
QPME - Queueing Petri Net Modeling Environment
Samuel Kounev

University of Cambridge
Computer Laboratory

Cambridge, CB3 0FD, UK
Email: skounev@acm.org

Christofer Dutz
Darmstadt University of Technology

Department of Computer Science
64289 Darmstadt, Germany

Email: dutz@c-ware.de

Alejandro Buchmann
Darmstadt University of Technology

Department of Computer Science
64289 Darmstadt, Germany

Email: buchmann@informatik.tu-darmstadt.de

Abstract— Queueing Petri nets are a powerful formalism that
can be exploited for modeling distributed systems and analyzing
their performance and scalability. However, currently available
tools for modeling and analysis using queueing Petri nets are
very limited in terms of the scalability of the analysis algorithms
they provide. Moreover, tools are available only on highly
specialized platforms unaccessible to most potential users. In
this paper, we present QPME - a Queueing Petri Net Modeling
Environment that supports the modeling and analysis of systems
using queueing Petri nets. QPME runs on a wide range of
platforms and provides a powerful simulation engine that can
be used to analyze models of realistically-sized systems.

I. INTRODUCTION

QPME (Queueing Petri Net Modeling Environment) is a
performance modeling environment based on the Queueing
Petri Net (QPN) modeling formalism. Introduced in 1993 by
Falko Bause [1], the QPN formalism has a number of advan-
tages over conventional modeling formalisms such as queueing
networks and stochastic Petri nets. By combining the modeling
power and expressiveness of queueing networks and stochastic
Petri nets, Queueing Petri Nets (QPNs) enable the integration
of hardware and software aspects of system behavior into the
same model [2]. In [3], we showed how this advantage can
be exploited for modeling distributed e-business applications.
Building on this work, we have developed a methodology
for performance modeling of distributed component-based
systems using QPNs [4]. The methodology has been applied
to model a number of systems ranging from simple systems
to systems of realistic size and complexity. It can be used as
a powerful tool for predicting the performance and scalability
of distributed component-based systems.

However, while the QPN modeling paradigm provides many
important benefits, there are currently few tools that support
the modeling and analysis of systems using QPNs. Based
on [5], the only tool that is available is the HiQPN-Tool [6],
developed at the University of Dortmund. HiQPN can be used
to build and analyze QPN models, however, it only supports
analytical analysis techniques. As we demonstrated in [3],
due to the state space explosion problem, QPN models of
realistic systems are too large to be analyzable using analytical
techniques. Another problem with HiQPN is that it is only
available on Sun-OS 5.5.x / Solaris 2, which significantly
limits its accessibility.

Recognizing the need for a tool to support the modeling
and analysis of realistically-sized systems using QPNs, we

have developed QPME - a QPN modeling environment with a
user-friendly graphical user interface. In this paper, we present
QPME, discussing its features and benefits. QPME is made of
two major components, a QPN Editor (QPE) and a Simulator
for QPNs (SimQPN). In the next sections, we take a closer
look at these components.

II. QPE - QUEUEING PETRI NET EDITOR

QPE (Queueing Petri Net Editor), the first major component
of QPME, provides a graphical tool for modeling using
QPNs [7]. It offers a user-friendly interface enabling the
user to quickly and easily construct QPN models. QPE is
based on GEF (Graphical Editing Framework) [8] - an Eclipse
sub-project. GEF is an open source framework dedicated to
providing a rich, consistent graphical editing environment for
applications on the Eclipse platform. As a GEF application,
QPE is written in pure Java and runs on all operating systems
officially supported by the Eclipse platform. This includes
Windows, Linux, Solaris, HP-UX, IBM AIX and Apple Mac
OS among others, making QPE widely accessible.

Internally, being a GEF application, QPE is based on the
model-view-controller (MVC) architecture. The model in our
case is the QPN being defined, the views provide graphical
representations of the QPN, and finally the controller connects
the model with the views, managing the interactions among
them. QPN models created with QPE can be stored on disk as
XML documents. QPE uses its own XML schema based on
PNML [9] with some changes and extensions to support the
additional constructs available in QPN models.

A characterizing feature of QPE is that it allows token colors
to be defined globally for the whole QPN instead of on a per
place basis. This feature was motivated by the fact that in
QPNs typically the same token color (type) is used in multiple
places. Instead of having to define the color multiple times, the
user can define it one time and then reference it in all places
where it is used. This saves time, makes the model definition
more compact, and last but not least, it makes the modeling
process less error-prone since references to the same token
color are specified explicitly.

III. SIMQPN - SIMULATOR FOR QUEUEING PETRI NETS

The second major component of QPME is SimQPN - a
discrete-event simulation engine specialized for QPNs. It is ex-
tremely light-weight and has been implemented 100% in Java



to provide maximum portability and platform-independence.
SimQPN simulates QPNs using a sequential algorithm based
on the event-scheduling approach for simulation modeling.
Being specialized for QPNs, it simulates QPN models di-
rectly and has been designed to exploit the knowledge of
the structure and behavior of QPNs to improve the efficiency
of the simulation. Therefore, SimQPN provides much better
performance than a general purpose simulator would provide,
both in terms of the speed of simulation and the quality of
output data provided.

SimQPN currently supports three different scheduling
strategies for queues inside queueing places: First-Come-
First-Served (FCFS), Processor-Sharing (PS) and Infinite
Server (IS). A wide range of service time distributions are sup-
ported including Beta, BreitWigner, ChiSquare, Gamma, Hy-
perbolic, Exponential, ExponentialPower, Logarithmic, Nor-
mal, StudentT, Uniform, VonMises and Empirical. Timed
transitions are currently not supported, however, in most cases
a timed transition can be approximated by a serial network
consisting of an immediate transition, a queueing place and a
second immediate transition.

SimQPN offers the ability to configure what data exactly
to collect during the simulation and what statistics to provide
at the end of the run. This can be specified for each place
(ordinary or queueing) of the QPN. The user can choose
one of four modes of data collection. The higher the mode,
the more information is collected and the more statistics are
provided. Since collecting data costs CPU time, the more data
is collected, the slower the simulation would run. Therefore,
by configuring data collection modes, the user can make sure
that no time is wasted collecting unnecessary data and, in this
way, speed up the simulation.

SimQPN supports two methods for estimation of the steady
state mean residence times of tokens inside the queues, places
and depositories of the QPN. These are the well-known
method of independent replications (in its variant referred to as
replication/deletion approach) and the classical method of non-
overlapping batch means. Both of them can be used to provide
point and interval estimates of the steady state mean token
residence time. The method of Welch is used for determining
the length of the initial transient (warm-up period).

We have validated the analysis algorithms implemented
in SimQPN by subjecting them to a rigorous experimental
analysis and evaluating the quality of point and interval
estimates [10]. In particular, the variability of point estimates
provided by SimQPN and the coverage of confidence intervals
reported were quantified. A number of different models of
realistic size and complexity were considered. Our analysis
showed that data reported by SimQPN is very accurate and
stable. Even for residence time, the metric with highest varia-
tion, the standard deviation of point estimates did not exceed
2.5% of the mean value. In all cases, the estimated coverage of
confidence intervals was less than 2% below the nominal value
(higher than 88% for 90% confidence intervals and higher
than 93% for 95% confidence intervals). However, still in case
the user wants to apply a different technique for steady state

analysis this is also possible. SimQPN can be configured to
output observed token residence times to files (mode 4), which
can then be used as input to external analysis tools.

A novel feature of SimQPN is the introduction of the
so-called departure disciplines. The latter are defined for
ordinary places or depositories and determine the order in
which arriving tokens become available for output transitions.
We define two departure disciplines, Normal (used by default)
and First-In-First-Out (FIFO). The former implies that tokens
become available for output transitions immediately upon
arrival just like in conventional QPN models. The latter implies
that tokens become available for output transitions in the order
of their arrival, i.e. a token can leave the place/depository only
after all tokens that have arrived before it have left, hence
the term FIFO. For an example of how this feature can be
exploited and the benefits it provides we refer the reader to
[4], [11].

IV. SUMMARY

QPME provides a robust and powerful tool for performance
analysis making it possible to exploit the modeling power and
expressiveness of queueing Petri nets to their full potential.
The tool is available free of charge for non-profit use. Further
information can be obtained by contacting the first author.

REFERENCES

[1] F. Bause, “Queueing Petri Nets - A formalism for the combined
qualitative and quantitative analysis of systems,” in Proceedings of the
5th International Workshop on Petri Nets and Performance Models,
Toulouse, France, October 19-22, 1993.

[2] F. Bause, P. Buchholz, and P. Kemper, “Integrating Software and Hard-
ware Performance Models Using Hierarchical Queueing Petri Nets,” in
Proceedings of the 9. ITG / GI - Fachtagung Messung, Modellierung
und Bewertung von Rechen- und Kommunikationssystemen, (MMB’97),
Freiberg (Germany), 1997.

[3] S. Kounev and A. Buchmann, “Performance Modelling of Distributed
E-Business Applications using Queuing Petri Nets,” in Proceedings of
the 2003 IEEE International Symposium on Performance Analysis of
Systems and Software - ISPASS2003, Austin, Texas, USA, March 20-22,
2003.

[4] S. Kounev, Performance Engineering of Distributed Component-Based
Systems - Benchmarking, Modeling and Performance Prediction.
Shaker Verlag, Dec. 2005, ISBN: 3832247130.

[5] University of Aarhus, “Petri Net Tool Database,” Department of Com-
puter Science - DIAMI, 2004, http://www.daimi.au.dk/PetriNets/tools/.

[6] F. Bause, P. Buchholz, and P. Kemper, “QPN-Tool for the Specification
and Analysis of Hierarchically Combined Queueing Petri Nets,” in
Quantitative Evaluation of Computing and Communication Systems, ser.
Lecture Notes in Computer Science, H. Beilner and F. Bause, Eds., vol.
977. Springer-Verlag, 1995.

[7] C. Dutz, “QPE - A Graphical Editor for Modeling using Queueing Petri
Nets,” Master Thesis, Technical University of Darmstadt, Apr. 2006.

[8] The Eclipse Foundation, “Graphical Editing Framework (GEF),” 2006,
http://www.eclipse.org/gef/.

[9] J. Billington, S. Christensen, K. van Hee, E. Kindler, O. Kummer,
L. Petrucci, R. Post, C. Stehno, and M. Weber, “The Petri Net Markup
Language: Concepts, Technology, and Tools,” in Proceedings of the 24th
International Conference on Application and Theory of Petri Nets, June
23-27, Eindhoven, Holland, June 2003.

[10] S. Kounev and A. Buchmann, “SimQPN - a tool and methodology
for analyzing queueing Petri net models by means of simulation,”
Performance Evaluation, vol. 63, no. 4-5, pp. 364–394, May 2006,
doi:10.1016/j.peva.2005.03.004.

[11] S. Kounev, “Performance Modeling and Evaluation of Distributed
Component-Based Systems using Queueing Petri Nets,” IEEE Trans-
actions on Software Engineering, 2006, to appear.


