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Abstract

File I/O data is interpreted by high performance paral-
lel/distributed applications mostly as a sequence of arbi-
trary bits.

This leads to the situation where data is ’volatile’ infor-
mation that has meaning only with the respective applica-
tion responsible for it; a fact that contradicts the physical
storage paradigm.

We claim that this situation must change and see the ne-
cessity to follow an approach – known from the database
world – to interpret data as ‘a model of reality’. To achieve
this we add semantic knowledge to the data files.

Thus we propose an XML based language, which pro-
vides homogeneous framework for describing data on all
interpretative levels from physical representation to logical
information. In our framework physical files are conse-
quently augmented by interpretative information specified
in the proposed language.

This approach delivers beside semantic knowledge on
the data the advantages of persistence and portability.

1. Introduction

In spite of a strong research focus in the last few years
[7] file I/O in parallel or distributed applications remains a
problematic issue until now. Very often we face the situa-
tion that in specific high performance applications the pro-
gram code is changed on purpose to omit physical I/O. This
is not only due to the I/O bottleneck and the missing I/O
bandwidth to the external storage media but also to the fact
that persistence is not an objective valued by this type of ap-
plications. File I/O in this context is mainly a necessity to
extend the limited main memory of the physical hardware.

In typical supercomputing applications six types of I/O
can be identified [5]:

1. input

2. debugging
3. scratch files
4. checkpoint/restart
5. output
6. accessing out-of-core structures

All these types of I/O handle the stored data, in one way or
the other, as volatile information. It is only a sequence of
bytes, which has a meaning only in the context of the pro-
gram reading and/or writing the data. After the execution
of the program this information is practically lost and the
stored data is just garbage on the disk. Until now no stan-
dardized functional mechanism for technical and/or scien-
tific data produced by high performance programs exist to
maintain this information beyond the lifespan of the pro-
gram. Only few (for example the ones in [3, 6]) and mostly
very specific (like the one in [2]) approaches are proposed
to overcome this situation until now.

We know that this will change in the future due to new
and stimulating problems arising in biology, physics, etc.,
which will require new high performance applications with
the need to store, administer and search intelligently gigan-
tic data sets distributed over local and global storage me-
dias. A good example to back our statement is the Online
Analytical Processing in the Datagrid [9].

We will face a similar situation like in the well-known
area of database systems, where data represents a model of
the reality. It can be searched, analyzed, easily administered
and at the same time data is efficiently at hand for arbitrary
applications. This provides necessary means to express se-
mantics in the data and consequently it raises a demand for
mechanisms expressing semantics. Data has to be attributed
with meta information describing the specific semantics of
information in a standardized and processable way. This
meta data enables applications to search the stored informa-
tion intelligently.

However meta information in the context of high per-
formance applications has to describe not only the logi-
cal knowledge within the data (semantic information) but



also specific structural problem information of the paral-
lel and/or distributed execution (syntactical information).
Thus we propose an XML based language, which provides
a homogeneous framework for describing data on all inter-
pretative levels from physical representation to logical in-
formation (these levels are: data representation, structured
file information, physical distributed data layout, problem
specific data partitioning, and general information seman-
tics). In our framework physical files are consequently aug-
mented by interpretative information specified in the pro-
posed language.

The layout of the paper is as follows. In the next sec-
tion we present a novel file architecture defining the differ-
ent level of file views. The XML-based PARSTORAGE lan-
guage is introduced in section 3. This is followed by a com-
prehensive example of the application of the PARSTORAGE
language. Here we present a proof of concept implementa-
tion of an application interpreting data attributed with infor-
mation based on our approach. Finally we describe briefly
our mechanism as a central part of a novel distributed file
system and give an outlook on using our approach for infor-
mation stored on the Datagrid.

2. A novel file hierarchy

The goal of a database system is to simplify and facil-
itate access to data [10]. This goal also holds adequately
for data produced in high performance applications. We
can learn from database systems to follow a similar ap-
proach to free the user from the burden of physical details.
In database systems the above objective is achieved by the
well-known three layered approach separating levels of dif-
ferent abstraction.

By keeping this model in mind we can define a similar
approach for high performance data. To allow full flexi-
bility for the programmer and the administration methods,
we propose an architecture with three independent layers
in the parallel I/O architecture (similar to the three-level-
architecture of database systems):

Problem layer. Defines the problem specific data distribu-
tion among the cooperating parallel processes.

File layer. Provides a composed (canonical) view of the
persistently stored data in the system.

Data layer. Defines the physical data distribution among
the available disks.

These layers are separated conceptually from each other
with mapping functions between these layers. Logical data
independence exists between the problem and the file layer,
and physical data independence exists between the file and

Problem Layer

File Layer

Data Layer

data structure

sub structures physical 
processing

nodes

logical I/O partitioning

physical I/O partitioning

hardware and operating system specifics

Figure 1. File hierarchy

data layer, which is analogous to the notation in database
systems.

An even finer granularity of these layers is necessary to
identify the different conceptual views for a typical paral-
lel solution. These sub layers reach from pure logical in-
formation on the problem to physical representation of the
data and comprise data representation, structured file infor-
mation, physical distributed data layout, problem specific
data partitioning, and general information semantics and so
forth.

We will have a closer look on these layers (also depicted
in figure 1) and sub layers and will show the instantiation
by a specific example. We assume a typical, very simple,
parallel HPF (High Performance Fortran) program writing
high performance physics data (1000000 real values repre-
senting energy levels) to disk, which is administered by a
parallel file system.

1. Problem layer: The problem layer represents the
user’s view on the problem specific data, which is ex-
pressed by the code of an HPF program.

(a) Data structure: The first focus of interest is
the data structure to write, which is only derived
from the problem specification without any antic-
ipation of the parallel execution flow. This data
structure is basically a container type provided
by the programming language. In practice (e.g.
HPF) this is mostly a multi-dimensional array of
an integral data type (e.g. real).
Example: In our example this is a 2 dimensional
array of 1000 times 1000 real values.

(b) Sub structures (SPMD derived): The HPF lan-
guage allows to specify a problem specific parti-
tioning of the data within the SPMD framework,
by defining a mapping of data structure elements
to a logical processor array. This defines sub ar-
rays, which are distributed accordingly to a de-
fined distribution strategy (blocked, cyclic, etc.).
Example: This phase splits the 2 dimensional ar-
ray into 4 sub arrays in blocked (tiled) fashion



and maps the fragments onto a 2 times 2 proces-
sor array.

(c) Physical processing nodes: The physical ex-
ecution mode is defined by the numbers and
types of real processors available for execution
on the high performance hardware. This execu-
tion mapping defines mainly the execution flow
of the program and consequently the data stream
written/read to/from the underlying I/O environ-
ment.
Example: When the program is loaded only 2
physical processing nodes are available where 2
logical processors each are mapped respectively.

2. File layer: The file layer resembles the conceptual
(logical) view of the data, which represents a ”model
of the real world”. Basically it defines a sequential and
structural (record information) form of the distributed
data in a canonical normal form. This is the general
view onto the stored information from any application,
sequential or parallel.

Example: In our example it gives the pure logical se-
mantics of the data, e.g. it describes a sequence of
real values representing energy levels of a HEP (high
energy physics) experiment. From the programmers
point of view it is the persistent mapping of the 2
dimensional FORTRAN array in column-major order
onto a sequential file.

3. Data layer: The data layer is the lowest level of ab-
straction and describes how the data is actually stored.
On this level the low-level data fragments are de-
scribed.

(a) Logical I/O partitioning: This level defines the
partitioning of data supported by the underlying
I/O subsystem mechanism. Basically it defines
the mapping of main memory locations to stor-
age locations (buckets) on the I/O media (buffer
management).
Example: Defines a I/O system specific view
onto the data, e.g. striding. This could be done
by the MPI-I/O view mechanism.

(b) Physical I/O partitioning: The physical layout
of the data (file fragments) onto the available
storage media is defined by this level. It maps the
information to store onto physical files on disks
according to a specified fragmentation and layout
which results into a set of files. This is system
specific and dependent on the underlying soft-
ware (file system) and hardware (storage media)
architecture.

Example: Delivers a set of physical files identi-
fied by unique file names, which can be accessed
by the mechanism of the underlying file system.

(c) Hardware and operating system specifics: Fi-
nally on the lowest level in our hierarchy this
level defines the physical representation of the
integral data information, which is dependent on
the underlying software and hardware architec-
ture.
Example: This level defines how the real values
of our data set are stored, e.g. big endian or little
endian.

Consequently it is our goal to propose a framework,
which allows to express the information on all layers of
the presented file hierarchy.This led to the design of the
PARSTORAGE language.

3. The PARSTORAGE language

In this section we introduce the PARSTORAGE lan-
guage [1] based on XML, which makes it possible to add
certain semantic information to a stored data set.

3.1. The PARSTORAGE Data Type Definition

To add semantic information to data files we have cho-
sen XML (Extensible Markup Language). It is a language
to describe languages, but unlike SGML (Standard Gener-
alized Markup Language), which is much too general and
complex, XML is simple, but still a powerful language. It
has all the virtues of HTML (Hypertext Markup Language),
but without HTML’s limitations. As a direct consequence
XML is well suited for annotating data with structural and
semantic information. XML also enjoys a great popularity,
which grows day by day, and due to its proliferation it can
serve as a common interface between different applications.

The structure of our PARSTORAGE language is defined
by a DTD (Document Type Definition). Its structure is or-
ganized as follows:

Processors give information about the logical processor
structure. Several such processor structures can be
given as different data arrays can be distributed over
different logical processor layouts.

Type information to describe the data stored. It supports
elementary types as well as composite types like struc-
tures or arrays.

Alignment information to cater for optimized data distri-
bution.

Distribution information for mapping the logical file ele-
ments onto parts of physical files.



The relevant portion of the PARSTORAGE DTD is pre-
sented next to illustrate the above outlined structure:

<?xml version="1.0" encoding="ISO-8859-1"?>

<!ELEMENT PARSTORAGE
(PROCESSORS*, TYPE+, ALIGN*, BLOCK+)>

<!ATTLIST PARSTORAGE
VERSION CDATA #REQUIRED>

<!ATTLIST PARSTORAGE
TIMESTAMP ID #REQUIRED>

Note, that version information is included as well as
timestamps to follow the temporal change of both the logi-
cal (i.e. data changes) and physical files (i.e. different data
distributions). This is imperative to cater for smart and dy-
namic physical file re-distribution like the one of ViPIOS
[8].

3.2. Semantic Information

Basically we distinguish between pure semantic infor-
mation, which comprises the problem and file layer and dis-
tribution information describing the data layer.

The semantic information is made up of the following
expressive modules, which are defined by the respective
DTD parts.

� The different processor grids the data is distributed
onto. These processor grids are described by an op-
tional name, the number of dimensions of the grid, and
the extent of each dimension.

<!-- processors -->
<!ELEMENT PROCESSORS

(PROC_DIMENSION)+>
<!ATTLIST PROCESSORS

NAME CDATA #REQUIRED>

<!ELEMENT PROC_DIMENSION EMPTY>
<!ATTLIST PROC_DIMENSION
LOWER CDATA "1">

<!ATTLIST PROC_DIMENSION
UPPER CDATA #REQUIRED>

These are referring to logical processor layouts needed
for mapping data onto them. These logical processors
are mapped to physical ones by the execution environ-
ment. Because of this, several logical processor lay-
outs can be specified for the same logical file, one for
each complex data type.

� The data types stored in the logical file. This section
consists of a sequence of the types which are stored in
the logical file, and in the same order as they are stored

in the logical file. To achieve a more concise descrip-
tion, and to follow more closely the data types of the
stored data, constructors help to build up complex data
types. These constructors are arrays and structures.
Knowing the size of each type, the information about
the types stored enables applications to tell the type of
any byte in a logical file.

<!-- hpf data structure -->
<!-- Intrinsic Data Types -->
<!ELEMENT TYPE (ETYPE|ARRAY|TYPE)+>
<!ATTLIST TYPE TYPENAME CDATA #IMPLIED>
<!ATTLIST TYPE NAME CDATA #IMPLIED>

<!ELEMENT ETYPE EMPTY>
<!ATTLIST ETYPE TYPE CDATA #REQUIRED>
<!ATTLIST ETYPE LENGTH CDATA #REQUIRED>
<!ATTLIST ETYPE NAME CDATA #IMPLIED>

<!-- Arrays -->
<!ELEMENT ARRAY (TYPE, DIMENSION+)>
<!ATTLIST ARRAY NAME CDATA #IMPLIED>
<!ATTLIST ARRAY

MAJOR (ROW|COLUMN) "ROW">
<!ATTLIST ARRAY DISTRIBUTE_ONTO

CDATA #IMPLIED>
<!ELEMENT DIMENSION EMPTY>
<!ATTLIST DIMENSION LOWER CDATA "1">
<!ATTLIST DIMENSION

UPPER CDATA #REQUIRED>
<!ATTLIST DIMENSION DISTRIBUTE

(BLOCK|CYCLIC|NO) #IMPLIED>
<!ATTLIST DIMENSION

DIST_SKALAR CDATA "1">

� Some align information. Align information as in HPF
describes a recommendation how data should be dis-
tributed onto processors/nodes.

<!-- Alignment -->
<!ELEMENT ALIGN EMPTY>
<!ATTLIST ALIGN WHAT CDATA #REQUIRED>
<!ATTLIST ALIGN WITH CDATA #REQUIRED>

3.3. Distribution Information

Distribution information is organized in a similar way as
it is done in MPI-IO.

Blocks specify regions in the logical file. A physical file
is characterized by a sequence of such blocks. The byte
order in the physical file is the same as the byte order within
a block. After the bytes of a block the bytes of the next
block follow.

The most basic type of blocks is a BYTEBLOCK which
represents a single byte. A more complex block is speci-
fied by four attributes and a child block, that itself can be a



complex block. The four attributes are OFFSET, REPEAT,
COUNT, STRIDE and SKIP.

<!-- data distribution in this file -->
<!ELEMENT BLOCK (BLOCK|BYTEBLOCK)+>
<!ATTLIST BLOCK OFFSET CDATA #REQUIRED >
<!ATTLIST BLOCK REPEAT CDATA #REQUIRED>
<!ATTLIST BLOCK COUNT CDATA #REQUIRED>
<!ATTLIST BLOCK STRIDE CDATA #REQUIRED>
<!ATTLIST BLOCK SKIP CDATA #REQUIRED>
<!ELEMENT BYTEBLOCK EMPTY>

To explain the meaning of the above attributes let us sup-
pose, that we have already defined a child block, which is
a BLOCK – in the most simple case BLOCK is just a byte,
i.e. BYTEBLOCK. Let the size of the child block be 5 bytes.
The current block is built up of this child block as in Figure
2.

SKIP

1 2 3 4 5 6

COUNT
STRIDE (in bytes)

The child block

Size of the block

OFFSET

Beginning of the block

Figure 2. An example block

The OFFSET is the number of bytes from the beginning
of the block till the first child block.

The COUNT specifies the number of contiguous child
blocks. In our case it is

�
.

The STRIDE is the number of bytes between the con-
tiguous groups of COUNT number of child blocks. In this
case it equals ��� .

The REPEAT is the number contiguous groups of
COUNT number of child blocks. In this case it is � .

The SKIP is a signed number. It gives the number of
bytes we need to add to ���
	��������������� ��� ������ "! #$ "�%��&(') �+*�,.-0/213�4*�/�5
/�6+��'7	�8
8 ) /
� to get the size of the
current block. In the current case it is 9
��� .

The contents of a physical file can be described as a
block. In this case the OFFSET will be the same as the
address in bytes from the beginning of the child block.

A block may also contain a sequence of child blocks.
Note that the mapping of the bytes in the logical file is not

monotonic. By using the above blocks any mapping of the
bytes in the logical file can be specified.

A simple block example, where a bloc contains one con-
tiguous block of 250 child block from the �3�3�3��:"; byte, and
the child block contains four contiguous bytes is shown
next:

<BLOCK OFFSET="1000" REPEAT="1"
COUNT="250" STRIDE="0" SKIP="2000">

<BLOCK OFFSET="0" REPEAT="4"
COUNT="1" STRIDE="0" SKIP="0">

<BYTEBLOCK/>
</BLOCK>

</BLOCK>

4. An example and a proof of concept applica-
tion

In this section we will present a full example with a
complete XML description. These XML files are used by
ParXML [1], the proof of concept application, which is pre-
sented in the following.

We assume a file described by a respective HPF program,
which contains an integer*1 array with 1000 elements. The
array is distributed onto 4 processors in a cyclic(2) way. A
physical file is assigned to each processor, and each physical
file contains the portion of the array stored by its assigned
processor. Each of the 4 physical files has a PARSTORAGE
description attributed. This information can be part of the
physical file – for example MPI-IO supports header infor-
mation in physical files – , or can be stored separately either
next to the physical file location or in a database.

Fore simplicity we present the full description for the
first file only (which, once again to keep the example sim-
ple, is assumed to be mapped onto the first processor):

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE PARSTORAGE SYSTEM

"parastorage.dtd">
<PARSTORAGE VERSION="0.9" TIMESTAMP="and1">

<PROCESSORS NAME="proca">
<PROC_DIMENSION UPPER="4"/>

</PROCESSORS>

<TYPE>
<ARRAY NAME="a" DISTRIBUTE_ONTO="proca">

<TYPE>
<ETYPE TYPE="INTEGER" LENGTH="1"/>

</TYPE>
<DIMENSION UPPER="1000"

DISTRIBUTE=CYCLIC"
DIST_SCALAR="2"/>

</ARRAY>
</TYPE>



Figure 3. Semantic information

Figure 4. Distribution information

<BLOCK OFFSET="0" REPEAT="125"
COUNT="2" STRIDE="6" SKIP="0">

<BYTEBLOCK/>
</BLOCK>

</PARSTORAGE>

For the three other files the difference is only within the
BLOCK statement, which is for the respective files:

Second file
...
<BLOCK OFFSET="2" REPEAT="125"

COUNT="2" STRIDE="6" SKIP="-2">
...

Third file
...
<BLOCK OFFSET="4" REPEAT="125"

COUNT="2" STRIDE="6" SKIP="-4">
...

Fourth file

...
<BLOCK OFFSET="6" REPEAT="125"

COUNT="2" STRIDE="6" SKIP="-6">
...

The information of the 4 files (which is simply stored to-
gether with the files) allows the easy reconstruction of the
original file out of the fragments. For a proof of concept
we implemented a Java program ParXML [1], which reads
the PARSTORAGE information, processes it and visualizes
it graphically. It further can reconstruct the original file and
produces the canonical form. The ParXML program ex-
tracts the semantic information (see Figure 3), analyzes the
distribution information (see Figure 4), and visualizes the
logical file in canonical form (see Figure 5).

5. Conclusion and future work

We presented PARSTORAGE [1], an XML language for
storing meta information for parallel I/O files. This frame-



Figure 5. Visualization of the logical file

work allows to express semantic information attributed with
the files and delivers the property of persistence for parallel
I/O data.

In the last few years at the University of Vienna the ViP-
IOS system was developed [8], which is a client server
based I/O system for parallel and distributed applications.
Work is on the way to extend this system to deliver a viable
platform for Grid applications, storing huge data sets dis-
tributed over dislocated storage resources. Part of ViPIOS
is a file system for administering distributed files transpar-
ently for the user. The proposed XML approach acts in the
system in two ways; on one hand it provides a user interface
allowing to specify the layout of the file, on the other hand it
is the expressive mechanism within the system to adminis-
ter the distribution information of the files stored in the file

system across several sites on the Grid. For this reason the
PARSTORAGE language was extended to catch the specifics
of a Grid infrastructure [4]. However here shows the XML
approach its quality and justification due to the inherent and
natural possibility of XML to be extended at will.
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