconnectedness of com-

puting devices revolves around data replication and syn-
chronization. The following approaches are designed for
disconnected operation in Gateway:
Durable subscription via MobileJMS Client: Durable
subscription is defined in the JMS API. Non-durable sub-
scriptions last for the lifetime of the subscriber object. The
client will only see the published messages while the sub-
scriber is active. A subscriber can, optionally, be durable by
registering a durable subscription with a unique identity.
Gateway Cache: Gateway maintains its cache even if ap-
plications are inactive. Applications can use the Gateway
cache after regaining connection; they can use the pull, sub-
scribe, and snapshot operations of SmartCaching as appro-
priate. For example, an application may spawn a snapshot
request that synchronizes the on-device messages when the
application is reconnected.

3. SmartCaching

Caching is essential for performance improvement by re-
ducing network traffic and improving latency. The cached
data can be raw or processed and stored for reuse, thus
avoiding revisiting the source and passing the data through
the chain of reformatting and representation. Smart-
Caching, an intelligent cache function, supports multi-
tiered applications across platforms and devices. It cur-
rently implements basic functions, while persistent caching,
cache validation, synchronization, and coherency manage-
ment are beyond the scope of this study. In SmartCaching,
cached data is decoupled from the data source, and cached
data can be made active or up-to-date by CacheHandler,

Proceedings of the 23 rd International Conference on Distributed Computing Systems Workshops (ICDCSW’03)
0-7695-1921-0/03 $17.00 © 2003 IEEE

which is responsible for updating the cache. For example,
Gateway is a CacheHandler, and it uses SmartCaching to
store subscribed messages. Key functions to clients are the
Pull, Subscribe and Snapshot services. The Subscribe ser-
vice provides asynchronous notification of cached data to
client applications, and applications do not need to request
to pull the data that have already been requested. Using the
Subscribe service client applications may be event-driven
and active. This simple change has a major impact on per-
formance and on the design of the applications. Snapshot
provides a specified period that can be used by the mo-
bile application to obtain the last cache image after discon-
nection. CacheManager is the main component in Smart-
Caching. It creates objects and manages requests and re-
sponses to the requesters. Cache is an object that contains a
key and the actual caching object, kept as a linked list. The
Cache object contains the expiration date, and the Cache-
Manager will remove expired objects. Alternatively, the
Cache object can be removed once it is delivered to the sub-
scriber. The three main functions above operate in response
to requests from CacheManager.
Pull: An application requests a cache synchronously.

Client

Cache
Manager

 Cache

Network

Database

Data Source

Application Data Handler

Figure 5: SmartCaching: Pull

Subscribe: An application requests a cache update notifica-
tion to a cache handler, which notifies the application after
the cache is updated.

Cache Manager

 Cache

 Data
 Source

Network

Subscriber 1

 2

 3 4

1. Register CacheMessageListener on Key
 2. Delivery of new data on Key
 3. Store it in Cache
 4. Notify onMessage

Client

Data HandlerApplication Cache Handler

Figure 6: SmartCaching: Subscribe Cache

Snapshot: When data are delivered piecemeal to appli-
cations in a time sequence, clients should be able to re-
construct the latest view of the information. This can be
achieved by obtaining all data from the data source or by
retaining the last image in a shared cache. The second op-
tion corresponds to the Snapshot service. If the data source
sends messages via minimal delta information, caching up-
dates existing data, applying only the delta information.

Snapshot needs to know when the baseline starts. Each time
a new message is received, the Snapshot rule is applied and
persists the data in the cache.

1
Cache Manager

Recent
 Cache

 Data
 Source

Subscriber

Snapshot

Updated
 Cache

New Data
Snapshot
Request

Data Handler
Application Cache

 Handler

Network

1. Start Snapshot
 2. Delivery of new data on Key
 3. Snapshot and store Cache
 4. Return Snapshot Request

 Start
Snapshot

2

3

4

Client

Figure 7: SmartCaching: Snapshot Data Flow

The Snapshot rules can be provided by an application. If
a client requests Snapshot, it will receive the latest data only.
It is the responsibility of the client application that made the
Snapshot request to retain all data, and, after the snapshot’s
arrival, to apply the data to bring that snapshot up-to-date.
Gateway uses Snapshot continuously to receive messages,
even while the client is out of contact, and it passes them
on when the client reconnects, upon the Snapshot request.
Meanwhile the client is able to continue to operate using its
own local cache to satisfy the requests as far as possible.
After restoring communication, only the last image of the
cache needs to be updated. This can reduce the need for
reconnection by skipping all intermediate data. The event
notification mechanism allows the notification to applica-
tions of later changes in the underlying cached data. When
Snapshot is on, cache update notification is done only when
the last image changes. The data flow of Snapshot is shown
in Figure 7. Figure 8 shows examples of Snapshot rules. In
the first example, a message contains a delta value from the
base, and the rule is simply to carry out an arithmetic oper-
ation. In the second example, a message is added to the tail
of the previous one.

Snapshot Rule: CALCULATION

Message 1 Text : -10
Message 1 Text : *17
Message 1 Text : /5
Message 1 Text : %7

Snapshot Cache = -6

Snapshot Rule: CONCATENATION

Message 1 Text : The importance of differential
Message 2 Text : gene expression is evident from the
Message 3 text : various cell types

Snapshot Cache = The importance of differential gene
expression is evident from the various cell types

Figure 8: Examples of Snapshot Rules

4. Evaluation

An example application and some samples from the
benchmark test are shown below.

4.1 Video Data Publishing in a Time Sequence

Figure 9 shows an example system with Gateway and
SmartCaching. A video camera takes 15-second shots every

Proceedings of the 23 rd International Conference on Distributed Computing Systems Workshops (ICDCSW’03)
0-7695-1921-0/03 $17.00 © 2003 IEEE

 Local
 Gateway

Application

Cache

Publisher

JMSServer

Mobile
 JMS
 Client

Laptop/iPAQ

Video Camera

 802.11B

RemoteGateway

 Cache

Transcode

Email

Bluetooth

SMS

RMI

Internet
Applet

JMS Client

IP net

Remote
Gateway

Figure 9: Video Data Publishing in a Time Sequence over 802.11B Network

minute, and data are published on a specific topic. The Lap-
top/iPAQ device is moving, leading to occasional discon-
nections. LocalGateway, running on the device, is using the
durable subscription and all the published data are stored in
the cache. A plugged-in SMS component sends out an SMS
message after transcoding. At the same time, RemoteGate-
way subscribes to the same topic and emails to the phone
after transcoding. Several iPAQs subscribe to cached data
from RemoteGateway, and all of them get the data via RMI.
This example demonstrates that published video data are
distributed to the mobile devices with efficient data opti-
mization.

4.2 Benchmark Test over 802.11B

Caching: This test focuses on the performance of Smart-
Caching in RemoteGateway. 50 KB x 20 BytesMessages
are published and RemoteGateway subscribes to and caches
them. Each subscriber listens to the cache update noti-
fication from RemoteGateway. Sharing the cache among
subscribers reduces traffic overhead from individual sub-
scriber’s requests. Thus, the result shows better perfor-
mance with more than one subscriber, and an increase in
the number of subscribers does not have significant impact
on performance.

0.0

1.0

2.0

3.0

Number of Subscribers

M
es

sa
ge

s
pe

r
S

ec
on

d

Gateway Caching 1.10 1.00 0.94 0.91 0.89

Direct JMS 3.14 0.90 0.48 0.25 0.19

1 sub 5 subs 10subs 20subs 30subs

Figure 10: Performance Improvement by Caching

Text/Audio Semantic Transcoding: This test focuses on
performance improvements by semantic transcoding. 1KB
of text data (about 150 words) are information equivalent to
1.2 MB of voice-audio data. In this test, freeware is used
as a plug-in component in Gateway to convert data from
voice to text on the publisher’s request. The subscriber con-
nects to the JMS server directly, and converts received text
data to voice. The measured time is from the publisher to
the subscriber (endpoint to endpoint) including voice-text
and text-voice conversion time. Publishing more messages
causes an impact on performance from the overhead of the
conversion process and transmission. However, it is clear
that transforming voice data to text results in a dramatic re-
duction of data size, which provides high performance.

0.0
0.1

1.0
10.0

100.0
1000.0

Number of Messages

M
es

sa
ge

s
pe

r S
ec

on
d

Text(1KB/msg) 1000 500 333 285

Audio(1.2MB/msg) 0.23 0.21 0.17 0.08

1 msg 5 msgs 10 msgs 20 msgs

Figure 11: Audio/Text Semantic Transcoding

Note: The PCs used for the above testing had X86 (Pen-
tium III) 256-392MB RAM 600MHz-800MHz with Win-
dows2000/Professonal or Linux 6.2Redhat.

5. Summary and Discussion

Gateway and SmartCaching aim to solve emerging diffi-
cult design issues of a messaging system in mobile/wireless
environments. Gateway can deploy different plug-in func-
tions such as semantic transcoding, caching, and compres-

Proceedings of the 23 rd International Conference on Distributed Computing Systems Workshops (ICDCSW’03)
0-7695-1921-0/03 $17.00 © 2003 IEEE

sion for message optimization. The message subscribe and
the snapshot service of SmartCaching give better flexibil-
ity for the design of mobile applications and allow mobile-
specific constraints to be dealt with. Some interesting
plug-in components give significant performance improve-
ments. Gateway provides an intelligent message hub for
reliable and efficient transmission by integrating a Mobile-
JMS Client, SmartCaching, and various plug-in compo-
nents.

5.1 Related Work

Optimizing data over a wireless environment has been
successful although technologies are tightly coupled with
the applications or the servers based on a client-server
model. Techniques for optimization include caching, pro-
tocol reduction, and adding an asynchronous model [8]. For
example, IBM’s WebExpress [5, 7] provides a web browser
proxy between mobile clients and a web server to optimize
HTTP data. IBM’s WebSphere Transcoding Publisher [2]
is a server-based software that dynamically translates web
content and applications into markup languages [9]. How-
ever, none of these can be deployed in a dynamic distributed
environment. Caching is also tied to applications in most
cases. Java Temporary Cache (JCache) [13] has been pro-
posed (but not yet implemented practically) by Oracle, pro-
viding a standard set of APIs and semantics that are the ba-
sis for most caching behavior [3] including N-tier support.
Softwired’s iBus/Mobile [11] extends JMS to mobile-tier
and is designed as an extension of J2EE application servers
such as BEA WebLogic [1]. In contrast, Gateway is a sim-
ple message hub that can reside on the device or anywhere
between clients and servers. Combining Gateways into a
powerful message-hub network, provides a flexible N-tier
layout. This is a novel distributed system approach for mes-
saging over a mobile-tier instead of through tight linkage
with a server.

5.2 Future Work

Application-specific objects are instantiated by an
application, register publicity and are then used by other
applications as remotely accessed distributed objects.
Topics for publish/subscribe, and the configuration of
Gateways for filtering and transformation, fit well with
this scheme. Java Naming and Directory Interface (JNDI)
is a Java technology API for publishing, managing, and
accessing public references to distribute functionality.
Currently JNDI is not supported in Java Micro Edition and
a standard API for this function over a mobile environment
will be critical. This includes security aspects such as en-
cryption, authentication, and access control on distributed
objects. In SmartCaching, a synchronization mechanism
will be needed to propagate the changes that it receives.

It also needs persistent storage for cached data. Generic
persistent storage over a distributed system, specific for
mobile/wireless environments, would therefore be useful.

Acknowledgment. We thank Jon Crowcroft (Univer-
sity of Cambridge) for critical reading and constructive
comments.

References

[1] BEA Systems. WebLogic 7.0 Java Message Service.
http://www.bea.com/products/index.shtml/.

[2] K. H. Britton et al. Transcoding: Extending e-business to new
environments. IBM System Journal, Vol.40(No.1), 2001.

[3] M. Butrico et al. Gold Rush: Mobile Transaction Middleware
with Java-Object Replication. In 3rd Conference on Object-
Oriented Technologies and Systems (COOTS), 1997.

[4] L. Chalamtac. Wireless and Mobile Network Architecture.
Wiley, 2001.

[5] H. Chang et al. Web Browsing in a Wireless Environ-
ment: Disconnected and Asynchronous Operation in ARTour
Web Express. MOBICOM: Proceedings of the Third Annual
ACM/IEEE International Conference on Mobile Computing
and Networking, pages 260–269, 1997.

[6] P.Th. Eugster et al. The Many Faces of Publish/Subscribe.
Technical Report TR-DSC-2001-04, Swiss Federal Institute of
Technology, January 2001.

[7] B. Housel and D. Lindquist. WebExpress: A System for Op-
timizing Web Browsing in a Wireless Environment. Proceed-
ings of the 2nd Annual International Conference on Mobile
Computing and Networking, pages 108–116, 1996.

[8] J. Jing, A. Helal, and A. Elmagarmid. Client-Server Com-
puting in Mobile Environments. ACM Computing Surveys,
Vol.31(No.2), 1999.

[9] C. Lau and A. Ryman. Developing XML Web services with
WebSphere. IBM System Journal, Vol.41(No.2), 2002.

[10] K. Nagao. Semantic Transcoding: Making the World Wide
Web More Understandable and Usable with External Anno-
tations. In Proceedings of International Conference on Ad-
vanced in Infrastructure for Electronic Business, Science, and
Education on the Internet, 2000.

[11] Softwired. iBus Messaging. http://www.softwired-inc.com/.

[12] Sun Microsystems. Java Message Service (JMS) API Speci-
fication. http://java.sun.com/products/jms/.

[13] Sun Microsystems. JCache: Java Temporary Caching API.
http://www.jcl.org/jsr/detail/107.prt.

[14] Sun Microsystems. RMI Profile Specifica-
tion on Connected Device Configuration (CDC).
http://java.sun.com/aboutjava/communityprocess/jsr/.

[15] Eiko Yoneki and Jean Bacon. Pronto: MobileGateway with
Publish-Subscribe Paradigm over Wireless Network. Techni-
cal Report UCAM-CL-TR-559, Computer Laboratory, Uni-
versity of Cambridge, also to appear in ACM/IFIP/USENIX
International Middleware Conference (Work in Progress),
June 2003.

Proceedings of the 23 rd International Conference on Distributed Computing Systems Workshops (ICDCSW’03)
0-7695-1921-0/03 $17.00 © 2003 IEEE

