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Abstract
In this paper we discuss State Maintenance Components
(SMCs), which are used to capture high-level condi-
tions in a State-based Publish/Subscribe (SPS) middleware.
SMCs support temporal and spatial condition interrelation-
ships, while using events received from a Publish/Subscribe
(Pub/Sub) communication system. The SMC data structure
is designed so as to enable SMC decompositions and distri-
butions for effective load-balancing, localized processing,
and information sharing. Our evaluation, using real sensor
data in the context of a smart transportation system, demon-
strates the expressiveness and the scalability of SMCs in the
SPS middleware.

1 Introduction
With the advance of sensor technologies, and increased re-
alisation of the benefits of studying environmental data,
new sensor systems are emerging, that exhibit sheer scale,
heterogeneous device types, and multi-application oper-
ational settings. Smart environments are an example
of these systems, where environments are equipped with
wired/wireless sensor devices of various types and plat-
forms, and serve diverse and dynamic applications.
These systems demand middleware solutions that abstract
the low-level data, and the infrastructural details, and cap-
ture high-level knowledge or conditions for their applica-
tions and users. Most important, however, is the dynamic
topology that is realised in these systems. This is not only
related to node failures, but also to network characteris-
tics (e.g. node mobility), the multi-application setting (dis-
tributed and dynamic users, with changing interests), and
the system’s evolution (node joins and leaves).
Provisioning the highlighted information processing needs,
in the view of the dynamic network topology, is a great
challenge. In an effort to address this, we have decided
to leverage from existing Pub/Sub systems[4], which have
been extensively researched in the context of large-scale
distributed systems. The aim is to build a suitable infor-
mation processing service that cooperates with the Pub/Sub
communication paradigm.
Capturing high-level conditions, using a Pub/Sub system,
is non-trivial. Publishers’ details, such as the quantity and

granularity of their publications (e.g. rate of events), are
hidden from the subscribers and variable throughout the
system lifetime. Related efforts have led to the develop-
ment of Composite Event (CE) frameworks, that are fur-
ther discussed in the next section. We, however, have
adopted the notion of state to capture lasting conditions in
the system. Our efforts have led to the development of the
SPS framework[17], which combines the expressiveness of
states with the scalability of Pub/Sub systems.
The SPS middleware builds on stateless topic-based
Pub/Sub protocols, which are simple in design and
lightweight for operation on resource-constrained de-
vices. More resourceful devices house State Maintenance
Components (SMCs), that capture high-level conditions.
These components maintain limited data structures that aid
context-based data processing (for increased efficiency),
and memory-based condition detection (for increased ex-
presssiveness). In this paper, we focus on SMCs, and dis-
cuss their expressiveness and operation for capturing high-
level conditions in sensor systems.
In section 2, we present an overview of related work. Sec-
tion 3 outlines our middleware architecture; further details
of which can be found in [17]. Capturing expressive con-
ditions, using SMCs, is detailed in section 4. Section 5
evaluates the expressiveness and performance of the SPS
middleware, in the context of a smart transportation system
case-study. Finally, concluding remarks and future direc-
tions are outlined in section 6.

2 Related Work
SPS is not the first framework to use the notion of state
for sensor systems. Others [6, 8, 1] have offered the ex-
pressiveness of states to sensor network applications. But
they are mainly based on the principles of Finite State Ma-
chines (FSMs), and describe the internal state of a program
in sensor networks. They are predominantly “state-oriented
programming models”, in which one or more user appli-
cations can be modelled and programmed over sensor de-
vices. Other works use the notion of state to reflect knowl-
edge about the real-world. Examples include [18] where
lasting conditions are captured over correlated events, and
[14] where high-level information is deduced from primi-
tive state events. In [14], primitive state events are drawn to
a centralized server, where expressive state predicates are
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Figure 1: SPS architecture
evaluated. Our work uses a similar notion of state, but of-
fers SMCs that are more expressive in describing condi-
tions, and decomposable for distributed processing.
CE frameworks [13, 12, 2, 7] extract high-level informa-
tion through patterns of event occurrences. These patterns
are enveloped as individual composite events, which may
subsequently serve as events to other composite events.
These frameworks focus on temporal relationships between
events. Event parameterization (constraints over event at-
tribute values) hinders the sharing of CEs, and is often
performed pre- or post-CE detection. Selection and dis-
card of constituent events are governed by per topic event
consumption policies. In contrast, our framework supports
event parameterization as part of its condition detection
process, and selects and discards events according to their
contained knowledge (attribute values). SPS defines a uni-
fied model for supporting per condition temporal and spa-
tial policies that govern the event selection, condition detec-
tions, and condition interrelationships. Furthermore, unlike
some CE frameworks, SPS detectors (SMCs) can capture
multiple concurrent conditions without the need to have
pre-existing replicated detectors.
With a Database-oriented view on sensor networks[5], DB-
related frameworks [10, 19, 9, 15] have been developed,
that support application-level Structured Query Language
(SQL) queries over resource-constrained sensor devices.
SQL queries are parsed into procedural Relational Algebra
Expressions in Database Management Systems (DBMSs).
Although we use Relational Algebra to define our condi-
tion detection model, our framework is state-based (main-
tains states, provides context-based data processing, and fa-
cilitates memory-based condition detection) and is concep-
tually different from the work on DBMSs and data-stream
processing, focusing on an open distributed environment.
We describe how temporal and spatial condition interrela-
tionships can be captured using Relational Algebra, and in
this process, the efforts of the DB research community can
be used for accurate optimization and implementation.

3 State-based Publish/Subscribe (SPS)
SPS[17] is a State-based Publish/Subscribe framework that
supports its clients, comprising sensors, actuators, applica-
tions, controllers, etc., through a uniform Pub/Sub inter-
face. An information producing client is called a publisher,

Table 1: SMC Structure
SMC

Index Annotation
N SMC Name
Q SMC Query Expressions (QEs)
P n SMC Entrance Predicate
An ingress Event Attributes Computations
P x SMC Exit Predicate
Ax egress Event Attributes Computations
s SMC Status-bit
e SMC’s last Capture (Event Publication)

and a consuming one is called a subscriber.
Figure 1 shows the internals of the SPS middleware: the
Publish/Subscribe, the Information Space (InfoS) manager,
and the SMC manager components. There is an ex-
plicit separation of tasks: the Pub/Sub component han-
dles network-wide messaging, the InfoS component serves
as an event repository, and the SMC manager captures
high-level conditions. This separation helps to isolate the
costs and predict run-time resource usage. Information
flow, in SPS, is by means of event notifications, compris-
ing a set of attribute/value pairs. Some attributes (topic,
time, location, and status1) are generic, while others are
topic-related. High-level information deduction, in SPS, is
through SMCs, that have a structure outlined in table 1. Ev-
ery SMC is an instantiated object that envelopes the condi-
tion definition in (N, Q, P n, An, P x, Ax), and maintains a
status-bit s and SMC event e that reflects the current status
and last capture of the condition. The status-bit s and the
last capture e can be examined through the valid and last
keywords within the SMC predicates.
SMCs are housed at the SMC manager, and operate as pub-
lishers to the Pub/Sub component. Their names indicate the
event topics under which their events are published. QEs
highlight the relevant data that is obtained from the InfoS
to examine the conditions. The entrance predicate captures
the start of a condition, for which an ingress event (with
related attributes) is generated, and the exit predicate cap-
tures the ending of a condition, denoted by an egress event.
Context-based data processing is performed by oscillating
between the two predicates, according to the current status
of the condition, s. The next section details how SMCs are
evaluated and conditions captured in SPS.

4 Capturing Conditions
In SPS, the notion of state is used to capture momentary or
lasting conditions. We say that a condition has occurred if
there exists some knowledge that contributes or hints about
its occurrence. The detection process can be divided into
three stages: knowledge selection, knowledge examination,
and knowledge encapsulation. Throughout this process the
following data structures are observed, that refine the InfoS
data to some knowledge that suggests the condition’s oc-
currence, and finally contribute to an SMC event.
Knowledge Point (KP) is an event-like attributed tuple,

that reflects a piece of knowledge in the InfoS.
Satisfying Knowledge (SK) is a set of KP-combination

1this attribute may have the atomic, ingress or egress value.



tuples, each of which represents a combination of one
or more KPs, whose values satisfy an SMC predicate.

Contributing Knowledge (CK) is a set of KP-
combination tuples, that satisfy an SMC predicate and
relate to a unique condition.

We explain the detection process with reference to an ex-
ample. A high-level explosion event is defined as below.
Explosion Event. An explosion event is detected when
sound and light events are detected, and high temperature
readings are realised from the environment. The time of the
sound and light events should be close (within 0.5s), and
high temperature readings should be detected continuously
for the past 30s. Multiple sound events, realised at different
times, could relate to different explosion events.

4.1 Knowledge Selection

QEs extract distinct pieces of knowledge from the InfoS,
to be examined individually or against other knowledge for
condition occurrences or terminations. Every QE resolves
into a set of KPs, when examined against the InfoS.
If we consider the InfoS as an MDX[11] cube, with di-
mensions matching the fixed event attributes, then each QE
could be thought of as a selection box, that encloses some
related knowledge in the cube, represented later by some
KPs. The QEs are composed of attributed parameters that
govern the selection of knowledge along every dimension
of the cube. These parameters hold a one-to-one relation-
ship with the fixed event attributes. Table 2 shows the
set of permissible values for each attribute. DP is the set
of all event topics, DT , DL are the set of time and loca-
tion values, and DS = {atomic, ingress, egress}. The
< range > parameters are described using a pair of values
(rl, rh) that denote the lower and higher bound values. The
default range is (−∞, +∞). QE parameters follow one-
another with a dot (‘.’) symbol in the representation. For
example, the “I(Temperature).L(−30r, 0r).N.I(atomic)”
is a QE, that holds the I(Temperature) as its topic
parameter, the L(−30r, 0r) as its time parameter, the
N(−∞, +∞) as its location parameter, and the I(atomic)
as its status parameter.
If we consider the InfoS as a Database (DB) relation, then
the parameters could be described using relational algebra.
Prior to this, however, we must define the domain (set of
permissible values and their meanings) for each attribute
in the InfoS. For every fixed attribute, we define two do-
mains: an absolute domain D and a relative domain Dr.
The absolute domain reflects the set of static values that are
storable in the tuples of InfoS. The relative domain, how-
ever, offers an alternative and dynamic view to the same set
of static values in D. Queries that use relative values (e.g.
σtime==0rInfoS, where 0r is a relative value) may return
different relations, when examined by different queriers, at
different times, or at different locations.
The relative domain Dr can be best explained by mapping
each attribute domain D onto a unique domain of real num-
bers. Note that these domains are used as part of describing
QEs that have corresponding SMCs, who also have corre-
sponding hosts in the network.

ATTRIBUTES

time
location
status

RELATIVE DOMAINS

0
(local)

−

super−topic names

+

sub−topic namestopic
a past time

ingress atomic egress

present InfoS time
SMC topic name

distance from hostSMC−host location

Figure 2: Relative domains
Topic The event topics from the absolute domain are

mapped onto the domain of real numbers based on
the corresponding SMC’s name and super- and sub-
topic names (e.g. explosion event topic is a sub-topic
of light, sound, and temperature event topics).

Time The time values are mapped according to the lo-
cal InfoS’s processing timeline, that monotonically in-
creases as knowledge (events) become stable[17].

Location The location values are mapped according to
their Euclidean distances from the position of the cor-
responding SMC’s host.

Status The status values are mapped statically.
Figure 2 illustrates this mapping over an axis of real num-
bers. Let AF = {topic, time, location, status} represent
the set of fixed event attributes, and AT represent the set of
topic-related event attributes. We now define the QE param-
eters, using relational algebra, about a candidate attribute
a ∈ AF . Note that relative values are expressed like abso-
lute values with an r superscript.
I(v)

⋃
({x|x∈AF ,x6=a}γmin(|a−v|),{y|y∈AT}InfoS),

means that the knowledge closest to or at the v index
value is selected (e.g. for the time attribute, I(0r)
selects the most recent knowledge from the InfoS).

A(fn, < range >)
⋃

({x|x∈AF ,x6=a}γfn({y|y∈AT}),aY ),
where Y = σrl≤a≤rh

InfoS. This parameter selects
all knowledge, that falls within a given range, and ap-
plies an aggregation function, fn, independently of
the other fixed attributes. Maximum (max), minimum
(min), sum (sum), and average (avg) are supported.

{O, L, N, S}(< range >) σrl≤InfoS.a≤rh
InfoS,

means that all knowledge instances, falling within the
specified range, are selected from the InfoS.

If we label the resultant relation, from resolving a QE pa-
rameter, corresponding to an attribute a ∈ AF , as Ra(X)
where X is the input relation, then the overall KPs for a
QE is K = Rtopic (Rstatus (Rlocation (Rtime(InfoS)))).
The earlier QE example retrieves the past 30s temperature
readings, published by all the sensors across the space.

4.2 Knowledge Examination

SMCs are examined whenever their related knowledge is
changed or updated. This change is not restricted to the re-
ception of a new event, but may occur when the processing
timeline is advanced, or the SMC’s host changes position.
The change triggers the InfoS to provide new KPs, which
are then examined for condition occurrence or termination.
The predicates define what knowledge contributes or hints
about a condition’s occurrence. If we label an SMC’s
QEs as A, B, C, . . ., and their corresponding KPs as
KA, KB , KC , . . ., then the SK S can be found as follows.



Table 2: Query Expression attributes and parameters
Attributes Parameters Default
topic single(I)(v ∈ DP ∪ Dr

P ), multiple : {one(O), all(L), any(N), separate(S)}(< range >) –
time I(v ∈ DT ∪ Dr

T ), aggregate(A)(fn, < range >), multiple : {O, L, N, S}(< range >) I(0r)
location I(v ∈ DL ∪ Dr

L), A(fn, < range >), multiple : {O, L, N, S}(< range >) N(−∞, +∞)
status I(v ∈ DS ∪ Dr

S), multiple : {O, L, N, S}(< range >) I(ingress)

S = σp∈{P n,P x}((ρ{A.topic,A.time,A.location,···}KA) ×
(ρ{B.topic,B.time,B.location,···}KB) × · · ·), where p is se-
lected according to the current status of the condition.
If KA and KB represent the light and sound events, and the
SMC predicate is |A.time−B.time| ≤ 0.5, then S would
contain all light and sound event-combinations whose oc-
currence times are within 0.5s. This can be used as part of
a search for detecting explosions.
The cartesian product of the relations (KA, KB , KC , . . .),
and the examination of all KP-combinations may be com-
putationally expensive. In section 4.4, we discuss the de-
composition of QEs, which allows this computation to be
distributed across many networked devices.

4.3 Knowledge Encapsulation

Every tuple in S highlights a KP-combination that satisfies
the predicate. The user specifies how these tuples should
relate to one-another, and how they may be grouped to in-
dicate one or more condition occurrences or terminations.
Knowledge encapsulation is a process whereby the SK S is
transformed into zero or more CKs. The number of result-
ing CKs determines the number of detected conditions.
The cardinality of S relates to the cardinality of the in-
put KPs (KA, KB , KC , . . .), such that if |S| > 1 then
∃x ∈ {A, B, . . .}where |Kx| > 1. For |Kx| > 1 to hold,
the corresponding QE, x, must hold at least one multiple
parameter among its attributed values. We define sub-
parameters for multiple, that define what relationship the
resultant KP-combinations in S should hold for the condi-
tion to have occurred. Assuming that the multiple param-
eter relates to an attribute a ∈ A, then the sub-parameters
and their associated conditions may be defined as follows.
multiple:one (O) |πaS| = 1. Asserts that only one unique

a value, from Kx, should appear in S.
multiple:all (L) |πaS| = |πaKx|. Asserts that all a val-

ues, from Kx, should appear in S.
multiple:any (N) |πaS| ≥ 1 ≡ |S| ≥ 1, is a dummy pa-

rameter that asserts any one satisfied a value, from Kx,
may be taken as a representative in a CK U .

multiple:separate (S) |πaS| ≥ 1 ≡ |S| ≥ 1, is similar to
multiple : any but implies that every unique a value
in S can signal a unique condition. A maximum num-
ber of |πaS| conditions can be captured per evaluation.

A CK U is a subset of the SK S, such that all conditions
(related to the multiple sub-parameters in x) are satisfied
within U . These sub-parameters can be used to define tem-
poral and spatial condition interrelationships in SPS. For
example, continuous high temperature readings can be as-
serted using the multiple : all parameter for the time at-
tribute of a QE like C that acquires temperature readings

Table 3: Explosion SMC
SMC

N “Explosion”

Q
A := I(Light).N.N.I(atomic);
B := I(Sound).S.N.I(atomic);
C := I(Temp).L(−30r, 0r).N.I(atomic);

P n |A.time − B.time| ≤ 0.5 &&C.value ≥ 40
P x true

from the InfoS. Similarly, distinct explosion events (re-
lated to different sound events) may be captured using the
multiple : separate parameter for the time attribute of a
QE like B that extracts the sound events from the InfoS.
The Explosion SMC structure is shown in table 3.
In order to determine all CKs (from an SK S), the SK S
is divided into CKs according to the multiple : separate
parameter, {U |U = σ(a=i∈(πaKx))S}. The multiple : one
and multiple : all parameter assertions are then examined
over each set member, and unsatisfied CKs are eliminated
from the {U}. Subsequently if |{U}| > 1, then concurrent
conditions are detected, and temporary SMCs are spawned
to monitor each distinct condition individually. Every tem-
porary spawned SMC is assigned a unique CK u ∈ {U},
and lasts until its assigned condition is terminated.
SMCs transform CKs into SMC events. The most recent
knowledge in the CK and the SMC’s attributes computa-
tions, An/Ax, are used to determine the topic-related at-
tribute values. The generic attribute values are determined
from the SMC’s name, the most recent KP in CK, the lo-
cation of the SMC’s host, and the satisfied predicate. The
condition capturing process is completed when the SMC
event is published and the SMC status-bit is toggled.

4.4 Distributed Detection

SPS supports the decomposition of SMC to distribute the
processing load across many network nodes, and poten-
tially reduce processing and communication costs. De-
composition of complex SMCs into simpler SMCs length-
ens the information processing chain, thus increasing the
chance of information sharing among multiple independent
subscribers. Furthermore, SMC decompositions allow for
more effective distribution of the SMCs, where localized
(zero-communication cost) processing may be achieved.

4.4.1 Predicate Decompositions

An SMC predicate is a boolean expression, which may be
decomposed using boolean algebra. These decompositions,
however, are only effective if disjoint operands are pro-
duced (i.e. an SMC is decomposed into many SMCs, that
hold mutually exclusive groups of QEs). Every SMC then
either examines a distinct part of the overall condition or



Table 4: Decomposed Explosion SMC
(a) Temperature High SMC

SMC
N “Temperature High”
Q A := I(Temp).L(−30r, 0r).N.I(atomic);
P n A.value ≥ 40
P x true

(b) Explosion SMC
SMC

N “Explosion”

Q
A := I(Light).N.N.I(atomic);
B := I(Sound).S.N.I(atomic);
C := I(Temperature High).I(0r).N.I(atomic);

P n |A.time − B.time| ≤ 0.5 &&C.valid
P x true

joins the partial results to examine the overall condition.
The Explosion SMC may be decomposed as in table 4.
The resultant SMCs may capture meaningful conditions,
that can be shared with other high-level conditions.

4.4.2 QE Decompositions

Predicate decompositions can lead to the separation of QEs,
but each individual QE may also be decomposed. This de-
composition distributes the SK search-space over a number
of SMCs, such that every SMC searches a disjoint table of
the KP-combinations (cartesian product of KPs).
This decomposition only relates to the QEs that hold a
multiple parameter. The range of the parameter can be
decomposed into an arbitrary number of disjoint ranges,
each of which is examined by an independent SMC
(e.g. the L(−30r, 0r) parameter may be decomposed into
L(−30r,−15r) and L(−15r, 0r)).
The decomposed SMCs search only parts of the knowledge-
space, hence their findings (SKs) are limited and incom-
plete. Events published by these SMCs need to be joined
to examine sub-parameter conditions, and yield accurate
results. This join operation depends on the chosen sub-
parameter, and in its simplest case (for the multiple :
separate) is not necessary. Other sub-parameters require
appropriate join operations that assert their conditions over
the realised SKs.
multiple:any requires a logical OR join operation to yield

only a single result (SMC event) from the SKs.
multiple:all requires a logical AND operation to ensure

all attribute values are satisfied across all the SKs.
multiple:one requires a logical XOR operation to ensure

the uniqueness of the satisfied attribute value in SKs.
These join operations can be expressed using SMCs. Table
5 gives an example of this decomposition for the Tempera-
ture High SMC (shown in table 4(a)).

5 Evaluation
We first examine the expressiveness of SMCs in the SPS
framework; in particular, we discuss two drawbacks that
are commonly associated with the Pub/Sub systems. In the
second part, we highlight an application scenario, for which
we process real sensor data to capture high-level conditions.

Table 5: Decomposed SMCs
(a) Temperature High1 SMC

SMC
N “Temperature High1”
Q A := I(Temp).L(−30r,−15r).N.I(atomic);
P n A.value ≥ 40
P x true

(b) Temperature High2 SMC
SMC

N “Temperature High2”
Q A := I(Temp).L(−15r, 0r).N.I(atomic);
P n A.value ≥ 40
P x true

(c) Temperature High SMC
SMC

N “Temperature High”
Q

A := I(Temperature High1).I(0r).N.I(atomic);
B := I(Temperature High2).I(0r).N.I(atomic);

P n A.valid&&B.valid
P x true

Table 6: Filtering SMCs
(a) Temp 0.5Hz SMC

SMC
N “Temp 0.5Hz”
Q A := I(Temp).I(0r).N.I(atomic);
P n last.time ≤ −2r

P x true

(b) Temp 10%Change SMC
SMC

N “Temp 10%Change”
Q A := I(Temp).I(0r).N.I(atomic);
P n |A.value − last.value| ≥ 0.10 ∗ last.value
P x true

The performance and scalability of the SPS framework is
discussed within the context of the application scenario.

5.1 Expressiveness

5.1.1 Controlling the rate of events

Although Pub/Sub subscribers have no control over the rate
of event publication, the need for this control is evident.
Consider a temperature sensor that publishes temperature
readings (events) every second. While this granularity is
suited for some applications (e.g. fire breakout monitoring),
it may be too fine-grained for others (e.g. daily temperature
logging). Subscriber-asserted control over the rate of event
publication is useful, particularly when communication is a
scarce resource.
In SPS, a subscriber may define an SMC that filters events
according to a custom specification. Table 6 shows two
SMCs that limit the rate of events, that are delivered to the
subscribers, either by time or by value.
Temp 0.5Hz SMC publishes the most recent Temp event ev-
ery 2s, maintaining a fixed 0.5Hz event publication rate.
Temp 10%Change SMC passes an event when the value at-
tribute has changed by more than 10% (relative to the pre-
viously passed event’s value).



Table 7: SensorInUse SMC
SMC

N “SensorInUse”
Q A := N.I(0r).I(0r).N ; B := L.I(0r).I(0r).N ;
P n A.name > Temperature
P x !(B.name > Temperature)

X

SensorInUse

ControllerSensor

adv./
publish notify

(events)
subscribe/
SMC spec.

SPS

on /off

Figure 3: Controlling Sensors
5.1.2 On-demand event publication

One of Pub/Sub’s downsides, for sensor networks, is its
push-based communication model. This requires event
publishers (e.g. sensors) to be actively sensing and publish-
ing events that may be of no interest to event subscribers
and subsequently discarded at the local event broker. Some
related work has modified Pub/Sub implementations to al-
low event publishers to be shut down when no correspond-
ing subscribers exist.
SPS’s expressiveness rectifies this problem, without the
need to modify the Pub/Sub implementation. Essentially,
a feedback loop is created where the sensor’s hardware-
controller becomes a subscriber to a condition that detects
interests about its sensor’s data. As such, the controller can
activate the sensor when interests arise, and de-activate it
when interests perish, see figure 3.
We can detect if there exists any SMC, such as X in figure
3, that uses the local sensor (e.g. temperature) data. We
assume that such an SMC publishes high-level (e.g. fire)
events about our local environment. We can know about
all SMCs that have advertised events about our local envi-
ronment through the A QE in the SensorInUse SMC (table
7). This SMC examines for any SMC, such as X , that pub-
lishes high-level events which incorporate knowledge about
the local sensor data. The entrance predicate is satisfied
when an SMC like X exists, and the exit predicate is sat-
isfied when no such SMC exists any more. The controller
toggles the switch according to the received ingress/egress
SensorInUse events.

5.2 Application Scenario: Journey Planning

The proposed framework has been implemented on Jist/
Swans[3]. An application scenario was implemented and
tested (using real-data from SCOOT[16]) to observe the
scalability and performance of SPS.
Consider a smart transportation system, composed of dif-
ferent sensor devices, such as inductive loop sensors, speed
cameras, ANPRs, and traffic light signals. In this system,
users can benefit from high-level information to plan re-
lated activities. Let us define the following data sources for

notify
(events)

TCN

subscribe/
SMC spec.

adv./
publish

adv./
publish

adv./
publish

CarInductiveLoop

SPS

IL_High

TC

Car_Slow

User

JourneyPlannerApp

Figure 4: Application Overview

Table 8: TrafficCongestionNear SMC
SMC

N “TrafficCongestionNear”
Q

A := I(TrafficCongestion).N(0r, 0r).S.N ;
B := I(User).I(0r).I(0r).I(atomic);

P n |A.location − B.location| ≤ 2
P x true

high-level information deduction in our experiment.
• Inductive Loop sensors, with periodic reports on road-

segment occupancies (continuous InductiveLoop (IL)
event notifications at 1Hz).

• Speed Measurements2, reporting on the speed of the
passing cars on the road (discrete, but potentially high-
volume, Car (C) event notifications).

• Location sensors, indicating the current location of the
simulated users (continuous User events at 1Hz).

We decided to help mobile users to plan their journeys, by
providing real-time traffic information about their nearby
traffic congestions. More specifically, we simulated 500
mobile users, in a two-dimensional grid-like road network,
that had subscribed to their nearby traffic congestions. The
challenges in this application were two-fold.
Firstly to capture “traffic congestion” conditions, which we
defined as the mutual occurrence of “high road occupancy”
and “slow vehicle speeds”. These were deduced from the
inductive loop sensor data, and the speed camera readings.
Every congestion lasted until the speed of the moving vehi-
cles exceeds a given threshold value (15MpH ).
Secondly, traffic congestion reports needed to be filtered,
according to individual user locations. Since our input
knowledge was confined to the published event notifi-
cations, we introduced User event notifications (detailed
above) that were published periodically to provide loca-
tion information about each individual user. Traffic conges-
tion reports were filtered according to the most recent User
event knowledge, which meant users did not need to update
their subscriptions as they moved around the network.
The TrafficCongestionNear event topic, whose SMC is de-
tailed in table 8, reports on the nearby traffic congestions,
that are situated within a 2 road-junction distance of the
user’s present location. Users subscribed to this SMC lo-
cally, meaning that SMCs were hosted locally and filtered

2inferred from a secondary stream of raw SCOOT data



Table 9: Decomposed TrafficCongestion SMC
(a) TrafficCongestion SMC

SMC
N “TrafficCongestion”
Q

A := I(IL High).I(0r).S.I(ingress);
B := I(Car Slow).I(0r).S.N ;

P n A.valid&&B.valid&&A.location == B.location
P x (!B.valid)&& (B.location == last.location)

(b) InductiveLoop High (IL High) SMC
SMC

N “IL High”
Q A := I(InductiveLoop).A(avg, (−30r, 0r)).S.

I(atomic);
P n A.value > 2.5
P x A.value < 2.5 &&A.location == last.location

(c) Car Slow SMC
SMC

N “Car Slow”
Q A := I(Car).A(avg, (−60r, 0r)).S.I(atomic);
P n A.value < 7
P x A.value > 15 &&A.location == last.location

TrafficCongestion events for the local subscriber.
The manually decomposed version of the TrafficConges-
tion SMC, which captures traffic congestion conditions and
publishes TrafficCongestion events is outlined in table 9.
See also figure 4 for a high-level view of the system.
We examined sixty roads, each equipped with a single in-
ductive loop and speed measuring sensor. In addition to
these, 380 network nodes were introduced to ensure wire-
less network connectivity in the simulation environment.
All nodes were assumed to have resources to house SMCs.
Twenty hours of real data, relating to two distinct days,
1st July, 2006, 1AM–9PM for Sim1, and 6th April, 2006,
1AM–9PM for Sim2 were processed. Table 10 outlines the
simulation parameters, and table 11 outlines the results.

Table 10: Simulation Parameters

Statistics Sim1 Sim2
Annotations 1/7/06 6/4/06
Number of SMCs and Clients
Client – User 500 500
Client – InductiveLoop (IL) 60 60
Client – Car 60 60
SMC – IL High 60 60
SMC – Car Slow 60 60
SMC – TrafficCongestion (TC) 256 256
SMC – TrafficCongestionNear (TCN) 500 500
Client – JourneyPlannerApp (JPA) 500 500
Client Subscriptions 500 500
journey planner applications
Resolved Subscriptions 2132 2132
(including InfoS Subscriptions)
Max Subscriptions per node 2 2
InfoS subscriptions for TC and TCN SMCs
Number of primitive Event Notifications
User 3.6e+7 3.6e+7
Car 330736 494682
InductiveLoop 4.32e+6 4.32e+6

Table 11: Simulation Results
Statistics Sim1 Sim2
Annotations 1/7/06 6/4/06
Decomposed SMC types 4 4
IL High, Car Slow, TC and TCN
Decomposed and Distributed SMCs 876 876
Max SMC allocation per node 1 1
Max SMCs observed per node 4 6
TC SMCs
Max Events stored per InfoS 37 30
Car events
Max Events stored per InfoS for the
TC SMC evaluation

14 21

IL High, Car Slow, and TC events
Max received Events for TC SMC 236 701
Max Predicate Evaluations per re-
ceived Event Notification

10 14

TrafficCongestion predicate evaluations
Event Publications by Clients 40650736 40814682
IL, Car, and User Events
Total Event Notifications (ENs) 40656552 40825670
published Events (including SMC ENs)
Events Disseminated (ED) 1784 3884
Events Disseminated within the Network
Events Delivered to Subscribers 4032 7104
TCN Events to JPA Clients
Number of high-level Event Notifications
Car Slow 774 1048
IL High 842 2540
TrafficCongestion 168 296
TrafficCongestionNear 4032 7104

5.3 Performance

Our performance evaluation aimed at examining the effec-
tiveness of SMCs, their decompositions and distributions in
the context of a real application scenario. We were particu-
larly interested in the following parameters, each of which
was also related to the expressiveness, induced processing,
communication, and storage costs of SPS.
• How many distinct SMC types were defined to support

the outlined application scenario?
• How much load-balancing was achieved?
• How much localization was achieved?
• How much information sharing was attained?

The application scenario was fully described using four
SMCs (shown in figure 4), three of which were localized
(either fully or partially) at the publisher nodes. The In-
ductiveLoop High and Car Slow SMCs were fully local-
ized, meaning that they were automatically decomposed
(along the QE location attributes) and distributed over the
60 InductiveLoop and 60 Car event publishers. The Traf-
ficCongestionNear SMC was partially localized - located
on the nodes that hosted User event publishers (i.e. the 500
mobile user nodes), but also received non-local events.
The above localizations meant that only Induc-
tiveLoop High, Car Slow, and TrafficCongestion events
were disseminated across the network - other events were
processed or consumed locally. The disseminated events
totalled to 1784 (Sim1) and 3884 (Sim2).
With regard to load-balancing, although only four SMCs
were defined, the number of SMCs, following autonomous
decompositions and distributions, totalled 876. This in-
cluded 620 SMCs that were localized at the publisher nodes
(discussed above). With localization, the processing is also
limited to the examination of locally generated data.



The original TrafficCongestion SMC was computationally
expensive to evaluate. The cartesian product of the KPs,
representing the most recent “high road occupancies” and
“slow vehicle speeds”, produced large data sets for exam-
ination. This process was repeated per receiving Induc-
tiveLoop High or Car Slow event at the TrafficCongestion
SMC. The decomposition of the TrafficCongestion SMC,
however, resulted in 256 SMCs that focused on smaller ( 1

16 )
regions of the environment. This decomposition reduced
the maximum number of events that were received at any
one SMC from 1616 (Sim1) and 3588 (Sim2) events (relat-
ing to a centralized SMC) to 236 and 701 events.
The TrafficCongestion SMC decomposition and distribu-
tion not only reduced the number of receiving event no-
tifications, which in turn reduced the frequency of SMC
evaluations, but also reduced the size of the knowledge that
was maintained at the local InfoS components. The maxi-
mum observed processing complexity was 10n (Sim1) and
14n (Sim2), meaning that the maximum size of the KP-
combinations relation (produced by the cartesian product
of the KPs) were 10 and 14 tuples, respectively. This com-
pares to 74n (Sim1) and 90n (Sim2), that would have been
realised if the TrafficCongestion SMC was not decomposed.
From the 876 distributed SMCs, 376 SMCs collaboratively
deduced the traffic congestion information. The 168 (Sim1)
and 296 (Sim2) TrafficCongestion events, published as re-
sult of this collaboration, were disseminated to the 500
TrafficCongestionNear SMCs that were localized at their
mobile user nodes. This sharing meant that the process-
ing, storage, and communication costs, that were associated
with these 376 SMCs, were divided among the 500 users
when examining per-user costs in the system. Thus, as the
number of users increases, the per-user cost decreases to-
wards the cost of disseminating TrafficCongestion events to
a user, and filtering these events for nearby traffic conges-
tion reports. This demonstrates the scalability of the SPS,
that is achieved as a result of information sharing.

6 Conclusions
In this paper we focused on State Maintenance Components
and how they may be used to capture expressive conditions
in an SPS supported sensor system. We demonstrated how
temporal and spatial condition interrelationships can be de-
fined, and provided a fine-grained explosion detection ex-
ample to accompany our discussions. Our evaluation, using
real sensor data, demonstrated the effectiveness of SMC de-
composition and distribution. This decomposition allowed
for load-balancing and distributed data processing, as well
as effective information sharing when interests overlapped.
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