
Using annotated policy documents as a user
interface for process management

Alan S. Abrahams
Wharton School

University of Pennsylvania
asa28@wharton.upenn.edu

David M. Eyers
University of Cambridge Computer Laboratory

JJ Thomson Avenue, Cambridge, United Kingdom
{firstname.lastname}@cl.cam.ac.uk

Abstract—Natural language policy documents are frequently
used as starting point for requirements capture, leading to
computer systems that manage process management within
organisations. Rather than modelling explicit workflow graphs of
business processes, this paper proposes presentation of annotated
versions of the natural language policy documents as a user
interface indicating both the status of task progress and appropri-
ate potential progress routes. A deontic adaptation of the Event
Calculus is presented to monitor the normative state of policy
compliance. A non-tree-based document annotation scheme is
used to allow a natural language text to be linked with a logic
program developed to represent its intentions. The approach is
demonstrated by the encoding and presentation through a web
application of a section of the United States Food and Drugs
Administration regulations.

I. INTRODUCTION

Many of the commissioned computer systems within or-
ganisations exist to guide these organisations’ workers along
appropriate business process routes.

Often the construction of an organisation’s software will
involve many interactions between requirements gathering and
early software development (hence the many models of the
software engineering process).

While some more subtle aspects of business process may
reside only in the minds of an organisation’s employees (al-
beit possibly such intuition providing significant competitive
advantage), the majority of practices and constraints on the
operations of an organisation are likely to be described using
natural language. For example, contracts, internal process
documentation, and the paperwork required to demonstrate
compliance to regulatory bodies such as taxation offices and
company registries.

Ideally, the business processes are converted into software
with high fidelity. In practice, end user systems may impose
significant limitations to the freedom of staff in an organisation
in the interest of ensuring compliance to stated requirements.
In other words, the workflow encoded is derived from a
comparatively ideal-case scenario, and exceptions are dealt
with in increasingly ad hoc ways.

Within this paper, we use the term ‘policy’ to mean a set
of constraints over a system. A primary goal of electronic
policy research is to avoid encoding policy rules implicitly
and/or statically into software. Through explicit, separable
policy specifications, it is more likely that the system will be

able to be updated when new policy modifications are required
without rebuilding the whole software system (in the ideal case
policy can be updated dynamically on a running system).

This paper proposes a mechanism to keep policy at an ideal
level of abstraction within job monitoring systems through
a user interface grounded in the source documentation from
which the requirements of the system are gathered.

The research in this paper has been applied to a section
of the United States Food and Drug Administration (FDA)
regulations in the domain of blood testing for infectious
diseases. This document is ideal in providing a complex
set of interacting obligations, prohibitions and permissions,
for which the target is clearly identified (a particular blood
donation).

The infrastructure presented incorporates a deontically-
aware variant of the Event Calculus to monitor the state of
policy compliance. This provides a significant superset of the
expressiveness of workflow systems that are based on Petri
Nets. In workflow graphs that use Petri Nets, incorporating
support for exceptional situations may involve adding large
numbers of edges, or building additional logic into the work-
flow engine.

The modified Event Calculus predicates, the logic-program
of the source policy document, and the web server infrastruc-
ture that drives the user interface have all been implemented
in SWI Prolog [1].

This paper is structured as follows. Section II presents
related research work. Background information is provided
in section III on the deontic concepts employed alongside a
brief introduction to the Event Calculus. Section IV presents
the technologies required to effect policy document user
interfaces. Results produced by a prototype implementation
using the FDA document as input are presented in section V.
Section VI discusses some of the avenues for future research.
Finally, section VII provides closing comments.

II. RELATED WORK

The research within this paper is related to a number of
different fields. Some particular aspects, such as the Event
Calculus, are introduced below. There is of course a vast body
of research and implementation work on managing processes
within organisations. Computational approaches are often re-
lated to workflow systems (for an overview of workflow



standards see [2]).
Focusing particularly on policy representations, research has

been done on representing deontic state using Petri Nets [3],
[4], [5] and Finite State Machines [4], [6]. Both of these
technologies impose limitations on the action sequences by
which policy compliance can be achieved.

This paper avoids explicit workflow encoding, instead
focusing on the constraints implied by policy. This paper
provides a straightforward, consistent encoding of document
clauses, although one that does not aim to provide compact
visualisation in the way many workflow systems do. In that
sense, this work is similar to Grosof, Labrou, and Chan’s
representation of contracts using Situated Courteous Logic
Programs [7]. However, in contrast, our logic programming
representation is formalised using the Event Calculus, and
represents deontic states explicitly.

In terms of user-focused frameworks that are designed to
assist users to comply with policy, the authors have done
work previously on two contract representation frameworks,
EDEE [8], [9] and CamPACE [10]. Both of these systems take
a bottom-up approach, trying to determine overall contract
status from very fine grained annotation of policy clauses.
The current work instead takes a top-down approach in which
the semantics of document regions are encoded into logic
program, but not the internal semantics of each such region.

III. BACKGROUND

This section provides a brief overview of the deontic con-
cepts we employ in this paper, and the Event Calculus that we
use to track deontic state.

A. Deontic concepts
The aim of the infrastructure presented is to track the

normative state of policy as actions are taken in a human-
driven, but computer-assisted environment.

Natural language policy documents have a vast and rich set
of terms used to indicate requirements. In the interest of logic
programming representations, many of the more subtle natural
language details have been elided. This is acceptable because
the software only requires enough information to present the
natural language clauses to the user when appropriate.

Deontic logic, the logic of obligations, prohibitions, and
permissions, has a rich publication record, for example see
Meyer and Wieringa [11]. Much of the literature focuses on
the issues that arise when looking at logics such as Standard
Deontic Logic (SDL) from a more complete (and thus future
inclusive) perspective. The user interface project here would
benefit from developments in deontic logic research regarding
its future predictive capabilities (see section V-B). However, a
basic taxonomy of deontic states has been sufficient so far to
represent the document clauses we have examined.

The documents are encoded into logic programs using the
limited set of states shown in table I. For example, different
types of “power” are likely to be mapped into the permission
predicate. Experimentation so far indicates that the computer-
based representation needs to know only an approximation of
the ways in which the deontic states relate to each other.

TABLE I
A MINIMAL SET OF DEONTIC STATES

Obligation Some set of actions needs to be performed in the future
to progress the state of affairs. The notion of prohibition
is also covered; there is an obligation not to perform some
set of actions.

Violation Violations occur when an obligation to not do something
is broken, or an obligation to do something is not done
within the required time-frame.

Annulment An annulment cancels out the effect of some other predi-
cate (possibly another annulment). Annulments cover both
the notion of exception, e.g. a document clause that
overrides the effect of another clause, and the notion of
satisfaction, e.g. completion of a obligatory task annuls the
obligation to do that task.

Permission Permissions are essentially a named annulment. The in-
stantiation of a permission within a document is likely
to be coupled with the explicit annulment of clauses that
would otherwise be in conflict with it. For example, a
permission might annul the obligations to do or not do
actions specified elsewhere in that document. Moreover,
the naming of permissions will allow them to be used as
external reference points from other documents’ clauses.

B. Event Calculus

The Event Calculus [12] is a powerful, straightforward
formal modelling technique. Its most basic forms can be
implemented extremely easily, and have been applied to a
wide variety of software systems and research projects (see
[13]). Due to lack of space the core Event Calculus predicates
are not reproduced here, but are readily available in the
aforementioned publications.

The basic principle of the Event Calculus is that events
initiate and terminate fluents. Events are instantaneous hap-
penings in time, and fluents are half-open time intervals
that represent states of affairs. Events and fluents are both
parameterised. The formulation of the Event Calculus solves
the frame problem (also in [12]), and the careful specification
of its core predicates ensure well-defined activity in the face
of simultaneous events.

C. Blood-bank document context

The document used within the initial user interface pro-
totype comes from the FDA Code of Federal Regulations
(CFR) title 21, “Food and Drugs”; chapter I, “Food and
Drug Administration”; subchapter F “Biologics”; part 610,
“General Biological Products Standards”; subpart E, “Testing
Requirements for Communicable Disease Agents”; section
610.40, “Test requirements”. The authors’ attention was drawn
to this document by the work of Professor Insup Lee’s group
at the University of Pennsylvania [14], [15].

IV. POLICY DOCUMENT USER INTERFACE

This section introduces three technologies that help facilitate
policy document driven user interfaces.

A. Event Calculus extensions

The core Event Calculus predicates allow deductive reason-
ing as to the states of affairs that hold at a particular point in
time. In the context of this work, the core deontic states are



d_holds_at(U,T) :-
holds_at(U,T),
\+ d_annulled_at(U,T).

d_annulled_at(U1,T) :-
annulled_by(U1,U2),
d_holds_at(U2,T).

Fig. 1. Deontic fluent inference

described in table I. However these states alone are not directly
useful, because complimentary states relating to a particular
clause (e.g. an obligation and its satisfaction) are maintained
independently on the basis that their evidence is independent.

The results produced for document annotation apply an
extra level of deontic inference to the core deontic fluents that
hold at any point in time. Informally, a state is considered
to deontically hold if it holds and it is not annulled by an
annulment that is not itself annulled (and so on recursively).
The Prolog encoding of this is shown in figure 1, in which
the T variable represents time, and the U variables are fluents.
Although not demonstrated here, the annulled_by/2 pred-
icate indicates whether one fluent would annul another (e.g.
satisfactions annul obligations).

B. Document annotation

In order to display deontic feedback annotations over the
source policy document, mark-up tags must be added to
indicate salient document regions. The named regions used
are selected for many different purposes. Most directly, clauses
in the logic program representing the document are linked to
named regions. There are many other framing concepts within
the source documents, however, such as physical page number
(in the original document), or regions for which there are
recorded comments or policy updates.

Importantly, the document regions are not tree structured:
they may overlap in non-hierarchical ways. Thus each aspect
of document annotation must be separable. In this project,
markers parameterised in two integer dimensions are used to
indicate points of interest and to mark the beginning and the
end of particular document regions.

It would be possible to employ XML technology for the
markup required. Although tree structure cannot be used,
single empty tags can be embedded as markup to indicate
points, and pairs of empty tags to indicate regions within
the document. The XML name-space mechanism can separate
the document markup tags from a document expressed in an
XML language. XML was not employed in the prototype
presented, however, since in this context its benefits did not
outweigh the inconvenience of its use: instead markup was
discovered by searching for two instances of a known unique
string surrounding the integer dimension values in a comma-
separated list. This is a similar approach to MIME framing
[16]: boundaries can be chosen so that the rest of the document
need not be modified to escape markup.

C. JavaScript and Prolog

The prototype document viewing interface is a web applica-
tion. Any interaction with a given pane can cause updates of
the display on the other panes. The traditional CGI approach to
this sort of application was to reload the entire page, however
ideally users’ browsers should maintain their viewing position
within all the panes.

The more modern approach is the so-called ‘Web2’ one: to
use JavaScript to send XMLHttpRequest requests back to the
server when updates are required. When the server replies, a
call-back function can dynamically modify the DOM structure
of the page. Usually this is termed AJAX (Asynchronous
JavaScript and XML), although given the data serialisation
is Prolog, in this case AJAP seems more appropriate.

The asynchronous update request paradigm allows the con-
trol interface to respond to the user quickly, even when some
of the other panes will take some time to update their display.

V. PROTOTYPE IMPLEMENTATION

This section describes the results obtained from the proto-
type implementation of the document-centric user interface. In
the interest of rapid development, the application is currently
web-based, with the server written in multi-threaded Prolog.
The interface, as shown in figure 2, consists of four panes
(implemented as HTML frames in this prototype):

• Control. The control pane (top) allows the user to change
parameters that affect all the other panes. It indicates what
subject is being examined (a blood donation in this case),
and the point in time t that we are examining.

• Fluents. The fluents pane (middle, left) lists the fluents
that hold at time t.

• Events. The events pane (middle, right) displays the
events that have occurred up until time t.

• Document, The document (bottom) pane is the most
important user interaction element. It displays the policy
document along with annotations indicating both the cur-
rent state of affairs, and likely paths for future progress.

There are three types of annotations indicated within the
document pane:

• Obligations. Based on the current point in time, and the
current subject, obligations that the deontic Event Calcu-
lus framework deems to hold at time t are highlighted
in blue. Each highlighted region is followed by a link
arrow that requests searches for progress paths, which
are explained in section V-B below, from this clause.

• Violations. Clauses that represent being in a state of vio-
lation are highlighted in red. As for obligations, violation
highlights are also followed by link arrows that search for
progress paths.

• Progress paths. If a progress path search is currently
active, the potential progress clauses are highlighted in
green.



The fluents in the fluent pane are also colour-coded1.
Again, blue indicates outstanding obligations, green shows
satisfaction clauses, and red indicates violations. The fluents
refer to clauses via a short clause ID for visual compactness.

The clause IDs shown are digit-wise concatenations of the
indexes representative of the hierarchical subclauses within the
document, taking advantage of particular document features
such as there being no clause list with more than ten items.
However, this is only a syntactic concern: any short mnemonic
can be used for the clause IDs. Moreover the IDs are hyper-
links: users clicking on them will position the document
pane at the appropriate clause’s location irrespective of that
particular identifiers are used.

The focus of this paper is on the document annotations,
rather than management of the actual event list in effect. A
basic mechanism has been provided for adding and removing
events via the web, but clearly a real deployment would require
more accessible interface features with which to manage the
event list. In terms of the current implementation, managing
the events is straightforward for users that can connect to the
Prolog instance running the server: each event is a Prolog fact
that associate affirmations from particular users with points
in time. Any means used to modify the Prolog database will
effect an event list editing interface. In production environ-
ments, it is likely that the event list would be constructed
dynamically from large-scale storage infrastructure such as
relational databases.

One particular advantage of encoding policy documents
using a symbolic logic language such as Prolog is that the valid
types of known event can be scanned out of the program code
directly. This could simplify the task of constructing a user
interface for entering new events. For example, in the CFR
document many types of blood testing events are referenced.
In this case, all the possible types of test event could be
automatically compiled by a user interface generator.

A. Example trace

In this section the actual policy context from the CFR
document is discussed. Figure 2 shows an early stage (time
‘3’) of a user ‘agentx’ operating on a particular blood donation
‘donation(1)’.

The document pane (figure 2 lower part) is displaying
the top of the CFR document (as indicated by the scroll-
bar), and a number of blue highlights (obligation regions)
are visible. The topmost blue obligation region was given
identifier ‘1000’, and its sub-points identifiers ‘1100’ through
‘1600’. This four digit identifier system corresponds to the
four levels of nesting within the original CFR document; the
interested reader can confirm this correlation by acquiring
a copy of the FDA document through the public portal at
http://www.accessdata.fda.gov/.

The event display indicates that so far a declaration has been
made that ‘donation(1)’ will be used for preparing a product.

1In the event this document is reproduced without colour, the blue document
regions have a light grey background, and the green and red document regions
a darker grey background

Fig. 2. Annotated screen-capture of document annotations

In addition two negative test results have been recorded.
Indeed the lack of highlighting of points (2) and (4) near
the bottom of the document view is directly because of these
two test results. Note also the red progress path search arrows
(discussed below) at the end of each obligation region.

The fluent pane indicates a number of outstanding obliga-
tions. Broadly speaking, obligation 1000 is the overriding re-
quirement to test blood for infectious diseases. The obligations
in the range 1000 < x < 2000 are the specific tests to be
performed. They have been enumerated like this because a
subset of them can be specifically annulled by other clauses
further on in the document. The satisfaction clauses are in
response to the two negative test results. Note that they are
presented in case evidence changes in future, and the original
obligations again become active.

Obligation 2000 is a requirement to use FDA approved tests,
obligation 7000 is a requirement to test blood before shipping
it onto other parties, and obligation 9000 is a further need to
test blood donations for Syphilis.

In figure 3, the situation is presented very near completion of
the requirements for FDA compliance on this particular blood
donation. From the event view, it is clear that six screening
tests have been performed (in whatever order suited ‘agentx’),
and all their results are negative. In addition the screening tests
have been declared to be FDA compliant.

In the fluent pane, note that although obligation 1000 is now
satisfied (through the collective satisfaction of its subclauses),
obligation 7000 is still outstanding. This is because it is
explicitly dependent on both obligation 1000 and obligation



Fig. 3. Screen-capture of document annotations for a completed workflow

9000. The highlighting of obligations in this case serves to
indicate that related requirements (i.e. particular tests) are not
necessarily close together in the policy document.

B. Compliant progress paths within a contract

There are likely to be many ways in which to progress the
tasks implied by a policy document. As mentioned above,
instead of encoding workflow, this paper suggests using the
Event Calculus to determine likely paths of progress and
indicate them on the source natural language policy document.
Here the term ‘progress’ is used to mean satisfaction of
obligations, or performing actions that annul violations.

Users of the system click the link directly following an
obligation or violation clause to search for progress clauses
connected with it. Because the policy document has been
translated (in a “lossy” sense of the word!) into a logic
program, it is reasonably straightforward to have the Prolog
server reflect on its own code in the context of the current
state of affairs to determine what clauses might perform the
required annulments.

Because no specified proper subset of logic programming is
currently required on the document representation, the safest
answer for possible progress paths will be an over-estimation
(i.e. clauses whose head can unify with the query source).
In the CFR document encoded for this paper, a search that
under-estimates the clause connections was chosen, because
it was clear that a few manual annotations would suffice to
complete the required relationship representation. Figure 4
shows a clause progress highlight generated from a progress

Fig. 4. Screen-capture of progress indication

query on the initial clause in the document.
Note that in many cases a clause will imply a method for

its own satisfaction. For example, the obligation clause near
the top of the document that requires users to test a blood
donation for HIV type 1, can be satisfied by asserting that an
HIV type 1 screening test has been performed. The document
progress indicator does not search for this reflexive type of
satisfaction of an obligation.

In the particular case shown in figure 4, the highlighted
progress clause describes one of the exceptions to the require-
ment to perform screening tests on a blood donation. In broad
terms, the highlighted clause annuls the requirement for testing
when there is a single named recipient, and sufficiently recent
tests have been performed on donations from the same donor.

C. Document graph

Given a software representation of the document that indi-
cates how clauses relate to each other, it is possible to generate
a graph representation of way the policy clauses interrelate
in the original policy document. Figure 5 shows a graphical
representation of the policy document with nodes of interest
listed in nodes that are ordered top-to-bottom within left-to-
right columns. The nodes represent the source and destination
clauses of deontic relationships indicated by the edges between
them. An edge from clause ‘A’ to clause ‘B’ indicates that
clause ‘A’ may be able to annul clause ‘B’.

Knowing that the document clause identifiers are fairly
evenly spaced throughout the policy document, figure 5 in-
dicates that while local collections of related clauses are



1000

1500

1600

3110

3200

3310

3400

4000

9000

5000

5100

5200

7000

8000

8101

8210

8221

8222

8230

8240

8250

Fig. 5. Document clause interaction graph

common, there are numerous annulments (and thus clause
interrelationships) that span considerable distances within the
document. Within the figure, clause 8000 is the obligation not
to ship reactive blood donations. Clause 4000 is not nearby
lexically, yet indicates the annulment of the need to test
blood donations being kept for future use targeted back at the
same donor. Satisfying clause 4000, by declaring a donation
autologous and satisfying various other obligation subclauses,
will annul obligation clause 8000.

In future, it is intended that spacial document presentations,
such as the one presented here, be used to provide users with
a high-level user interface for navigating within very large
policy documents.

VI. FUTURE WORK

There is a significant amount of future research stemming
from this project. Beyond experimentation with further docu-
ments, user testing will be of interest as the software matures.

Of particular interest is increasing the support for annotat-
ing the natural language documents and encoding the logic
programs that represent them. Numerous predicate patterns
emerged when encoding the FDA clauses although it remains
an open question whether employing these predicate patterns
will represent a useful number of other policy documents. The
logical (but currently impractical) extent of this automation
would be to use natural language processing techniques to
convert policy documents to logic programs automatically.

As discussed in section V, the current prototype does not
provide comprehensive facilities to manage the event list.
Providing a user interface to manage event lists would clearly
be useful to support the deductive processes demonstrated so
far. However, the Event Calculus also facilitates other types of
inference. Applying its inductive reasoning capabilities would
help searching for sequences of user actions that reach desired
policy states. Abductive reasoning with the Event Calculus
could be used to determine where source documents, or their
encoding in software, appear to be deficient.

Even without more extensive inference mechanisms, the
Event Calculus could be directly useful in performing what-if
analyses over sequences of hypothetical events.

VII. CONCLUSION

This paper has presented a user interface for policy compli-
ance testing and progress assistance that focuses on annotation
of natural language policy documents, with a parallel logic
program representation of their content. A section of the
US FDA CFR relating to blood testing was encoded, and
the prototype implementation of the system demonstrated to
provide appropriate guidance to potential users. In contrast to
prescriptively encoded Petri Nets, Finite State Machines or
other workflow graph approaches, the Event Calculus deontic
state monitoring and associated user interface allow users to
comply with policy in a manner that suits them.

REFERENCES

[1] J. Wielemaker, “SWI Prolog,” http://www.swi-prolog.org/, 1987.
[2] M.-T. Schmidt, “The evolution of workflow standards,” IEEE Concur-

rency, 1999.
[3] R. W. Bons, R. M. Lee, R. W. Wagenaar, and C. D. Wrigley, “Modelling

inter-organizational trade procedures using documentary petri nets,” in
Proceedings of the Hawaii International Conference on System Sciences,
1995.

[4] A. Daskalopulu, “Logic-based tools for the analysis and representation
of legal contracts,” Ph.D. dissertation, Department of Computing, Impe-
rial College, University of London, 1999.

[5] R. M. Lee, “Bureaucracies as deontic systems,” ACM Transactions on
Office Information Systems, vol. 6, no. 2, pp. 87–108, Apr. 1988.

[6] A. Daskalopulu, T. Dimitrakos, and T. S. Maibaum, “E-contract fulfill-
ment and agents’ attitudes,” in Proceedings ERCIM WG E-Commerce
Workshop on the Role of Trust in E-Business, Zurich, Oct. 2001.

[7] B. N. Grosof, Y. Labrou, and H. Y. Chan, “A declarative approach
to business rules in contracts: Courteous logic programs in XML,” in
Proceedings First ACM Conference on Electronic Commerce (EC-99),
M. P. Wellman, Ed., Nov. 1999.

[8] A. S. Abrahams, “Developing and executing electronic commerce appli-
cations with occurrences,” Ph.D. dissertation, University of Cambridge
Computer Laboratory, 2002.

[9] A. S. Abrahams, D. M. Eyers, and J. M. Bacon, “Practical contract
storage, checking, and enforcement for business process automation,” in
Formal Modeling for Electronic Commerce: Representation, Inference,
and Strategic Interaction, S. O. Kimbrough and D. Wu, Eds. Springer-
Verlag, 2004, pp. 33–77.

[10] ——, “Regulating web-based communities,” in In Proceedings of
the IADIS International Conference on Web Based Communities
(WBC2004), Lisbon, Portugal, Mar. 2004.

[11] J. J. Meyer and R. J. Wieringa, Deontic Logic in Computer Science.
John Wiley & Sons Ltd, 1993.

[12] R.Kowalski and M.Sergot, “A logic-based calculus of events,” New
Generation Computing, vol. 4, pp. 67–95, 1986.

[13] M. Shanahan, “The event calculus explained,” Springer Lecture Notes
in Artificial Intelligence, vol. 1660, pp. 409–30, 1999.

[14] N. Dinesh, A. Easwaran, D. Arney, A. Abrahams, O. Rambow,
A. Joshi, and I. Lee, “Extracting traceable formal models from natural
language policy,” Poster presented at the annual research review and
workshop on High-Confidence Embedded Systems, Lincoln, Nebraska,
2005. [Online]. Available: http://www.cis.upenn.edu/∼nikhild/Papers/
poster.pdf

[15] N. Dinesh, A. Joshi, I. Lee, and B. Webber, “Extracting formal speci-
fications from natural language regulatory documents,” in Proceedings
of the Fifth International Workshop on Inference in Computational
Semantics (ICoS-5), Buxton, England, 2006. [Online]. Available:
http://www.cis.upenn.edu/∼nikhild/Papers/specifications icos.pdf

[16] N. Freed and N. Borenstein, “Multipurpose internet mail extensions
(MIME) part one: Format of internet message bodies,” 1996, rFC 2045.


