
An Event-Based Paradigm for E-commerce
Application Specification and Execution

Alan S. Abrahams*, David M. Eyers†, and Jean M. Bacon†

* Department of Operations and Information Management,
The Wharton School, University of Pennsylvania

500 Jon M. Huntsman Hall, Philadelphia, PA 19104-6340, USA
† University of Cambridge Computer Laboratory, William Gates Building,

15 JJ Thomson Avenue, Cambridge, CB3 0FD, United Kingdom
asa28@wharton.upenn.edu, {David.Eyers, Jean.Bacon}@cl.cam.ac.uk

Abstract

This paper describes a new approach to e-commerce application development
which forsakes the traditional conceptual notions of object-orientation and
exploits instead a purist event-centric approach that is felt to promote easier
maintenance and implementation of specifications (policy). The core concepts
of the event-centric approach are described, and the approach is compared to
object-orientation as well as to existing event-based and policy-based
mechanisms. E-commerce examples are provided.

1 Introduction

Business users need to be able to specify policy (specifications, processes,
practices, rules, requirements, standards, and laws) in an intuitive and
understandable form. They must be able to read and manage distributed and
diverse business policies. Currently, policies are intermingled between object-
oriented code (e.g. Java, C++, Smalltalk) and data access languages (e.g. SQL,
OQL). Policies (business rules) are hidden and implicit in code and are
haphazardly distributed. This makes it difficult to extract, view, and maintain
business rules [4, 10]. Traditional object-oriented and procedural approaches to
developing applications separate specifications (policies) from code; this may
lead to inconsistencies. Peter Coad1 comments that maintaining system
requirements and source code in synchronization could ‘change the very nature
of software development’. Conventional approaches for this, including those of

1 Quoted at http://www.togethersoft.com/. 1 September 2000.

Coad’s TogetherSoft, involve object-oriented code generation. We believe this
is sub-optimal. Instead we propose a purely event-based paradigm which does
not separate specifications (policy) from code.

We are developing a purely event-based architecture to facilitate the
executable specification of e-commerce applications. In our approach,
specifications (policies) are decomposed into events which, like operational
events, are stored and animated in an event store. In Section 2 we define the
notion of events; in Section 3 the types of events are explained. Section 4
compares the purist event-oriented approach to the object-oriented paradigm.
Sections 5 and 6 provide guidance on exposing events and temporal
relationships between events in English specifications. The interrelationship
between events and policy is described in Section 7. We conclude with a
comparison to related work and a summary of the benefits of the purist event-
centric paradigm.

2 Events

The event-centric paradigm treats events as the primary abstraction. Events are
regarded as any occurrence, process, wilful action or activity, or state, and can
be identified, inter alia, from verbs2. Events may have parameters such as time
or interval of occurrence and place (location), and events must relate to
referents, which participate in the event. Referents are simply concepts denoted
(or denotable) by a unique identifier, and may be entities (e.g. things, places, or
roles) or may be other events. Referents are participants in the event and can
be bound to the event in a finite set of roles. For example, the sentence ‘John
purchases sweets’ can be represented in a purist event-centric language as ‘one
referent named John participates as purchaser (role) in an event classified as a
purchase, with one or more referents classified as sweets participating as the
purchased items (role)’. Naming and classification events will be describe in
further detail later. Events may take other events as participants, in which case
one event is said to subordinate another. For example ‘authorisation to read the

2 Although events are referred to by verb name for convenience throughout this
document, events are more accurately referred to by verb sense identifiers as any
given verb (i.e. word or symbol) may have multiple senses (i.e. meanings). Verb
senses can often be identified via consultation of a lexicon such as WordNet
(http://www.cogsci.princeton.edu/~wn/) - an approach demonstrated in COLOR-X
[5]. Event occurrences (i.e. referents that are events) are actually instances of
event types (verb senses), just as activity-occurrences are instances of activities
as in the Process Specification Language (PSL) specification [17].

file’ comprises an ‘authorise’ event which subordinates a ‘read’ event. Events
may also be linked to ‘start’, ‘suspend’, ‘resume’, and ‘stop’ events.

Linguists have traditionally described participants in events in terms of
semantic or thematic roles (participant types) such as agent (undertakes the
event), patient (undergoes the event), instrument (the means used to achieve the
event), and beneficiary (directly benefits from the event). While thematic roles
are often helpful and are commonly used [1, 9, 16, 20, 21], they have been
criticized as the thematic role of a participant in an event may be difficult to
determine or ambiguous [7]. We therefore supplement thematic roles with
domain-specific roles. For instance, in ‘John buys from Walmart’ it is unclear
whether John or Walmart is the agent because both are active parties: John
undertakes the buying but Walmart undertakes the selling3. In this case using
the domain-specific roles ‘buyer’ and ‘seller’ is preferable to using the thematic
role ‘agent’ which is ambiguous. Domain-specific roles (such as buyer, lessor,
lessee, participant, analyst) can usually4 be constructed in English through
appropriate suffixes such as -er, –or, -ee, -ed, -ant, -ist, or -yst appended to the
verb5.

3 Types of Events

Various types of events can be identified. These can broadly be classified as
descriptive, prescriptive, factual, or assumptive events. These are explained in
the following sections.

3.1 Descriptive events: Classification and Naming Events

Descriptive events (descriptions) are declarative in nature and include
classification and naming events. Naming is a common event which recurs
frequently in specifications. Proper nouns, which name a specific referent,
imply naming events. The basic form of a naming event is:

[referent] is named [symbol/name]

3 ‘Buy’ and ‘sell’ are lexical doublets that refer to the same event. ‘Lexical
doublets’ is a term adopted from [9] that describe different lexicalisations of the
same event as viewed from different perspectives. Another example of lexical
doublets is ‘lend’ and ‘borrow’.
4 In the case of irregular verbs these rules for denoting roles cannot be used but
the role name can nevertheless be easily found in a lexicon.
5 Or more accurately, to verbal lexicalisations of the event.

Referents which are similar in some respect may be grouped by
classification (categorization) events. Classification events allow us to:

 create classification hierarchies. For example, “A customer is a
person” means “A referent classified as a customer must be classified
as a person”.

 create sets or named groups of referents. These classifications
associate a name with items that comply with a description or set of
criteria. For example:

Name: Wealthy Londoners
 are classified as
Description: People with yearly income > £100k per year and telephone
number beginning with 0207 or 0208.6

The party making the classification is implicit but may become relevant
when diverse schemas need to be federated. The basic form of a classification
event is:

[referents] are classified as
[type/kind/class/classification/category7]

Referents may be multiply typed (classified) and types (classification
events) may be mutually exclusive. Many events are followed by classification
events that classify the referent as being in a certain state – for example an
‘approve’ event may change an application from being classified as ‘pending’ to
being classified as ‘approved’. More complex forms of classification event also
exist. For example, classification of something as ‘able’, ‘ready’, ‘the same as’,
‘different from’, or ‘a member of’ is often with respect to some other
(extensionally or intensionally defined) referents. The form of such complex
classification events is:

[referents] are classified as
able-to/ready-to/the-same-as/different-from/a-
member-of/etc.
[referent(s)]

6 This definition would more appropriately be atomized into separate definitions
for ‘wealthy’ and ‘Londoner’. Also, more accurately, wealth is relative to some
subjective benchmark.
7 Type (synonyms: kind/class/category) is a semantic role peculiar to
classification events.

Type-determination in the event-centric paradigm is supported through the
triggering of a classification event when a relevant composite event is detected.
In the event-centric development paradigm, the type of a concept is determined
by events which the (extensionally or intensionally) identified referents have
enacted or could enact (as willing actors or controlled instruments) or to which
they have been, or could be, subject (as voluntary or involuntary patients). So,
the event-centric paradigm supports at least two modes of type determination:

1. Type determination based on operational event-history.
2. Type determination based on pattern of permissible future invocations

(derivable from normative8 event history).

The behaviour of the type – its reaction to events – is determined by what
events must or can be inserted into the event store (or what external operations
must or can be invoked) for referents of that type. Events themselves are typed:
typing of events can be achieved by linking the event to one or more
classification events.

3.2 Prescriptive Events: Constraints and Prescriptions

Prescriptive events (constraints and prescriptions) are implemented using
constraining quantification events, imperative normative events and declarative
modal events.

Quantification events may specify or constrain the number of referents that
participate in an event. For example ‘Students may study up to 4 courses’
specifies that ‘in an event classified as studying, in which students participate as
the actors, a maximum of 4 referents may participate as patient of the event for
any given student’. Quantification events may specify exact quantities or upper
or lower bounds (ranges or intervals). These may be directly specified (e.g. ‘4’)
or run-time determinable (e.g. ‘the course-load limit’). Care must be taken to
distinguish between collective (‘the five lecturers together teach ten courses’)
and distributive (‘the five lecturers each teach ten courses’) readings of the
sentence to avoid ambiguity.

The closed set of normative events we provide includes authorise, forbid,
and oblige9. In all cases of permission, obligation, and forbiddance, the system
may prevent violations, or may detect and act upon violations. Authorisations

8 Normative events are defined in Section 3.2.
9 ‘Authorise’ is synonymous with ‘permit’ and ‘allow’; ‘forbid’ is synonymous
with ‘prohibit’ and ‘disallow’, and ‘oblige’ is synonymous with ‘command’.

(permissions) and forbiddances (prohibitions) associated with a role are the
privileges of the role – e.g. what the referent can do. Obligations (oblige
events) associated with a named role are the responsibilities of the role – e.g.
what the referent must do. Obligations may be immediate or bounded by a start
and/or end -time or -event. Rights are taken in the broad business sense to
include not only legal abilities (powers), but also obligations in the referents
favour (i.e. entitlements). For example, a buyer has the right to receive the
product bought because the seller is obliged to deliver the product bought to the
buyer (i.e. the obligation is in favour of the buyer – the buyer is the beneficiary
of the obligation). Obligations are imperative in nature. Examples of
obligations in e-commerce include:

 interest and capital repayments on loans: obligation to pay
 sale: obligation of seller to deliver, obligation of buyer to pay

(commitment to expenditure)
 lease payments: obligation to pay
 rebates: obligation to give discount when rebate ticket presented
 warranties and guarantees: A warranty (or warrant or guarantee) can be

generalized as a contingent obligation: that is, an obligation that arises
(i.e. is triggered) upon occurrence of certain events (contingencies).
Warranties and guarantees generally have a lifespan. Examples of
warranties are:

o A 5-year product warranty may trigger an obligation to repair
at no charge if the product is damaged during normal use
within 5-years from the date of purchase (i.e. while it is ‘under
guarantee’).

o A profit warranty, as part of a share sale transaction, warrants
specified profits during a certain financial period and the
amount of the purchase consideration is contingent on those
profits being achieved.

 pension obligations: obligation to pay regularly after retirement
 accrual of entitlements by employees, customers, or suppliers: for

example, obligation to pay employees outstanding leave pay within 30
days of date of resignation from the firm

 obtaining qualifications: A referent may be obliged to fulfill specific
requirements in order to obtain a qualification.

Obligations, like other events, are often contingent: they (i.e. ‘oblige’
events) may be triggered by some uncertain future events. Contingent

obligations in business practice rules may, along with other financial events, be
used in the construction of financial statements.

Modal events allow the formulation of descriptive (declarative) rules which
describe the capabilities of referents as well as what is possible in the current
domain or environment. The closed set of modal events provided includes
‘classify as able to’ and ‘classify as possible’.

3.3 Factual Events

Factual events are events that have occurred or are certain to occur10. Factual
events include user-interface events as well as business events. Business events
include contractual events which entail the incurrence of rights and
responsibilities, as well as workflow events which entail the fulfilment of
responsibilities or the uptake of opportunities. Examples of common factual
events in e-commerce applications are illustrated in Table 1.

Event Category Examples of events (Verb lexicalization | Deverbative
noun11 lexicalization)

User-
interface

HTML: Clicks | Click, Selects | Selection, Enters | Entry,
Submits | Submission, Displays | Display
HTTP: Requests | Request, Responds | Response,
SMTP (email): Queues, Sends, Receives

Contractual Buys | Purchase, Leases | Lease, Rents | Rental, Insures |
Insurance, Subscribes | SubscriptionFa

ct
ua

l

Workflow Charges | Charge, Pays | Payment, Fulfils | Fulfilment,
Registers | Registration, Signs | Signature, Verifies |
Verification, Validates | Validation, Approves | Approval,
Rejects | Rejection

Table 1: Examples of common factual events in e-commerce applications

Contractual events (contracts) deserve further explanation. Contracts are
comprised of descriptive and prescriptive events. E-commerce contracts
incorporate definitions (descriptive events) and rights and responsibilities
(prescriptive events), and set forth the obligations, authorizations, and legal
powers of the parties to the contract. The parties to the contractual event fill

10 As for all events, the occurrence of the event, must be distinguished from the
act of capturing the event.
11 Deverbative nouns are explained in 5.1

named roles, which describe the nature of their participation in the event and
may be used to refer to the parties for convenience. Rights are authorisations,
legal abilities (powers), and obligations in a party's favour. Responsibilities are
obligations that a party has incurred or forbiddances that it is subject to. For
example the legal implications of ‘buyer purchases goods from seller’ are:

• Buyer is legally obliged to pay for goods (e.g. within x days)
• Seller is obliged to deliver goods (e.g. within x days of payment)
• Buyer owns goods upon payment. Seller no longer owns goods at that

stage. (‘Owns’ is a stative event12.)
Here we see that:
• The primary roles in the event are ‘buyer’, ‘purchased items’, and

‘seller’.
• The main responsibilities represented are: that of the buyer to pay and

of the seller to deliver, contingent upon payment.
• The rights are: of the seller to receive payment, of the buyer to receive

goods contingent upon payment, and of the buyer to be regarded as
owner contingent upon payment.

Contracts come into force when the terms (i.e. rules) of the contract are
agreed to (upon legal agreement13 events).

3.4 Assumptive Events

Assumptive events are events that might not actually have occurred, but are
assumed to have occurred or are anticipated to occur in the future. Assumptive
events are so named as they are subordinated to ‘assume’ or ‘predict’ events or
the like. In stable, non-random environments assumptive events may be
predicted using probability theory. Traditional event service have been
hamstrung by the need to either block for delayed events (synchronous
consumption), or to continue - perhaps after a short timeout - by ignoring
possible delayed events (asynchronous consumption) [19]. The former course of
action impedes performance whilst the latter leads to blind reactions that
recklessly disregard past experience. Assumptive events are useful when rapid,
semi-informed action is preferred, as they allow the event monitoring service to
act quickly upon likely events. It is important that any reactions undertaken be

12 Stative events are described later, in Section 4.
13 Note that agreements are not necessarily legal agreements, so we have
explicitly qualified ‘agreements’ as ‘legal agreements’.

reversible though as the assumption may prove to be invalid and backtracking
may later be required. Figure 1 illustrates the difference between a traditional
event monitor14 and the novel notion of a probabilistic event predictor, which
fires ‘predict’, ‘assume’, ‘anticipate’, or ‘expect’ events.

Figure 1: Traditional event monitors (left) await actual occurrences before
firing composite events. Event predictors (right) may project and fire

assumptive events which in turn may trigger composite events

Table 2 below summarizes the common events that occur in policy
(business rule) specifications and in operational environments.

Event (Active verb) Name (Deverbative noun)
Descriptive (Describes)
Names Naming
Classifies Classification
Prescriptive (Prescribes)
Quantify Quantification
Permits, Allows,
Authorizes

Permission, Authorization
(Powers)

Obliges Obligation

Policy-related
Events (Events in
Business Rules)

Forbids, Prohibits,
Denies

Forbiddance
(Negative Authorization)

Rights and
responsibilities

Occurs, Happens Occurrence
Captures, Records Capture, Record

Operational
Events (Factual
and Assumptive) Predicts, Assumes,

Anticipates, Expects
Prediction, Assumption, Anticipation,
Expectation

Table 2: Common policy-related and operational events

14 Traditional event monitors are described in Section 8 (Related Work).

4 Event-Centric vs Object-Oriented

The event-centric approach does not make use of the traditional object-oriented
notion of objects having attributes, (which determine their state) and methods
(which describe their behaviour). Instead, uniquely identified referents replace
the notion of objects. Referents may be role-players in events such as
classification events (specifying the type of the referent), normative events
(specifying what the referent can and must do), and others. State is determined
by the currently applicable event bindings to a referent. Constraints on state
transitions are modelled as conditional forbiddances on classifications. Because
events lead to (reversible or irreversible) states, State Transition Diagrams can
be automatically generated from event models [5]. Traditionally some states are
hard to name; the event-centric paradigm alleviates this as a state can be
described in terms of the previous events that the referent has participated in,
much as is done in natural language through the use of that-, who- and which-
clauses. In the specification ‘only registered and approved customers can buy
goods’ the policy can be interpreted as ‘customers who have participated in a
register event and an approve event – but not participated in any events that
might reverse the registration or approval – are permitted to buy goods’.
Behaviour of a referent is determined by the ability to, authorization to, or
obligation to:

• insert new events bound to the referent into actionable queues when
composite events are detected, or

• invoke external operations.

These abilities, authorizations and obligations are the capabilities and
responsibilities of the referent, respectively. All conceptual notions traditionally
associated with static object models, such as classes and relations, are discarded
in favour of modelling these concepts as events. This permits the conceptual
model (traditionally considered as static) to be dynamic and queryable as events
can be added to and read from the event store at any time. The object-oriented
notion of classes can be modelled in the event paradigm through classification
events which determine the class to which the referent belongs. The referent
may be reclassified multiple times during its lifetime and (arbitrarily complex
patterns of) classification events may be mutually exclusive to allow the
implementation of disjoint types. The object-oriented notion of relations can be
modelled in the event paradigm simply through events, because participants in
events are naturally related by the event occurrence itself. For example, in
‘customers can purchase goods from companies’, we have referents classified as

customers potentially related to referents classified as goods and companies
through ‘purchase’ events. Part-of (aggregation) relations in object-oriented
notations are modelled through stative events like ‘has’, ‘owns’, ‘possesses’,
‘contains’, ‘includes’, ‘excludes’, and ‘involves’. Stative events differ from
active events in that stative events do not involve activity, but rather refer to a
current state-of-being.

5 Exposing events in English specifications

Events may be exposed from verbs in English specifications. However, verbs
are not the only lexicalisations of events, and events may be lexicalised, inter
alia, as deverbative nouns, modals, adjectives, nouns, and cardinals. This
section describes some basic techniques for exposing events in English
specifications of e-commerce applications.

5.1 Events exposed by deverbative nouns

Deverbative nouns are noun forms of verbs, and imply the existence of the event
corresponding with that verb. Deverbative nouns can be detected in English
specifications through indicative suffixes (such as -ion, -ment, -ent, -ure, -ance,
-ence, -ancy, -ency, -ing, -ness, -al, or -y). For example: subscription
implies a subscribe event, government may imply a govern event,
failure implies a fails event, and approval implies an approves
event.

5.2 Events exposed by modals

Modals (e.g. modal auxiliaries and suffixes) indicate the existence of modal or
normative events. In English, modal auxiliaries include lexical items like ‘can’,
‘must’, ‘have to’, ‘should’, and ‘will’. Certain suffixes (e.g. -able and -ible) are
also normative or modal. For example, one (normative) sense of ‘readable’
implies ‘[actor] authorises to read’; for ‘interruptible’ there is an implied
‘[actor] authorises to interrupt’. Another (modal classification) sense of
‘readable’ is ‘[actor] is classified as able to be read [patient]’ or
‘reading of [patient] by [actor] is classified as possible’. ‘Payable’
may imply that a referent is obliged to pay; e.g. ‘the account is payable’
means ‘the account holder is obliged to pay the account’.

Table 3 below illustrates how the common semantics of the English modals
can be defined in terms of the prescriptive (normative or modal classification

events) events defined in Section 3.2, or in terms of detection and induction.
Note that, in any given sentence, a modal can have one or more semantics: that
is, it is possible for a modal to simultaneously have multiple meanings. This is
why English modals are considered vague. This vagueness can be avoided in
event-centric specifications simply by specifying all the intended semantics of
an occurrence of the modal by, for instance, choosing the relevant normative and
modal classification events from a list.

5.3 Events exposed by nouns and modifiers

Nouns and modifiers - such as adjectives, adverbs, adjectival, and adverbial
phrases - may imply classification or naming events. For example ‘rich (adj.)
staff (n.)’ implies ‘referents classified as staff and rich’. Alternatively, ‘rich’
may be relative to some subjective benchmark that is set for staff: so ‘rich’ staff
may not be as wealthy as ‘rich’ basketball players, since ‘rich’ is used
relativistically in each case.

5.4 Exposing quantification events

Quantification events may be implied by various language features such
as cardinals numbers (e.g. ‘3’) and units of measure (e.g. ‘3 metres’), as well as
words and phrases such as a/one, none, no, some, few, multiple, many, most,
only, at least, at most, and others.

Modal Auxiliary or
Suffix

Possible Event Semantics

Can, May (not) … permits (forbids) … to [event*]
* Note that all events/actions here are possibly

parameterised (i.e. complex events/actions)
 … classifies … as (un)able to [event]
 … classifies [event] as (im)possible

Could, Might … permits … to [event] if …
(i.e. conditional/contingent permission)

 … classifies as able to [event] if …
(i.e. conditional ability)

 … classifies [event] as possible if …
(i.e. conditional possibility)

 past tense of ‘can’
(i.e. denotes permit or classify events that have
occurred before the utterance or usage of the policy)

Must, Shall, Should,
Ought, Will, Has-to /
Have-to, Ensure that,
Needs to

 … obliges … to [event]
 … classifies [event] as necessary
 The system must verify … that [event] has happened

 (i.e. obliged detection)
 The system must deduce … that [event] has happened

 (i.e. obliged induction15)
Should have past tense of ‘must’
Must / May / Shall /
Should / Ought / Will
not

 … forbids … from [event]
 The system must verify that [event] has not

happened
Should, Would … obliges … to [event] if …

(i.e. conditional obligation)
-able, -ible … permits … to [event]

 … obliges … to [event]
Does, is (factual
modality)

 … happens / occurs …

Table 3: Event Semantics of Modal Auxiliaries and Suffixes in English

6 Temporal Relationships Between Event

Traditional event monitors provide a limited set of temporal operators for
detection of the relation in time between events. These operators are used solely
in interrogative mood in event monitors, and aside from the notable exception of
GEM [15], cannot be used for event actuation. Figure 2 illustrates the
difference between an event monitor and an event actuator.

Figure 2: Traditional event monitors (left) provide only events detection.
Sophisticated event actuation capabilities (right) are needed for workflow

applications.

15 Obliged induction relates to necessity (i.e. something that is necessarily true).
This is the ‘NEC’ relationship in COLOR-X [5].

We propose the use of temporal operators in both interrogative and
imperative mood; that is, that they should be used not only for detecting
patterns of events, but also for triggering events in desired patterns, so as to
control system behaviour as well as workflow. In short, temporal operators
should be used to determine - that is detect/ascertain and cause/bring-about -
temporal relationships between events. Table 4 below lists some common
English words for expressing temporal relations between events.

before, prior to,
previous, pre-,
earlier, precedes,
past, in advance of,
former, formerly,
once16, directly
before, already

after, once, upon,
when, whenever,
if, if ever, post-,
then, later,
subsequent,
succeeds, future,
next, directly after,
yet, and

during,
while, when,
on, in, at,
throughout,
and

past, last,
within, next,
passed /
elapsed
as at, until,
up until

ordinals:
first, n-th,
last, n-th
from last

Table 4: Common words (and affixes) for expressing temporal relations
between events

Table 5 demonstrates how tenses in English sentences may determine the
temporal relationships between the event of utterance or usage (interpretation)
of a sentence in a specification, and the events reported in the sentence. Figure
3 illustrates the relationship between a ‘purchase’ event and the utterance event
in ‘I purchased goods’.

Tense Common Implications for Temporal Relations Between
Events

PAST Start of reported event is before utterance/usage
PAST PERFECT Start and end of reported event are before utterance/usage
PRESENT Start of reported event is before utterance/usage. End is

unknown or soon in the future.
PROGRESSIVE Start of reported event is before utterance/usage. End of event

is after utterance/usage.
FUTURE Start of reported event is after utterance/usage

16 ‘Once’ has multiple meanings: Amongst these are ‘at one time in the past’, but
‘once’ can also mean ‘after’ (e.g. ‘once he has submitted the form, notify…’).

Scheduler

Table 5: Tenses and temporal relations between reported events and
utterance/usage events

Figure 3: Relationship between the utterance event and the reported
‘purchase’ event in ‘I purchased goods’ (past tense)

Note that time relations are not the only relationships between events.
Additional operators, such as event-participant and event-parameter matching,
comparison, substitution, and constraint, can be provided to determine – i.e.
ascertain or bring about – other non-time relationships between events.

7 The Interrelationship Between Events and Business Rules

The term ‘business rules’ in synonymous with the term ‘policy’. Policy defines
the system requirements (specifications) and how they are implemented. Policy
describes how items are named and classified in the system (descriptive policy)
and what events can and must be done to items or sets of items (prescriptive
policy). Policies are used to describe how a system should operate [10] and can
therefore be used for requirements specification and animation. Policy-related
events occur across diverse specifications in various application domains and
include those for classification, authorization, forbiddance, and obligation.
Policies have domains (which describes which referents the policy applies to, in
various roles), a modal or normative event (e.g. authorize, oblige, or forbid),
an event subordinated to the modal event, and optional conditions. For
example in ‘Customers can purchase goods if they are registered’:

 the subordinated event is ‘purchase’
 as indicated by the modal ‘can’, the modal (i.e. subordinating or

policy) event is ‘authorize’17

17 ‘Can’ may have other senses aside from authorization (permission) – for
example, it may indicate legal ability (legal power).

 the domains are:
o Referents classified as customers, acting in the ‘authorized’

and ‘purchaser’ roles.
o Referents classified as goods, acting in the ‘purchased’ roles.
o Implicit referents acting in the ‘authorizer’ roles

 the condition (i.e. the circumstance under which the ‘authorize’ event
is triggered) is ‘the aforementioned referents classified as customers
have also participated in a register/registration event’.

The policy can therefore be understood as ‘the participation of referents
classified as customers in a register event leads to the triggering of an
authorization of said referents to participate in a purchase event where referents
classified as goods are purchased’. It is clear that complex access control
policies, more expressive than traditional Access Control Lists (ACLs) can be
specified using this formalism, as can complex obligation policies.

The policy life-cycle can be described in terms of events. [22] explains that
the policy life-cycle consists of: policy definition (creation), policy
transformation (high-level policies transformed into low-level policies), policy
activation, policy monitoring, policy pausing and resumption, policy change or
adaptation, policy enforcement, policy deactivation, and policy deletion. We
supplement these notions with the following additions:

 We distinguish between policy approval events and policy application
events as approval and activation are separate events. The window of
applicability of a policy (i.e. the interval between the policy ‘applying’ and
‘ceasing to apply’) may have an upper and lower bound, each of which may
be delimited by a date-time stamp or an event. For example, a policy may
be applied directly after the approval event of that policy, or application of
the policy may be deferred to a later time or event.

 We term policy transformation as policy elaboration as we feel this is more
descriptive. Policy elaboration involves linking high-level policies (i.e. the
‘what’) to the lower-level policies that enforce or implement that policy (i.e.
the ‘how’). This may occur at multiple levels.

 During monitoring, a policy may be violated or complied with. Actions
may violate or comply with policy, or their status may be unknown if they
have not yet been assessed against policy. When a policy is violated a
violation event is signalled, whose participant is the policy being violated.
A violation may be responded to by the system or by users. The violation
may be resolved or outstanding (unresolved).

Actor (Me)

Purchase Utterance

Time

 We distinguish a number of ways in which a policy may cease to apply (i.e.
be deactivated). For example, policies may lapse or be revoked by an
empowered 3rd party.

 We allow for policies to be grouped into (‘classified as being a member of’)
packets for manageability. If, for instance, a packet is deactivated, all
policies within that packet are regarded as deactivated.

 Support for conflict. If several rules meet their conditions at the same time,
we provide for a determination of the rule with the highest precedence,
which may suppress other conflicting or non-conflicting rules from firing
(i.e. being enforced).

Table 6 below demonstrates the events and states that pertain to the business
rules (policy and packet) life cycle.

Policies or packet events Policy or packet states
Policy or packet created / defined Policy or packet exists (but not yet active)
Policy elaborated
Policy classified as member of
(grouped into / assigned to) packet
Policy or packet changed
e.g. permission transferred
Policy or packet approved
Policy or packet applied / activated.
In the case of permissions this is
referred to as granting.

Policy or packet active / enforced / in force

Policy or packet paused Policy or packet inactive
Policy violated (Creates a violation
event)
Policy or packet resumed
Policy or packet de-applied /
deactivated
Policy or packet deleted

Table 6: Business Rule (Policy and Policy Packet) Events Through the
Business Rule Life Cycle

Table 7 below shows events relating to policy violations.

Violation events Violation states
Trigger violation (Policy violated) Violation outstanding
Respond to violation
Resolve violation Violation resolved

Table 7: Policy Violation Events

Obligations are a special type of policy and certain peculiar events apply to
the life cycle of obligations. These supplementary events, which are
summarized in Table 8 below, are:

 Obligations may arise: that is, be imposed or incurred.
 Obligations may fall due. An obligation that has arisen (as a result of

events) and fallen due (as a result of the passage of time or occurrence
of events) must be satisfied within a certain time or before the ‘due by’
date-time or event, otherwise the obligation is violated.

 An obligation may be settled (i.e. fulfilled, discharged, or complied-
with). The International Accounting Standards Committee Framework
[14] lists a number of business events that may result in the settlement
of an obligation, including: payment of cash, transfer of assets,
provision of services, replacement of the obligation with another
obligation, or conversion of the obligation to equity. An obligation
may cease if it is completely fulfilled or may continue if it has been
partially fulfilled.

 The obligation may cease to apply in a number of ways:
o The obligation may be completely fulfilled (fulfilled in its

entirety).
o The obligation may be extinquished. Again following the

terminology of [14], extinguishment of an obligation may be
via the waiver or forfeiture of rights (obligation waived) by the
obliging party, or by the removal of rights by an empowered
3rd party (obligation cancelled).

o The obligation may lapse or expire as a result of the failure of
another party to fulfill mutual obligations within a given time:
for example, an obligation of a buyer to pay may lapse if the
seller has not fulfilled their obligation to deliver within 15
days of the placement of the order.

o The obligation may be over-ridden by another obligation that
has precedence.

Obligation events
(Contingent) Obligation arises: incurred or imposed
Rights ceded18 (i.e. beneficiary of obligation changed)
(Contingent) Obligation falls due. (Previously-incurred obligation enforced, often
conditional upon circumstances).
Obligation settled / fulfilled / discharged. The obligation will cease if completely
fulfilled, or may continue if partially fulfilled.
Obligation ceases:

 Obligation settled / fulfilled / discharged
 Obligation extinguished

o Obligation waived / Rights forfeited, surrendered,
relinquished or ceded by beneficiary

o Obligation cancelled by empowered 3rd party
 Obligation lapses / expires
 Obligation over-ridden

Table 8: Supplementary Policy Events Through the Life Cycle of
Obligations

As previously mentioned, contracts are named packets of descriptive and
prescriptive events. Certain additional events may apply to contracts which
determine their state and the state of the rules contained within them. Table 9
below summarizes events pertinent to contracts.

Contract events Contract states
Contract created Contract exists
Contract signed
Contract legally agreed to Contract in force / entered
Contract nullified Contract void
Table 9: Supplementary Policy Packet Events Through the Life Cycle of

Contracts

18 ‘Cede’ has two verb senses: the first involves transferring rights, the second
involves only surrendering or waiving rights.

8 Related Work

Existing policy approaches and languages are primarily targeted at system or
network management [8, 22] or access control [3, 11, 12, 13]. The
expressiveness of each approach varies. For example OASIS [11], LaSCO [12],
QCM [13] and PolicyMaker [3] can express only authorization policies, whereas
Ponder [8] can express authorization and obligation policies as well as some
basic descriptive policies through an associated name service. All adopt a
traditional object-oriented framework, above which the policy notation is laid.
COLOR-X [5], though not developed as a policy notation, is a conceptual
modelling framework that incorporates various policy concepts such as the
‘permit’ and ‘must’ modalities. The end-goal of COLOR-X is the generation of
object-oriented code (classes, attributes, and methods) from a conceptual
schema or functional specification, whereas we propose the generation of
various types of events to be stored and animated in an event store.

Similarly, commercial rules engines like Business Rule Solutions Inc's
RuleTrack, Blaze Software's Advisor, Vision Software's Vision JADE, Usoft, and
ILOG Rules adopt an object-oriented or procedural approach. Web application
servers like ATG Dynamo, BEA Weblogic, and Microsoft Site Server 3.0 and
Commerce Server 2000 implement content personalization rules via a
combination of XML (for tagging) and hooks to an existing object model.
Again the rules languages are implemented above object-oriented or procedural
fundamentals.

Most current event monitoring services [2, 6, 15, 18] focus on event
detection and neglect event actuation. GEM [15] has been integrated with the
Ponder policy language, and CEA has been integrated with the OASIS access
control policy language. In both cases, procedural or object-oriented languages
are used as the basis. These event monitoring services allow composite events
to be fired. However, aside from the notable exception of GEM, these event
monitors provide no actuation facilities or operators for triggering structured
patterns of events as would be necessary for workflow management in
e-commerce applications.

Workflow languages, as exemplified by the Process Specification
Language (PSL) specification [17], allow routing policy to be defined but tend
to neglect notions such as those of descriptive events and modalities that are
crucial to coherent policy specification. Our event-based policy language is
sufficiently expressive to model the complex joins and splits provided by
workflow products:
 A join (synchronization, or rendezvous) point involves forbidding the next

(successor) process from starting until the condition (e.g. ‘and’, ‘or’, or

complex condition) has been fulfilled. The successor process is then said to
be ‘released’. Some processes may be required to finish simultaneously, in
which case the end of one process obliges the other process to end. A join
is actually a DETECT-and-CONTROL mini-workflow that occurs
concurrently with some other processes. Detection (monitoring) involves
determining which processes have started or finished.

 A split (selection) point involves selecting and obliging one or more
successor processes to start (perhaps simultaneously), which may involve
forbidding one or more successor processes from starting. A split is
actually a SELECT-and-CONTROL mini-workflow that occurs
concurrently with some other processes.

CONTROL (in the case of DETECT-and-CONTROL and SELECT-
and-CONTROL mini-workflows) involves obliging other processes to start or
finish, authorizing other processes to start or finish, or forbidding other
processes from starting or finishing.

9 Benefits of the Purist Event-Centric Paradigm

As was described in Sections 3.1 and 3.2 above, descriptive and prescriptive
business rules can be modelled as various types of event and stored in an event
store along with operational data (factual events). Data, information and control
can therefore flow and be stored and manipulated as events. For example:

 Data: ‘John earns $100,000 per year’
 Information (Descriptive): ‘User who earn above $100,000 are classified as

wealthy’
 Control (Prescriptive): ‘The system is obliged and authorized to forward

submitted orders from wealthy users19 to the priority despatch clerks’
Specifying the application using events eliminates the separation between

model and code. Instead of storing business rules in database stored-procedures
or triggers, or in application code, rules are stored as events in an event store.
Code is stored in the event store as descriptive and prescriptive events and
executed directly by detecting and firing patterns of events. Aside from basic
operations for creation, modification, removal, copying, and movement of
events, the event store will also provide composite event detection, event firing,
and event correlation services, as well as generic services for sorting and
counting and other aggregate functions. This uniform treatment of business

19 The adjective ‘wealthy’ in ‘wealthy users’ implies a classification event, as
does the noun ‘users’. We are looking for referents classified as ‘wealthy’
(against some benchmark) and ‘users’.

rules and operational data is novel and allows the common event infrastructure
to be used for processing both business rules and operational data. Processes
(process information), data, and metadata can be seamlessly queried, altered, and
managed, using a uniform infrastructure. Code can be easily introspected as it is
merely stored as events; the software is highly reflective. Lastly, code is self-
documenting – a natural language generator can be used to generate sentences
describing each event – and is therefore highly readable and understandable for
successive generations of developers. We therefore believe that the uniform
treatment of business rule events and operational events may have significant
advantages over storing business rules in triggers, stored procedures, or
dispersed through application logic.

10 Conclusions

Policy can be used to specify and implement e-commerce application
requirements. The problem of specifying and managing policy in object-
oriented e-commerce applications is significant. Our solution is to dispel
traditional object-oriented notions and adopt a purist event-centric paradigm.
The advances beyond previous work in policy specification and event-
monitoring systems have been articulated. We have illustrated the practicality of
the solution by describing how events can be exposed from natural language
specifications and managed in an event store. The uniformity of treatment of
descriptive, prescriptive, and operational events in our solution may provide
benefits including readability, manageability, maintainability, and flexibility in
e-commerce application development.

11 Acknowledgements

This research was funded by grants from Microsoft Research Cambridge, the
Cambridge Commonwealth and Australia Trusts, the Overseas Research
Students Scheme (UK), and the University of Cape Town Postgraduate
Scholarships Office.

12 References

[1] Allen J. “Natural Language Understanding: Second Edition”.
Benjamin/Cummings. pp 1-41, 248. (1995).

[2] J. Bacon, J. Bates, R. Hayton and K. Moody. “Using Events to Build
Distributed Applications”. In Proceedings of the ACM SIGOPS
European Workshop. (1996).

[3] Blaze M, Feigenbaum J, and Lacy J. “Decentralized Trust
Management”. In Proceedings of the IEEE Conference on Security
and Privacy. Oakland, CA. (1996).

[4] Blaze Software. Blaze Advisor Technical White Paper. (2000).
[5] Burg JFM and van de Riet RP. “COLOR-X: Object Modeling Profits

from Linguistics”. In Proceedings of the 2nd International Conference
on Building and Sharing of Very Large-Scale Knowledge Bases.
Enschede, Holland. (1995).

[6] Carzaniga A, Rosenblum DS, and Wolf AL. “Design of a Scalable
Event Notification Service: Interface and Architecture”. Technical
Report CU-CS-863-98. Department of Computer Science,
University of Colorado, Boulder. (1998).

[7] Davis T. “Lexical Semantics and Linking in the Hierarchical
Lexicon”. PhD Thesis. Stanford University, Department of
Linguistics, pp 17-69. (1996).

[8] Damianou N, Dulay N, Lupu M, Sloman M. “Ponder: A Language
for Specifying Security and Management Policies for Distributed
Systems. The Language Specification. Version 1.11”. Imperial
Collect Research Report DoC 2000/1. (2000).

[9] Expert Advisory Group on Language Engineering Standards
(EAGLES). “Thematic Roles”. Available at:
http://www.ilc.pi.cnr.it/EAGLES96/synlex/node62.html. (2000).

[10] Goh, C. “A Generic Approach to Policy Description in System
Management”. HP Laboratories Technical Report HPL-97-82.
Bristol. Available from: http://www.hpl.hp.com/techreports/97/HPL-97-
82.pdf. (1997)

[11] Hayton RJ, Bacon JM, Moody K. “Access Control in an Open
Distributed Environment”. Proceedings of the IEEE Symposium on
Security and Privacy. Oakland CA. pp3-14. (1998).

[12] Hoagland JA, Pandey R, Levitt KN. “Specifying and Enforcing
Policies using LaSCO: the Language for Security Constraints on
Objects”. Department of Computer Science, University of
California, Davis. Position Paper at the Policy Workshop, HP
Laboratories, Bristol, UK. (1999).

[13] Kakkar Pankaj, McDougall M, Gunter CA, and Jim T. “Credential
Distribution with Local Autonomy”. Department of Computer and
Information Science. University of Pennsylvania. (1999).

[14] International Accounting Standards Committee. “International
Accounting Standards 1999”. London, United Kingdom. (1999).

[15] Mansouri-Samani M and Sloman M. “GEM: A Generalised Event
Monitoring Language for Distributed Systems”. IEE/IOP/BCS
Distributed Systems Engineering Journal. Vol. 4, No. 2. (1997).

[16] Palmer F. “Grammar”. Penguin Books. (1984).
[17] Schlenoff C, Gruniger M, Tissot F, Valois J, Lubell J, and Lee J.

“The Process Specification Language (PSL) Overview and Version
1.0 Specification”. National Institute of Standards and Technology.
(2000).

[18] Segall B, Arnold D, Boot J, Henderson M, and Phelps T. “Content
Based Routing with Elvin4”. ProceedingsAUUG2K, Canberra,
Australia. (2000).

[19] Schwiderski S. “Monitoring the Behaviour of Distributed Systems”.
PhD Thesis. University of Cambridge Computer Lab. (1996).

[20] SIL International. “Semantic Roles”. Available at:
http://www.sil.org/linguistics/glossary/. (2000).

[21] Sowa JF. “Knowledge Representation: Logical, Philosophical, and
Computational Foundations”. Brooks/Cole. Pacific Grove,
California, USA. (2000).

[22] Wies R. “Using a Classification of Management Policies for Policy
Specification and Policy Transformation”. Proceedings of the
IFIP/IEEE International Symposium on Integrated Network
Management. Santa Barbara, California, USA. (1995).

13 Author Biographies
Alan S. Abrahams is a lecturer in Operations and Information Management at the Wharton School,
University of Pennsylvania. Prior to this, he worked as a postdoctoral Research Associate at the
University of Cambridge Computer Laboratory. His research interests are contract-driven
application development and control, and agent simulation. He holds a PhD from the University of
Cambridge, and a Bachelor of Business Science from the University of Cape Town.

David M. Eyers is currently a researcher at the University of Cambridge Computer Laboratory and a
member of King’s College. He is primarily working on policy-driven distributed access control
systems. By the end of 2004, his work focus will shift to a direct involvement with the development
of the CamPACE software system. A British EPSRC grant will support this development in
collaboration with the Wharton School at the University of Pennsylvania.

Jean M. Bacon leads the Opera research group at the University of Cambridge Computer
Laboratory, and is a Reader in Distributed Systems and Fellow of Jesus College Cambridge. She is
author of Concurrent Systems and, with Tim Harris, Operating Systems: Concurrent and distributed
software design published by Addison-Wesley. She is also Editor in Chief of the IEEE Computer
Society's Distributed Systems Online (DS Online); see http://dsonline.computer.org. Her current
research interests include role-based access control, business contracts, event-based middleware, and
policy.

