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Abstract

One good quantitative means of gauging research progress is through like-for-
like comparative evaluation of software implementations and algorithms.
However, a notable omission from the work in the new field of electronic
contracting, is a standard means of evaluating performance of the components
used for contract consistency-checking and monitoring, against earlier
approaches.  In this paper we propose a benchmark for assessing the efficiency
of such components.  We define a replicable experimental framework and use it
to test a basic but expressive contract assessment prototype, EDEE.  EDEE’s
execution metrics set the bar for other contract assessment approaches.  We hope
that this experimental framework will stimulate researchers in the e-contracting
community to develop competing data models and algorithms and raise the bar
for time and space efficiency of contract checking and monitoring software.

1 Introduction

There has been much recent work on electronic contracting, but we are not
aware of any research that evaluates contract-checking efficiency on meaningful
tasks.  If the state of the art in this field is to advance, objective means are
required of assessing the performance of competing implementations on a
standard problem set of reasonable complexity.

This paper begins with an overview of related work in e-contracting
(Section 2), highlighting the absence of a yardstick for quantitative comparison.
Section 3 then sets out the experimental framework we propose for
benchmarking in the community.  In Section 4, we record the performance of

our own implementation, EDEE, using the proposed testing methodology.   We
conclude with a set of opportunities for improvement in our architecture, and
research challenges for the field as a whole.

2 Related Work

Past research in general rule-based performance assessment (§2.1) and in
e-contracting (§2.2) pertains:

2.1 General Performance Assessment Benchmarks

Performance benchmarks from the fields of event monitoring, active databases,
view containment-checking, and expert systems are not appropriate for
e-contracting environments, since these approaches do not express conflicts and
violations, and do not keep event histories that are essential for contract-
checking purposes.

E-contracting environments would under-perform against existing event
monitoring and active database systems (e.g. [4, 8, 10, 21]) which monitor for
low-level system and database events.  The most efficient event-monitoring
approaches may detect up to 600 events per second against 6 million
subscriptions held in RAM [10].  Such approaches treat events as transient, held
briefly in memory rather than stored in a database, with rudimentary event types
[1, p18], and event attributes being simple string values only.  Event monitors
are less expressive than expert systems approaches, which perform slowly as
they indulge in more complex inferencing.

In the database view literature, the MiniCon containment-checking
algorithm – demonstrably more scalable than the Bucket and Inverse-Rules
approaches [23] – is able to check a query against 1000 views (named queries)
in less than one second.  MiniCon is targeted at the data integration problem, and
rewrites queries in terms of a maximal union of conjunctive queries over
available views.  Though it could be relevant, it has not been applied to the
challenge of contract consistency-checking.

Expert system benchmarks use artificial intelligence problems with small,
static rule sets.  Typical commercial rule engines (e.g. [5, 13]) use tests such as
the NASA Monkeys & Bananas example as their benchmark.  ILOG claims to
solve this problem in less than 10 minutes [13].  Problems mentioned in the
academic expert systems literature include finding optimal seating arrangements
for guests at a dinner party (‘Manners’ benchmark), labelling lines for simple
scenes (‘Waltz’), designing computer chip circuitry (‘Weaver’), or determining
the lowest-cost route plan for an aeroplane (‘ARP’) [7].  The basic ‘Manners’



benchmark uses only 8 rules, while the ‘Waltz’ benchmark uses 33 rules.  The
most complex of the benchmarks, ‘Weaver’, uses 1831 facts and 637 rules; it
compiles to a rigid constraint network in 2-3 hours and executes in just over 11
minutes.  Commercial contract evaluation scenarios, with large numbers of
dynamic and conflicting rules cannot be meaningfully assessed against these
fixed object-pattern matching application benchmarks, which bear scant relation
to workflow scenarios.  For contract monitoring and checking, both object-
pattern (check if item is covered by a provision) and dynamic pattern-pattern
matching (check if provisions overlap) are required.  In commercial trade
environments, occurrences must be assessed against a large and periodically
changing number of applicable provisions, and in the light of complex historical
circumstances.

2.2 E-Contracting

A multitude of electronic contracting approaches exist: (e.g. [6, 9, 11, 12, 14 -
20, 22, 24, 27] - see [1] for a detailed review of these and others).  However,
most of these approaches cannot express or detect conflicting provisions, and
many cannot monitor for contract violations.  Furthermore, none of these
existing approaches specify metrics for assessing the efficiency of contract
consistency-checking and monitoring.  Previous contract assessment work has
been based on small, single contracts.  Lee and co-workers [6] have
implemented a Petri-Net-based trade procedure executor, whilst Daskalopulu
and colleagues [9] provide a finite-state-machine-based conceptual framework
for assessment of a small number of obligations (i.e. 2 or 3).  Previous work has
focused on developing small-scale conceptual solutions to the problem, rather
than on studying actual performance of implementations.  In the field of legal
expert systems, Sergot et al [138], using the relatively limited computing
resources available at the time, showed in Prolog that the citizenship of an
individual could be determined on the basis of approximately 500 rules of
legislation.  Performance figures were not provided.  We are not aware of any
experimental studies of algorithms for ascertaining contract status or for
determining the implications of business occurrences on contract consistency
during workflow execution.  We believe our evaluation framework (§3) is a
significant contribution that fills a void in previous work on this topic.

3 Experimental Framework

An experimental framework for e-contract checking should begin with a
practical, albeit stylized, example.  Take the following trace of a realistic
contracting and operational scenario:

Scenario A:
Provision 1: SkyHi is obliged to pay Steelmans

$25,000.
Provision 2: Payments of more than $10,000 to a

supplier are prohibited.
Fact 1: Steelmans is a supplier.
Fact 2: SkyHi pays Steelmans $25,000.

In terms of contract checking, an effective component should quickly notice
that the obligation in Provision 1 conflicts with the prohibition in Provision 2
(though this conflict only becomes evident when Fact 1 comes to light).
Regarding contract monitoring, the component should rapidly flag that Fact 2
violates the prohibition in Provision 2 (and, simultaneously, fulfils the obligation
in Provision 1).  At a minimum, e-contracting software should have the
expressiveness to assess (check and monitor) Scenario A above.  Taking this as
our basis for understanding contract assessment, let us now investigate an
experimental setup that will exercise e-contract monitoring approaches.  The
methodology and metrics used are as follows:

3.1 Methodology

Our intention is to exercise conflict detectors and violation monitors quite
strenuously by generating a scenario set containing hundreds of intermingled
variants of the provisions and facts (and hence conflicts and violations)
in Scenario A above.  We make use of a biased quasi-random provision,
occurrence (i.e. fact), and entity generator in order to achieve this; this creates an
interesting mix of provisions, and a good spread of occurrence and entity types,
with some common types predominating, as would be expected in real business
scenarios.  The randomizer ensures that:

Approximately 50% of provisions are obligations, and 50% are prohibitions.
Obligations are generated following a general schema for obligations and
prohibitions.  That is, obligations are “to (some occurrence) (some
amount) to (some participant)” (an instance of this schema would
be the obligation in Provision 1 above: “to pay $25,000 to



Steelmans”).  Similarly, prohibitions are constructed following the template
“against (more-than/less-than) (some amount) (some
role) to (some role)”, which builds instances like the prohibition in
Provision 2 above: “against more-than $10,000 paid to a
supplier”.  Approximately 50% of comparisons are more-than and 50%
are less-than.

Approximately 20% of workflow occurrences (i.e. facts) are one of 2 types
(being_supplier as in Fact 1 above, and paying as in Fact 2 above),
20% of occurrences are of 4 types, a further 20% of occurrence are one of 4
additional types, another 20% of occurrences are also one of 4 further types, and
the final 20% of occurrences are one of a million types.

Approximately 20% of participants are one of 2 individuals (SkyHi and
Steelmans from Scenario A above), 20% of participants are one of 4
individuals, a further 20% of participants are one of 4 additional individuals,
another 20% of participants are also one of 4 further individuals, and the final
20% of participants are one of a million individuals.

Numbers (amounts) are arbitrarily chosen floating-point numbers,
between 0 and 1,000,000.

3.2 Metrics

For our experiments we need to record:
Time

We need to record both the time taken to insert and conflict-check
provisions in seconds, and the time taken to insert and monitor
occurrences, in seconds.  Varying occurrence-insertion batch sizes (e.g.
batch-size 1 vs. batch-size 50) could be measured.

Space
We need to determine the space used by the contract assessment engine
for storing provisions and occurrences, recorded as size-on-disk in
megabytes.

Conflicts
We should note the number of conflicts detected between individual
obligations and prohibitions.  This is used to show that the assessment
engine is effective (and not only time and space efficient).

4 Tests and Results

Our contract consistency checking and monitoring prototype is called EDEE.
EDEE’s implementation and architecture are detailed in our earlier work [1, 2].

Contractual provisions are appendable on a provision-by-provision basis, to
support a fine granularity of update.  A coverage-checking component [3] looks
for conflicting contractual provisions (contract checking) and flags violations
(contract monitoring).  Following is the exact hardware and software
configuration employed, and the results of our tests.

4.1 Experimental Setup: Hardware and Software

Our algorithm was implemented in Java, and we undertook multiple runs on
diverse platforms.  Table 1 provides the detailed hardware and software
specifications of the machines used for our tests.

Machine Name Operating
System

Database Java CPU(s) Memory

Teme Windows
2000 Pro

Microsoft
Access 2000

1.3.0 800 Mhz
AMD Athlon

256 MB

Citadel Windows XP
Pro

Microsoft
Access 2002

1.4.0
(_01)

500 Mhz
Pentium III

256 MB

Jetset Windows
2000

Microsoft
Access 2000

1.3.1 500 Mhz
Pentium III

256 MB

All Windows platforms employed Sun’s JDBC-ODBC driver, included with their respective Java
distributions.
Flute Red Hat

Linux 7.2
PostgreSQL
7.2.1

1.4.0
(_01)

1.4 Ghz
AMD Athlon

512 MB

hot-spare-00
(elbe)

Red Hat
Linux 7.1

PostgreSQL
7.0.3

1.4.0
(_01)

2 x 1.4 Ghz
AMD Athlon

2.5 GB

hot-spare-01
(nidd)

Red Hat
Linux 7.1

PostgreSQL
7.0.3

1.4.0
(_01)

2 x 1.4 Ghz
AMD Athlon

512 MB

hot-spare-02
(loire)

Red Hat
Linux 7.2

PostgreSQL
7.2.1

1.4.0
(_01)

2 x 1.4 Ghz
AMD Athlon

882 MB

hot-spare-03 (lyd) Red Hat
Linux 7.1

PostgreSQL
7.0.3

1.4.0
(_01)

1.4 Ghz
AMD Athlon

878 MB

Gargantubrain Red Hat
Linux 7.1

PostgreSQL
7.1.3-3

1.4.1
beta

4 x 800 Mhz
Itanium

16 GB

All Unix platforms employed the Postgres JDBC driver that is included with the PostgreSQL 7.1
distribution.

Table 1: Specifications of machines used for experiments



The same seed was used to propagate the random generator (§3.1) in all
cases, aside from the tests on the machines citadel and jetset where a
different seed was used for variety.  For researchers wishing to replicate the
experiments and do a comparison to their own work, the EDEE source code and
parameters used for the experiments, and the detailed results from EDEE
execution on our platforms, can be obtained from http://www.cl.cam.ac.uk/~asa28/.

4.2 Raw Results

Following is a synopsis of EDEE’s results, using the metrics proposed in Section
3.2 (see also [1]):

Time
Figure 1 gives the average time in seconds per provision.  All results here
pertain to a batch-size of 1.  Figure 2 shows the average time to input
occurrences, as the number of provisions varies, for the best-performing
machine, teme.  Figure 3 shows the average time to insert occurrences
with 251 stored provisions, comparing batch-size 1 to batch-size 50.

Space
We periodically recorded size-on-disk for the Microsoft Access databases
and found: 0.25MB for an empty database, 0.5MB for 10 provisions and
10 occurrences, and 95MB for 351 provisions and 200 occurrences.

Conflicts
Figure 4 shows the total conflicts detected as the number of provisions
and occurrences vary.

4.3 Analysis of Results

We have shown for the first time that contract performance assessment and
dynamic validation is viable on medium-scale problems with hundreds of
provisions, small event histories, and a high proportion of run-time conflicts.
Figure 4 shows that EDEE successfully detects provisions coming into conflict
with each other at run-time as new occurrences are added.

On the best performing machine, teme, it took an average of 280 seconds
(almost 5 minutes) to individually insert and coverage-check a provision, when
there were 351 provisions in the database.  Similarly, it took an average of 136
seconds (just over 2 minutes) to insert and coverage-check an occurrence, for
351 provisions and 500 stored occurrences.  For less-conflicting sets of
provisions, performance is likely to be substantially better than this, as the main
overhead is the storage of overlap relations between provisions.

As expected, Figure 3 demonstrates that large batch sizes improve
performance, though this leads to a lag in the detection of conflicts, when
compared to coverage-checking of each provision or occurrence individually.

5 Conclusion

The eventual goal for e-contracting engines should be to assess tens of thousands
of occurrences against thousands of provisions within milliseconds.  Clearly the
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current EDEE implementation is a long way from this target.  However, we see
significant opportunities for improving EDEE’s performance on contract
assessment tasks.  Firstly, implementation of a native active database layer

within the database kernel should yield significantly better performance, and
will need to be examined.  Mechanisms for reducing the storage space
requirement for overlap relations between provisions should be investigated.  A
possibility is to tag transitively related data with sequence numbers as the data is
added to the database; this would allow faster determination of transitive
closure.  We will need to reconsider the triple store (vertical schema) used by
EDEE [1, 2, 3], in search of a more efficient implementation with appropriate
data structures.  Alternatively, special-purpose optimizations to relational
database query planners, such as those recently suggested by Wang, Chang, and
Padmanabhan for vertical schemas, could potentially reduce query execution
time by up to 80% [26].  Further development of EDEE – to improve its
efficiency and user interface – is being pursued under the new name, CamPACE
(Cambridge Policy Analysis and Checking Environment).  We have recently
reimplemented EDEE’s conflict-checker for CamPACE, using a combination of
Prolog and C#, instead of Java, to capture and enforce the conflict detection
rules.  The new implementation achieves a 60-fold performance improvement
over the original.  Full source code of both our Java (EDEE) and C#/Prolog
(CamPACE) benchmark implementations are freely available at:
http://www.cl.cam.ac.uk/~asa28/

As a final remark, our hope is that other implementers of e-contracting
engines will rise to the challenge of building software capable of representing
and checking the practical scenario and experimental framework of Section 3.
The community can then objectively assess software against the benchmark set
by the initial EDEE prototype.
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