
Towards a Benchmark for
E-Contract Checking and Monitoring

Alan S. Abrahams*, David M. Eyers†, and Jean M. Bacon†

* Department of Operations and Information Management,
The Wharton School, University of Pennsylvania

500 Jon M. Huntsman Hall, Philadelphia, PA 19104-6340, USA
† University of Cambridge Computer Laboratory, William Gates Building,

15 JJ Thomson Avenue, Cambridge, CB3 0FD, United Kingdom
asa28@wharton.upenn.edu, {David.Eyers, Jean.Bacon}@cl.cam.ac.uk

Abstract

One good quantitative means of gauging research progress is through like-for-
like comparative evaluation of software implementations and algorithms.
However, a notable omission from the work in the new field of electronic
contracting, is a standard means of evaluating performance of the components
used for contract consistency-checking and monitoring, against earlier
approaches. In this paper we propose a benchmark for assessing the efficiency
of such components. We define a replicable experimental framework and use it
to test a basic but expressive contract assessment prototype, EDEE. EDEE’s
execution metrics set the bar for other contract assessment approaches. We hope
that this experimental framework will stimulate researchers in the e-contracting
community to develop competing data models and algorithms and raise the bar
for time and space efficiency of contract checking and monitoring software.

1 Introduction

There has been much recent work on electronic contracting, but we are not
aware of any research that evaluates contract-checking efficiency on meaningful
tasks. If the state of the art in this field is to advance, objective means are
required of assessing the performance of competing implementations on a
standard problem set of reasonable complexity.

This paper begins with an overview of related work in e-contracting
(Section 2), highlighting the absence of a yardstick for quantitative comparison.
Section 3 then sets out the experimental framework we propose for
benchmarking in the community. In Section 4, we record the performance of

our own implementation, EDEE, using the proposed testing methodology. We
conclude with a set of opportunities for improvement in our architecture, and
research challenges for the field as a whole.

2 Related Work

Past research in general rule-based performance assessment (§2.1) and in
e-contracting (§2.2) pertains:

2.1 General Performance Assessment Benchmarks

Performance benchmarks from the fields of event monitoring, active databases,
view containment-checking, and expert systems are not appropriate for
e-contracting environments, since these approaches do not express conflicts and
violations, and do not keep event histories that are essential for contract-
checking purposes.

E-contracting environments would under-perform against existing event
monitoring and active database systems (e.g. [4, 8, 10, 21]) which monitor for
low-level system and database events. The most efficient event-monitoring
approaches may detect up to 600 events per second against 6 million
subscriptions held in RAM [10]. Such approaches treat events as transient, held
briefly in memory rather than stored in a database, with rudimentary event types
[1, p18], and event attributes being simple string values only. Event monitors
are less expressive than expert systems approaches, which perform slowly as
they indulge in more complex inferencing.

In the database view literature, the MiniCon containment-checking
algorithm – demonstrably more scalable than the Bucket and Inverse-Rules
approaches [23] – is able to check a query against 1000 views (named queries)
in less than one second. MiniCon is targeted at the data integration problem, and
rewrites queries in terms of a maximal union of conjunctive queries over
available views. Though it could be relevant, it has not been applied to the
challenge of contract consistency-checking.

Expert system benchmarks use artificial intelligence problems with small,
static rule sets. Typical commercial rule engines (e.g. [5, 13]) use tests such as
the NASA Monkeys & Bananas example as their benchmark. ILOG claims to
solve this problem in less than 10 minutes [13]. Problems mentioned in the
academic expert systems literature include finding optimal seating arrangements
for guests at a dinner party (‘Manners’ benchmark), labelling lines for simple
scenes (‘Waltz’), designing computer chip circuitry (‘Weaver’), or determining
the lowest-cost route plan for an aeroplane (‘ARP’) [7]. The basic ‘Manners’

benchmark uses only 8 rules, while the ‘Waltz’ benchmark uses 33 rules. The
most complex of the benchmarks, ‘Weaver’, uses 1831 facts and 637 rules; it
compiles to a rigid constraint network in 2-3 hours and executes in just over 11
minutes. Commercial contract evaluation scenarios, with large numbers of
dynamic and conflicting rules cannot be meaningfully assessed against these
fixed object-pattern matching application benchmarks, which bear scant relation
to workflow scenarios. For contract monitoring and checking, both object-
pattern (check if item is covered by a provision) and dynamic pattern-pattern
matching (check if provisions overlap) are required. In commercial trade
environments, occurrences must be assessed against a large and periodically
changing number of applicable provisions, and in the light of complex historical
circumstances.

2.2 E-Contracting

A multitude of electronic contracting approaches exist: (e.g. [6, 9, 11, 12, 14 -
20, 22, 24, 27] - see [1] for a detailed review of these and others). However,
most of these approaches cannot express or detect conflicting provisions, and
many cannot monitor for contract violations. Furthermore, none of these
existing approaches specify metrics for assessing the efficiency of contract
consistency-checking and monitoring. Previous contract assessment work has
been based on small, single contracts. Lee and co-workers [6] have
implemented a Petri-Net-based trade procedure executor, whilst Daskalopulu
and colleagues [9] provide a finite-state-machine-based conceptual framework
for assessment of a small number of obligations (i.e. 2 or 3). Previous work has
focused on developing small-scale conceptual solutions to the problem, rather
than on studying actual performance of implementations. In the field of legal
expert systems, Sergot et al [138], using the relatively limited computing
resources available at the time, showed in Prolog that the citizenship of an
individual could be determined on the basis of approximately 500 rules of
legislation. Performance figures were not provided. We are not aware of any
experimental studies of algorithms for ascertaining contract status or for
determining the implications of business occurrences on contract consistency
during workflow execution. We believe our evaluation framework (§3) is a
significant contribution that fills a void in previous work on this topic.

3 Experimental Framework

An experimental framework for e-contract checking should begin with a
practical, albeit stylized, example. Take the following trace of a realistic
contracting and operational scenario:

Scenario A:
Provision 1: SkyHi is obliged to pay Steelmans

$25,000.
Provision 2: Payments of more than $10,000 to a

supplier are prohibited.
Fact 1: Steelmans is a supplier.
Fact 2: SkyHi pays Steelmans $25,000.

In terms of contract checking, an effective component should quickly notice
that the obligation in Provision 1 conflicts with the prohibition in Provision 2
(though this conflict only becomes evident when Fact 1 comes to light).
Regarding contract monitoring, the component should rapidly flag that Fact 2
violates the prohibition in Provision 2 (and, simultaneously, fulfils the obligation
in Provision 1). At a minimum, e-contracting software should have the
expressiveness to assess (check and monitor) Scenario A above. Taking this as
our basis for understanding contract assessment, let us now investigate an
experimental setup that will exercise e-contract monitoring approaches. The
methodology and metrics used are as follows:

3.1 Methodology

Our intention is to exercise conflict detectors and violation monitors quite
strenuously by generating a scenario set containing hundreds of intermingled
variants of the provisions and facts (and hence conflicts and violations)
in Scenario A above. We make use of a biased quasi-random provision,
occurrence (i.e. fact), and entity generator in order to achieve this; this creates an
interesting mix of provisions, and a good spread of occurrence and entity types,
with some common types predominating, as would be expected in real business
scenarios. The randomizer ensures that:

Approximately 50% of provisions are obligations, and 50% are prohibitions.
Obligations are generated following a general schema for obligations and
prohibitions. That is, obligations are “to (some occurrence) (some
amount) to (some participant)” (an instance of this schema would
be the obligation in Provision 1 above: “to pay $25,000 to

Steelmans”). Similarly, prohibitions are constructed following the template
“against (more-than/less-than) (some amount) (some
role) to (some role)”, which builds instances like the prohibition in
Provision 2 above: “against more-than $10,000 paid to a
supplier”. Approximately 50% of comparisons are more-than and 50%
are less-than.

Approximately 20% of workflow occurrences (i.e. facts) are one of 2 types
(being_supplier as in Fact 1 above, and paying as in Fact 2 above),
20% of occurrences are of 4 types, a further 20% of occurrence are one of 4
additional types, another 20% of occurrences are also one of 4 further types, and
the final 20% of occurrences are one of a million types.

Approximately 20% of participants are one of 2 individuals (SkyHi and
Steelmans from Scenario A above), 20% of participants are one of 4
individuals, a further 20% of participants are one of 4 additional individuals,
another 20% of participants are also one of 4 further individuals, and the final
20% of participants are one of a million individuals.

Numbers (amounts) are arbitrarily chosen floating-point numbers,
between 0 and 1,000,000.

3.2 Metrics

For our experiments we need to record:
Time

We need to record both the time taken to insert and conflict-check
provisions in seconds, and the time taken to insert and monitor
occurrences, in seconds. Varying occurrence-insertion batch sizes (e.g.
batch-size 1 vs. batch-size 50) could be measured.

Space
We need to determine the space used by the contract assessment engine
for storing provisions and occurrences, recorded as size-on-disk in
megabytes.

Conflicts
We should note the number of conflicts detected between individual
obligations and prohibitions. This is used to show that the assessment
engine is effective (and not only time and space efficient).

4 Tests and Results

Our contract consistency checking and monitoring prototype is called EDEE.
EDEE’s implementation and architecture are detailed in our earlier work [1, 2].

Contractual provisions are appendable on a provision-by-provision basis, to
support a fine granularity of update. A coverage-checking component [3] looks
for conflicting contractual provisions (contract checking) and flags violations
(contract monitoring). Following is the exact hardware and software
configuration employed, and the results of our tests.

4.1 Experimental Setup: Hardware and Software

Our algorithm was implemented in Java, and we undertook multiple runs on
diverse platforms. Table 1 provides the detailed hardware and software
specifications of the machines used for our tests.

Machine Name Operating
System

Database Java CPU(s) Memory

Teme Windows
2000 Pro

Microsoft
Access 2000

1.3.0 800 Mhz
AMD Athlon

256 MB

Citadel Windows XP
Pro

Microsoft
Access 2002

1.4.0
(_01)

500 Mhz
Pentium III

256 MB

Jetset Windows
2000

Microsoft
Access 2000

1.3.1 500 Mhz
Pentium III

256 MB

All Windows platforms employed Sun’s JDBC-ODBC driver, included with their respective Java
distributions.
Flute Red Hat

Linux 7.2
PostgreSQL
7.2.1

1.4.0
(_01)

1.4 Ghz
AMD Athlon

512 MB

hot-spare-00
(elbe)

Red Hat
Linux 7.1

PostgreSQL
7.0.3

1.4.0
(_01)

2 x 1.4 Ghz
AMD Athlon

2.5 GB

hot-spare-01
(nidd)

Red Hat
Linux 7.1

PostgreSQL
7.0.3

1.4.0
(_01)

2 x 1.4 Ghz
AMD Athlon

512 MB

hot-spare-02
(loire)

Red Hat
Linux 7.2

PostgreSQL
7.2.1

1.4.0
(_01)

2 x 1.4 Ghz
AMD Athlon

882 MB

hot-spare-03 (lyd) Red Hat
Linux 7.1

PostgreSQL
7.0.3

1.4.0
(_01)

1.4 Ghz
AMD Athlon

878 MB

Gargantubrain Red Hat
Linux 7.1

PostgreSQL
7.1.3-3

1.4.1
beta

4 x 800 Mhz
Itanium

16 GB

All Unix platforms employed the Postgres JDBC driver that is included with the PostgreSQL 7.1
distribution.

Table 1: Specifications of machines used for experiments

The same seed was used to propagate the random generator (§3.1) in all
cases, aside from the tests on the machines citadel and jetset where a
different seed was used for variety. For researchers wishing to replicate the
experiments and do a comparison to their own work, the EDEE source code and
parameters used for the experiments, and the detailed results from EDEE
execution on our platforms, can be obtained from http://www.cl.cam.ac.uk/~asa28/.

4.2 Raw Results

Following is a synopsis of EDEE’s results, using the metrics proposed in Section
3.2 (see also [1]):

Time
Figure 1 gives the average time in seconds per provision. All results here
pertain to a batch-size of 1. Figure 2 shows the average time to input
occurrences, as the number of provisions varies, for the best-performing
machine, teme. Figure 3 shows the average time to insert occurrences
with 251 stored provisions, comparing batch-size 1 to batch-size 50.

Space
We periodically recorded size-on-disk for the Microsoft Access databases
and found: 0.25MB for an empty database, 0.5MB for 10 provisions and
10 occurrences, and 95MB for 351 provisions and 200 occurrences.

Conflicts
Figure 4 shows the total conflicts detected as the number of provisions
and occurrences vary.

4.3 Analysis of Results

We have shown for the first time that contract performance assessment and
dynamic validation is viable on medium-scale problems with hundreds of
provisions, small event histories, and a high proportion of run-time conflicts.
Figure 4 shows that EDEE successfully detects provisions coming into conflict
with each other at run-time as new occurrences are added.

On the best performing machine, teme, it took an average of 280 seconds
(almost 5 minutes) to individually insert and coverage-check a provision, when
there were 351 provisions in the database. Similarly, it took an average of 136
seconds (just over 2 minutes) to insert and coverage-check an occurrence, for
351 provisions and 500 stored occurrences. For less-conflicting sets of
provisions, performance is likely to be substantially better than this, as the main
overhead is the storage of overlap relations between provisions.

As expected, Figure 3 demonstrates that large batch sizes improve
performance, though this leads to a lag in the detection of conflicts, when
compared to coverage-checking of each provision or occurrence individually.

5 Conclusion

The eventual goal for e-contracting engines should be to assess tens of thousands
of occurrences against thousands of provisions within milliseconds. Clearly the

0

500

1000

1500

2000

2500

1 51 101 151 201 251 301 351

P r ov i s i ons

teme

ci tadel

j etset

f l ute

hot-spar e-00

hot-spar e-01

hot-spar e-02

hot-spar e-03

gar gantubr ai n

Figure 1: Average time, in seconds per provision,
to insert and conflict-check provisions

50 100 150 200 250 300 350 400 450 500
1

151

301

0

20

40

60

80

100

120

140

160

180

Average Time in
Seconds Per
Occurrence

Occurrences

Provisions

160.0-180.0

140.0-160.0

120.0-140.0

100.0-120.0

80.0-100.0

60.0-80.0

40.0-60.0

20.0-40.0

0.0-20.0

Figure 2: Average time, in seconds per occurrence,
to insert and assess occurrences

current EDEE implementation is a long way from this target. However, we see
significant opportunities for improving EDEE’s performance on contract
assessment tasks. Firstly, implementation of a native active database layer

within the database kernel should yield significantly better performance, and
will need to be examined. Mechanisms for reducing the storage space
requirement for overlap relations between provisions should be investigated. A
possibility is to tag transitively related data with sequence numbers as the data is
added to the database; this would allow faster determination of transitive
closure. We will need to reconsider the triple store (vertical schema) used by
EDEE [1, 2, 3], in search of a more efficient implementation with appropriate
data structures. Alternatively, special-purpose optimizations to relational
database query planners, such as those recently suggested by Wang, Chang, and
Padmanabhan for vertical schemas, could potentially reduce query execution
time by up to 80% [26]. Further development of EDEE – to improve its
efficiency and user interface – is being pursued under the new name, CamPACE
(Cambridge Policy Analysis and Checking Environment). We have recently
reimplemented EDEE’s conflict-checker for CamPACE, using a combination of
Prolog and C#, instead of Java, to capture and enforce the conflict detection
rules. The new implementation achieves a 60-fold performance improvement
over the original. Full source code of both our Java (EDEE) and C#/Prolog
(CamPACE) benchmark implementations are freely available at:
http://www.cl.cam.ac.uk/~asa28/

As a final remark, our hope is that other implementers of e-contracting
engines will rise to the challenge of building software capable of representing
and checking the practical scenario and experimental framework of Section 3.
The community can then objectively assess software against the benchmark set
by the initial EDEE prototype.

6 Acknowledgements

This research was supported by grants from Microsoft Research Cambridge, the
Cambridge Commonwealth and Australia Trusts, the Overseas Research
Students Scheme (UK), and the University of Cape Town Postgraduate
Scholarships Office.

7 References

[1] Abrahams, A.S. “Developing and Executing Electronic Commerce
Applications with Occurrences”. PhD Thesis. University of Cambridge
Computer Laboratory. Cambridge, England. (2002).

[2] Abrahams, A.S., and J.M. Bacon. “A Software Implementation of
Kimbrough’s Disquotation Theory for Representing and Enforcing

0

10

20

30

40

50

60

70

80

90

100

50 100 150 200 250 300 350 400 450 500

Occurrences

A
ve

ra
ge

 T
im

e
in

 S
ec

on
ds

 P
er

 O
cc

ur
re

nc
e

Batch Size 1

Batch Size 50

Figure 3: Average time, in seconds per occurrence,
to insert and assess occurrences

1

2010

50

100

150

200

250

300

Tot al
Conf lict s
Det ect ed

Occurrences

Provisions

250-300

200-250

150-200

100-150

50-100

0-50

Figure 4: Total conflicts detected between individual
prohibitions and obligations

Electronic Commerce Contracts”. Group Decision and Negotiations
Journal. 11(6), 487-524. (2002).

[3] Abrahams, A.S., D.M. Eyers, and J.M. Bacon. “A Coverage
Determination Mechanism for Checking Business Contracts against
Organizational Policies”. 3rd VLDB Workshop on Technologies for E-
Services (TES’02). Hong Kong, China. Lecture Notes in Computer
Science 2444. Springer-Verlag. Berlin, Germany. 97-106. (2002).

[4] Bacon, J.M., et al. “Generic Support for Distributed Applications”.
IEEE Computer. 33(3), 68-76. (2000).

[5] Blaze Software. “Blaze Advisor Technical White Paper”. Available
from: http://www.blazesoft.com/products/docrequest.html. (2000).

[6] Bons, R.W.H., R.M. Lee, R.W. Wagenaar, and C.D. Wrigley.
“Modelling Inter-organizational Trade Procedures Using Documentary
Petri Nets”. Proceedings of the 28th Hawaii International Conference on
System Sciences. (1995).

[7] Brant, D.A., T. Grose, B. Lofaso, and D.P. Miranker. “Effects of
Database Size on Rule System Performance: Five Case Studies”.
Proceedings of the 17th International Conference on Very Large Data
Bases. (1991).

[8] Carzaniga, A., D.S. Rosenblum, and A.L. Wolf. “Design of a Scalable
Event Notification Service: Interface and Architecture”. Technical
Report CU-CS-863-98. Department of Computer Science, University of
Colorado, Boulder. (1998).

[9] Daskalopulu, A., T. Dimitrakos, and T.S.E. Maibaum. “E-Contract
Fulfilment and Agents’ Attitudes”. Proceedings ERCIM WG
E-Commerce Workshop on the Role of Trust in E-Business. Zurich.
(2001).

[10] Fabret, F., and H.A. Jacobsen, F. Llirbat, J. Pereira, K.A. Ross, and D.
Shasha. “Filtering Algorithms and Implementation for Very Fast
Publish/Subscribe”. Proceedings of the 2001 SIGMOD Conference.
(2001).

[11] Grefen, P., K. Aberer, Y. Hoffner, and H. Ludwig. “CrossFlow: Crss-
Organizational Workflow Management in Dynamic Virtual Enterprises”.
International Journal of Computer Systems Science & Engineering.
15(5), 277-290. (2000).

[12] Greunz, M., B. Schopp, and K. Stanoevska-Slabeva. “Supporting
Market Transactions through XML Contracting Containers”.
Proceedings of the Sixth Americas Conference on Information Systems
(AMCIS 2000). Long Beach, CA. (2000).

[13] ILOG Corporation. “Business Rules”. Available at:
http://www.ilog.com/products/rules/. (2001).

[14] International Standards Organization. “(ISO/IEC JTC1/SC21/WG7).
Open Distributed Processing – Reference Model – Part 2: Foundations”.
International Standard 10746-2 / ITU-T Recommendation X.902.
(1995).

[15] Kafeza, E., D.K.W. Chiu, and I. Kafeza. “View-Based Contracts in an
E-Service Cross-Organizational Workflow Environment”. Proceedings
of the Second International Workshop on Technologies for E-Services
(TES’01). Rome, Italy. Lecture Notes in Computer Science 2193.
Springer-Verlag. Berlin, Germany. 74-88. (2001).

[16] Lee, R.M. “CANDID: A Logical Calculus for Describing Financial
Contracts”. PhD Thesis. Department of Decision Sciences, The
Wharton School, University of Pennsylvania. Philadelphia, PA. (1980).

[17] Merz, M. “Electronic Contracting with COSMOS – How to Establish,
Negotiate, and Execute Contracts on the Internet”. Proceedings of the
2nd International Enterprise Distributed Object Computing Workshop
(EDOC’98). IEEE. (1998).

[18] Milosevic, Z. “Enterprise Aspects of Open Distributed Systems”. PhD
Thesis. Department of Computer Science, University of Queensland.
154-248. (1995).

[19] Morciniec, M., M. Salle, and B. Monahan. “Towards Regulating
Electronic Communities with Contracts”. 2nd Workshop on Norms and
Institutions in Multi-Agent Systems, 5th International Conference on
Autonomous Agents. Montreal, Canada. (2001).

[20] Organization for the Advancement of Structured Information Standards
(O.A.S.I.S). “OASIS ebXML Collaboration-Protocol Profile and
Agreement Specification Version 2.0”. Available at: http://www.oasis-
open.org/committees/ebxml-cppa/documents/ebcpp-2.0.pdf. (2002).

[21] Paton, N.W., and O. Diaz. Active Database Systems. ACM Computing
Surveys. 31(1), 63-103. (1999).

[22] Peyton-Jones, S., J.M. Eber, and J. Seward. “Composing contracts: An
adventure in financial engineering”. International Conference on
Functional Programming. Montreal, Canada. (2000).

[23] Pottinger, R., and A. Levy. “A Scalable Algorithm for Answering
Queries using Views”. Proceedings of the 26th International Conference
on Very Large Databases (VLDB). 484-495. (2000).

[24] Reeves, D.M., B.N. Grosof, and M.P. Wellman. “Automated
Negotiation from Declarative Contract Descriptions”. Computational
Intelligence. 18(4), 482-500. (2002).

[25] Sergot, M.J., et al. “The British Nationality Act as a Logic Program”.
Communications of the ACM. 29(5), 370-386. (1986).

[26] Wang, M., Y-C. Chang, and S. Padmanabhan. “Supporting Efficient
Parametric Search of E-Commerce Data: a Loosely Coupled Solution”.
In Proceedings of the 8th International Conference on Extending
Database Technology (EDBT 2002). Prague, Czech Republic. Lecture
Notes in Computer Science 2287. Springer. 409-426. (2002).

[27] Weigand, H., and W. Hasselbring. “An Extensible Business
Communication Language”. International Journal of Cooperative
Information Systems. 10(4), 44-56. (2001).

8 Author Biographies

Alan S. Abrahams is a lecturer in Operations and Information Management at the Wharton School,
University of Pennsylvania. Prior to this, he worked as a postdoctoral Research Associate at the
University of Cambridge Computer Laboratory. His research interests are contract-driven
application development and control, and agent simulation. He holds a PhD from the University of
Cambridge, and a Bachelor of Business Science from the University of Cape Town.

David M. Eyers is currently a researcher at the University of Cambridge Computer Laboratory and a
member of King’s College. He is primarily working on policy-driven distributed access control
systems. By the end of 2004, his work focus will shift to a direct involvement with the development
of the CamPACE software system. A British EPSRC grant will support this development in
collaboration with the Wharton School at the University of Pennsylvania.

Jean M. Bacon leads the Opera research group at the University of Cambridge Computer
Laboratory, and is a Reader in Distributed Systems and Fellow of Jesus College Cambridge. She is
author of Concurrent Systems and, with Tim Harris, Operating Systems: Concurrent and distributed
software design published by Addison-Wesley. She is also Editor in Chief of the IEEE Computer
Society's Distributed Systems Online (DS Online); see http://dsonline.computer.org. Her current
research interests include role-based access control, business contracts, event-based middleware, and
policy.

