
Singh and Bacon

RESEARCH

On middleware for emerging health services
Jatinder Singh* and Jean M Bacon

Abstract

Healthcare concerns have become diverse, ranging from acute and chronic conditions to lifestyle, wellbeing
and the prevention of illness. Increasingly, individuals are taking responsibility for monitoring their own
conditions. Healthcare technologies are increasingly used not only for administration, but also in specialist
treatments and many forms of monitoring, including when a person is mobile. As well as formal interactions
with professional carers and results from specialist procedures, care may involve ad hoc interactions with an
individual’s community. Together, these yield a wealth of data relevant in different contexts. Unfortunately,
many existing healthcare systems are inflexible, single-purpose, and self-contained, so that we cannot fully
realise their potential. We believe that a framework for flexible interoperability of healthcare-relevant
components is crucial, in a time of increasing need from an ageing population.

We present a vision of pervasive, preventative and personalised healthcare. To achieve this we believe that
the application logic embodied in components should be separated from the policy that specifies where and
how they should be used. This may be in ways not contemplated by their original designers. Middleware should
therefore provide a framework that supports not only traditional communication among components but also
dynamic reconfiguration of components in response to circumstances that arise, with the management and
enforcement of high-level policy integrated with the middleware. By this means, functionality for patients,
carers and health administrators can be customised and provided as, when and where required.

This paper explores middleware requirements and challenges arising from technology- and population-driven
developments in healthcare provision. We describe the specific requirements that middleware must address,
and present some practical steps towards addressing these from the initial stages of a middleware (SBUS).

Keywords: healthcare; assisted living; middleware; policy enforcement; dynamic reconfiguration; event-based
systems; pervasive computing; security; privacy; SBUS

1 Introduction
With the world’s ageing population, there is an in-
creased burden on healthcare resources [1]. As such,
there is a global push to improve the efficiencies and
effectiveness of health care services. The goal is to im-
prove patient outcomes, alleviate chronic conditions,
and more generally improve an individual’s quality of
life [2]. This in turn reduces healthcare expenditure, as
there is less reliance on more costly health services [3].

Traditionally, healthcare provision focuses on acute
issues. These are significant, highly symptomatic,
health concerns that often require urgent treatment,
such as a heart attack or stroke. Such incidents are
often serious, greatly impacting a patient’s life, and
consume significant health resources. Health services
are evolving to take a more on-going, preventative ap-

*Correspondence: jatinder.singh@cl.cam.ac.uk

Computer Laboratory

University of Cambridge, UK

Full list of author information is available at the end of the article

proach to care [4]. This involves risk management,
taking active steps to mitigate potential health con-
cerns. These steps can be clinical interventions, such
as medication or periodic diagnostic tests, as well as
lifestyle factors, such as exercise, diet, stress-levels, and
so forth.

Information is the key to improving health and well-
being [5]. Clearly, better informed practitioners give a
better quality of care. Technological advances, such as
sensors and monitoring technologies, means that there
is increasingly more data available than ever before.
The more data that medical professionals have ac-
cess to, for example on a patient’s physiology, lifestyle,
other medical interventions, the more effective advice
and treatment regimes can be. This enables care to
be better customised to the individual and their cir-
cumstances, and also contributes to improving general
care standards by providing input into case-studies,
best practices and medical research.

Singh and Bacon Page 2 of 19

Information is relevant not only to the medical pro-
fessional. An explicit goal of emerging care models is
to empower patients to take control of their health,
well-being and any conditions that they may have [6].
Therefore, as more data becomes available, it is im-
portant for patients, and their care community (e.g.
family members, social carers) to be better informed,
since more understanding of their conditions and risks
can help to reduce risk and lead to positive change.

Information technology already plays an important
role in healthcare, though the focus so far has predom-
inantly been to support the acute-based approach to
care. Thus, IT systems tend to concern clinical aspects,
providing health-enterprise services, such as manage-
ment tools, patient administration and health records
(to various degrees), or a particular diagnostic capa-
bility.[1] Many of these systems are bespoke; only for
specific purposes, and operate in vertical silos. If in-
teroperable, there tends only to be integration with
other local systems (cf. across care units) or the major
systems– often an expensive undertaking and therefore
driven by management concerns, rather than focusing
on more flexible care pathways.

The way forward is to realise the vision of per-
sonalised, preventative care [7]. This involves a more
holistic approach, where healthcare not only occurs
within the traditional, clinical space, but also infor-
mally through patients and their care community in
an on-going, day-to-day manner. Technology is central
to this vision. With respect to data, sensor technolo-
gies are increasingly providing rich streams of informa-
tion giving valuable insight into a person’s daily activ-
ities, progress and well-being. Advances in communi-
cation technologies enable interactions at a distance
(remote care), and improvements in connectivity foot-
prints provide the means for patients to be ‘continually
online’ for monitoring. The uptake of mobile devices
by both patients and medical professionals promises
their increasing familiarity with technology [8], provid-
ing a highly personal mechanism that can be leveraged
to communicate, inform, alert and monitor. From the
clinical perspective, this will lead to better informed
care, more efficient use of carer time, and improve-
ments in the speed and quality of response. Contin-
uous monitoring of environmental and physiological
state provides rich datasets to aid diagnosis through
analysis of risks, traits and trends. Monitoring can be
extended to provide alerts of detected conditions, for
reminders, etc. This is important for patients and their
care communities, to give them insight, feedback sup-
port and reinforcement of their care goals. As well as

[1]See systems.hscic.gov.uk (21 Mar 2014) for a flavour of the
many systems in use by the National Health Service
(UK).

providing rich data for clinical use, to customise care
and diagnosis, this data is also useful for medical re-
search.

There are systems for remote care (telecare) and
self-monitoring.[2] However, these tend to be bespoke,
closed systems, designed for specific conditions or ex-
clusive concerns, such as raising particular alerts, or
diabetes management. While a step in the right direc-
tion, to properly realise the goal of preventative care
more integrated, flexible approaches are required. The
systems should be able to deal with the idiosyncrasies
of individual patients, their care needs, their support
networks and their care team, and capable of leverag-
ing a range of different health systems, services and
data as appropriate.

The vision for a system environment should therefore
be pervasive healthcare [11], rather than a number of
specific systems (integrated to various degrees). That
is, a number of systems—including applications, ser-
vices, sensors, etc.—should come together, seamlessly,
when and where relevant, as appropriate for each in-
dividual. Data drives health and well-being processes,
enabling tailored interactions across clinical and more
informal and/or personal systems. Care efficiencies are
improved, as integrated systems and improved commu-
nications help the movement away from the environ-
ment of manual, human-initiated actions.

Pervasive healthcare imposes significant challenges
for supporting infrastructure. Firstly, in such an envi-
ronment, it will be less clear which systems are health
related; heart-rate sensors are obviously relevant but,
for some people, lack of phone communication could
indicate depression. The availability and relevance of
different systems will vary between individuals. Each
user, clinical or otherwise, is different, they will vary
in how, when and why they use particular systems.
Further, security and privacy concerns pervade, given
the sensitivity of personal/health information. How-
ever, such sensitivity may depend on context.

Perhaps most importantly, system developers will
not be able to envisage all the circumstances in which
their systems may be used. Therefore, these concerns
can no longer all be encoded in application logic. In-
deed, this has led to today’s vertical silos and inter-
operability problems. Useful functionality comes not
from single systems, but by coordinating systems in
various ways.

Middleware provides a layer of abstraction that me-
diates between applications and network infrastruc-
tures [12]. Often described as systems-glue, middleware
is crucial in supporting this emerging healthcare be-
cause middleware operates across systems, to assist

[2]For background information and examples, see [9]
and [10].

Singh and Bacon Page 3 of 19

communication and management. The challenges of
pervasive healthcare means that middleware, in addi-
tion to its traditional role of enabling interoperability,
must be more active in controlling systems and driving
interactions between them, when and where appropri-
ate, in order to meet user-defined goals. Policy, repre-
senting an individual’s (patient and/or carer) require-
ments, is crucial; defined outside application-logic, it
operates to orchestrate and reconfigure system com-
ponents to meet particular goals. The purpose is to
allow people (and their carers) to customise how and
when various systems are used, and how their data is
handled, in order to best manage patients’ health and
well-being.

This paper explores the impact of this emerging
healthcare vision and the requirements this model im-
poses on supporting infrastructure. We begin by de-
scribing the evolution of healthcare provision (§2), and
the resulting systems requirements (§3), before empha-
sising the importance of policy for enabling dynamic
management across system components (§4). We then
explore areas of systems research, and consider their fit
within the broader healthcare vision (§5). The SBUS
middleware is introduced as proof of concept to prac-
tically illustrate the types of capabilities required by
emerging health infrastructure (§6). Policy enforce-
ment specifics are then explored (§7), and we conclude
with a summary of open challenges (§8).

2 The evolution of care
The burden on health resources is ever increasing,
given the world’s ageing population [1]. The major-
ity of care services relate to chronic conditions. These
are on-going, long-term health conditions or diseases,
such as heart disease, cancer, diabetes, etc. The World
Health Organization shows that 75% of the total popu-
lation will develop one chronic condition and 50% two
or more conditions [2]. As people live longer, the num-
ber of people living with chronic health conditions is
increasing. Chronic conditions, particularly when im-
properly managed, can lead to acute episodes requiring
urgent medical attention.

The worldwide goal is to improve people’s health,
well-being and quality of life, and at the same time,
reduce the burden on health resources. Preventative
care fundamentally involves taking active steps to re-
duce the risk of developing acute and chronic condi-
tions, and also improving the management of chronic
conditions (and/or the factors that can lead to chronic
conditions). In addition to clinical aspects, such as di-
agnostic services and medication, lifestyle factors, such
as smoking, alcohol intake, exercise and diet directly
impact many aspects of health. Lifestyle management
can often limit the onset and exacerbation of both
acute and chronic conditions.

It is clear that such an evolution in the care paradigm
would lead to more informal care practices; that is,
managing aspects of health and well-being outside the
formal, traditional clinical space. In general terms, this
entails: a) establishing a patient support network, in-
cluding professional and informal carers (friends, com-
munity and family), b) assisting with everyday activ-
ities, c) ongoing observation to indicate any improve-
ment or deterioration in condition(s), d) educating and
informing patients on how to ‘help themselves’, and
e) enabling (formal) interventions when and where re-
quired. This approach would lead to a much wider cov-
erage by healthcare services.

Healthcare systems
Currently, a vast number of systems underpin clini-
cal health services. In formal care environments, such
as a hospital ward or a surgical theatre, the system
components relating to care tend to be standardised,
used for a particular purpose. Some are more gen-
eral, enterprise-level systems such as electronic health
records, designed to improve communication between
medical professionals.

Others are more specialist, e.g. monitoring a partic-
ular set of vital signs or the treatment flow of a par-
ticular condition. Many of these systems operate stan-
dalone, or have few, specific interactions with major
services, such as National Care Records or the patient
administration systems (PAS) in the UK.[3] From the
clinical perspective, the lack of integrated technologies
means much inefficiency: actions and interventions are
manually initiated, e.g. doctors must log-on and switch
between many different systems, and communication
is typically synchronous (pagers that require follow-up
phone calls), requiring staff to be available and reach-
able. Preventative care adds another dimension to the
healthcare technology landscape; it requires systems to
be patient-centric, rather than enterprise-centric, that
can be customised to the user—be they the patient or
carer.

Technology can enable a more holistic approach to
health, in which a wide variety of systems, sensors and
applications come together, when and where appropri-
ate, to achieve particular care-related outcomes. Some
of these will be person-centric, providing monitoring of
aspects of health, lifestyle and well-being, to give infor-
mation and feedback to enable positive change. Oth-
ers, aimed at medical practitioners, will facilitate their
communication with others, direct access to monitor-
ing devices, and support their interactions with more
formal care systems. However, it seems that informa-
tion flows should not be partitioned between clinical

[3]For specifics, see systems.hscic.gov.uk (21 Mar 2014).

Singh and Bacon Page 4 of 19

and informal. Rather, the line between the formal and
informal care processes blurs, as person-centric sys-
tems may interact with more formal systems, when
and where necessary.

Such a vision is realistic. Monitoring and commu-
nications technology have developed to the extent
that they are potentially exploitable in large-scale,
widespread healthcare. At the same time, people (pa-
tients and medical professionals) are becoming increas-
ingly familiar with and accepting of a wide range of
technologies [8, 13]. Thus, there is scope for more mo-
bile communications and sensor technologies to help
support this vision of pervasive healthcare. There are
UK Government initiatives to support assisted living
developments via the Technology Strategy Board[4]

and the UK Research Councils’ Healthcare Technol-
ogy theme.[5] The EU proposes to continue its Ambi-
ent Assisted Living Joint Programme (AALJP).[6]

However, there are significant barriers that must be
overcome.[7] Most current systems, enterprise and di-
agnostic, including research systems, still operate in
vertical silos, with little interoperability except be-
tween major systems. These limited interactions tend
to be specified as part of the procurement contract.
This will become more of an issue moving forward,
where a plethora of new systems will become relevant
to providing care. Even initial movements towards sup-
porting informal care processes suffer from the same
issues: concerning a single standalone application or
closed service, focusing on a particular aspect of care,
e.g. a monitoring infrastructure for a specific condition
or a “panic button”. It is said that a panic button ser-
vice tends to restrict the movement of the elderly who
are afraid of falling to its 50 metre range. This greatly
impacts quality of life. Enabling such a person seam-
lessly to raise an alarm when inside the home or when
out and about is the vision of an integrated service.

To realise pervasive healthcare, system components
need to operate across application-level boundaries,
to enable wide-ranging and customisable health and
well-being services — which can seamlessly include
assisted-living, formal and informal care processes. In-
teractions may occur across administrative domains,
e.g. to include doctors, insurance companies, and so
forth. Further, the same system components or ser-
vices can be used for different purposes. For instance,
heart rate data can be useful for the patient when ex-
ercising, for a General Practitioner (GP) for diagnosis,

[4]www.innovateuk.org/healthcare (21 Mar 2014)
[5]www.epsrc.ac.uk/research/ourportfolio/themes (21 Mar 2014)
[6]www.aal-europe.eu (21 Mar 2014)

[7]See [14] for a roadmap of general issues concerning
assisted living.

and for a paramedic in an emergency. Also, systems de-
signed for other purposes could be integrated for cer-
tain individuals to provide health-relevant data, e.g. an
application monitoring television viewing habits might
have been designed for targeted advertising purposes,
but can also contribute to a view on psychological well-
being.

We now explore the specific requirements that the
emerging care model imposes on supporting infrastruc-
ture.

3 Healthcare infrastructure requirements
As argued in §1, information underpins the emerging
care model since information can be used and com-
bined for a range of purposes. This leads to appropri-
ate, timely interventions to achieve better health and
well-being. Thus, from a systems-perspective, require-
ments concern data: production, consumption, com-
munication and management. As technology becomes
increasingly pervasive, there will be a rapid growth in
the number of data sources/sinks (forming the compo-
nents of systems and services). The use of these com-
ponents will vary depending on user preferences and
environmental context. Some will be relevant to clini-
cal concerns, some will relate to patients and/or infor-
mal aspects, and some will be useful for both. Thus,
the infrastructure that supports care must facilitate
and provide data availability across a highly variable
range of applications and services, as well as providing
mechanisms for dynamic and flexible management.

Much of the responsibility for managing these con-
cerns falls on middleware. By mediating the com-
munications between system components, middleware
“glues” them together. At present, most middleware
focuses on enabling communication at the request
of applications. Indeed, middleware abstracts vari-
ous communication specifics but typically, applications
still control how and when they connect to and in-
teract with peers, brokers or services. In this section,
we show how the emerging care environment extends
this traditional role of middleware to include the dy-
namic composition of systems to support requirements
in real-time.

3.1 Supporting data sources and monitoring
Healthcare is data driven; the more informed medi-
cal professionals, patients and their care community,
the better the outcomes. Big data will become increas-
ingly important to healthcare, where data and analyt-
ics can lead to improved diagnoses, decision making,
treatments, and responses [15].

Monitoring people and their environments is central
to the vision of personalised, preventative care. Sens-
ing technologies will operate to generate rich represen-
tations of an individual’s physiological state, and also

Singh and Bacon Page 5 of 19

to generate information concerning physical environ-
ments (which might relate to a static location, such as
a particular room in a house, or the current location of
a mobile user). This data can be filtered, aggregated
and interpreted, thus driving positive steps for man-
aging and improving health and well-being.

There are a wide range of data sources that can be
used for patient monitoring. Data representing differ-
ent aspects of state will be produced by various user
devices, such as mobile phones, body and environ-
mental sensors/actuators, as well as online services,
databases, etc. The information used may include lo-
cation, movement, ECG, environmental context (e.g.,
noise levels, temperature, weather, pollen levels, etc.),
inference of social context, messages, calendar events,
and many more. In addition, there are also knowledge-
base sources aimed at the general public, such as NHS
Direct,[8] WebMD,[9] etc., that can help determine the
relevance of particular information, how to interpret
results, and the appropriate interventions to take.

Note that personal and mobile technologies have spe-
cific data management and communication concerns,
different from those of standard clinical systems (which
tend to reduce to standard enterprise systems, often
client-server). Further, each data source may be rele-
vant to meeting a number of different care goals; ECG
sensors and pulse-rate monitor outputs can be used
by individuals, their GPs and paramedics under differ-
ent circumstances. As argued in §2, a wealth of data
not designed for specific health purposes is available
and relevant for some individuals, such as (changes in)
phone or TV usage.

!"#$%&'()*$+,-&.,/0

12$

1,3&'-$4)5,6'$

%&'()*$+.$7$

89$ 9%:$

89$

!"#$%$
&'(

89$

&'(

89$;%:$

89$

89$ 89$

1*6<,-&$
=>?@(>?$

)*+,-./(
)$012$0(89$

#A)>4$%&*<6B&$

Figure 1 Systems-wide middleware integrates a range of
systems and networks.

Thus, it is particularly important that systems do
not function within a single vertical silo or product
ecosystem, whether through technical constraints (e.g.
only operating with other products by the same pro-
ducers) or functionality (e.g. only operating with other
systems with the aim of targeting a particular goal).
Each individual will differ on the systems they use,

[8]www.nhsdirect.nhs.uk (21 Mar 2014)
[9]www.webmd.com (21 Mar 2014)

as determined by their conditions, care budget, physi-
cal environment, care community, etc. System compo-
nents should be able to address a range of concerns,
operating across products, services and management
domains. As Fig. 1 illustrates, middleware can inte-
grate a wide range of systems and services.

Clearly some of these concerns align to those of the
internet of things (IoT) [16], in which a myriad of de-
vices, many representing everyday objects, are avail-
able online. This is because a vast number of data
sources, sinks and services have the potential to be rel-
evant to health and well-being. Indeed, the supporting
infrastructure explored in this paper can certainly be
used in a wider IoT-context; however, given the inher-
ently stringent requirements of healthcare, the man-
agement and control capabilities of the infrastructure
will be above and beyond the connectivity and inter-
action concerns of most IoT application scenarios.

Requirement 1: Future healthcare requires a generic
middleware capable of supporting current and future
technology and the types of data produced.

3.2 Supporting multiple communication paradigms
It is clear that healthcare is data driven. In a pre-
ventative care environment, pervasive systems offer
functionality by means of system components inter-
acting, exchanging data to realise system functional-
ity. The supporting infrastructure must therefore be
sufficiently flexible to support interoperability across
a range of components in different scenarios. This im-
poses a number of considerations for the supporting
middleware.

Firstly, the middleware must support a number of
interaction paradigms (data exchange patterns). The
vast majority of health-focused systems, like most sys-
tems in general, operate in a request/reply or Remote
Procedure Call (RPC) manner. RPC interactions are
important, for instance, to query a patient record, ac-
cess a historical log of heart rate data to aid diag-
nosis, or to perform particular processing operations
(e.g. calculating BMI). However, the emerging care en-
vironment will necessarily involve live data streams,
the natural form of monitored data. Such data will
be analysed to detect significant incidents and raise
alerts, e.g. recognising a fall or a heart-attack and rais-
ing an alarm. Supporting infrastructure must therefore
be able to support the range of interaction paradigms.

Given healthcare is data driven, it naturally maps to
an event-based approach. An event can be defined as
a data-rich encapsulation of some occurrence. Events
can operate in a RPC manner, by one event encap-
sulating the request and another the response, and
within a stream representing an individual data point.
Events can also encapsulate a higher level of meaning

Singh and Bacon Page 6 of 19

and/or context. An event-based model makes sense
for an emerging care environment, as it can repre-
sent everything from an alert (perceived emergency),
data reading (e.g. clinical result, ECG sensor reading),
health-record query/response, as well as more benign,
system-relevant occurrences, such as a person entering
a hospital, changing their privacy preferences, etc. The
communication of events can greatly improve care ef-
ficiency, by reducing the need and reliance on manual
human-imitated actions.

Events can also pave the way for flexible interaction
paradigms. For instance, some components, particu-
larly user-facing applications, will actively drive their
interactions with others, e.g. a patient accessing their
record entails a query to a particular server. Events
can represent the connection, query, processing and/or
response. This (RPC) is the predominant form of in-
teraction today. Other components are passive, e.g. a
body-sensor system focusing on producing vital-sign
data, having no concern as to potential consumers.

It is clear that service discovery is a critical issue
for infrastructure that aims to support the emerging
care environment. In order to break the application si-
los prevalent in healthcare, it must be possible to dis-
cover the relevant data sources and sinks with which to
interact dynamically, at runtime. This is particularly
important in a pervasive healthcare scenario, as many
interactions are not predetermined, but rather the rel-
evant system components and forms of interaction are
dictated by user preference and the particular circum-
stances. Thus, unlike much of today’s communication
which involves interactions with particular addresses,
there must also be mechanisms for finding components
based on the data they serve (and other attributes).

Event-based modelling also assists service discovery.
If events are typed, it means service discovery (and
hence interactions) are based on the data they pro-
vide, rather than a specific address and/or particular
known systems. Further, type systems pave the way
for further description of events and data that a par-
ticular component handles, as well as details about the
component itself. This facilitates more formal descrip-
tions, the semantics of which can assist in managing
dynamism and heterogeneity [17].

Requirement 2: Future healthcare requires a middle-
ware capable of supporting a wide variety of commu-
nication patterns. Event-based middleware is most ap-
propriate.

3.3 Security-aware middleware
Health data information is inherently sensitive. Such
concerns are exacerbated in pervasive computing en-
vironments, as these involve extremely detailed physi-
ological and environmental data.

The current approach of encoding security policy
within systems themselves is inadequate, as each sys-
tem will vary in its definitions, capabilities, protection
measures, etc. First, this hinders usability; leading to
different login credentials for different systems, which
many NHS doctors rightly complain about and often
subvert by sharing sessions between users or taping
passwords to machines. It also hinders accountabil-
ity. Secondly, the governance capabilities of one system
might vary greatly from that of another. Further, hav-
ing security policy encoded in several systems for local
enforcement, often repeated and represented in differ-
ent ways, increases complexity and leads to mistakes.
Therefore, governance regimes must apply across a
range of technologies and locations.

Middleware deals with interactions, across systems.
By making the middleware security aware, it means
that governance policy can be generalised across a
range of applications. For instance, the same policy
can apply to a doctor’s access to a Patient Record Sys-
tem, Hospital Administration System and a patient’s
live data-feed.

Therefore, it is important that middleware provides
the mechanisms for enabling security. Specifically, this
concerns: a) when and how components may commu-
nicate, b) the prevention of eavesdropping, c) informa-
tion flow management, d) service discovery, e) audit.

The first entails access control policies, which can
set up the privileges to enable connections, as well
as actively intervene with respect to an interaction,
e.g. forcing or closing connections when appropriate.
To support this, components must be identifiable so
correct privileges can be defined. It is important that
the infrastructure supports encryption, to protect in-
formation in transit. Information flow management
means having the ability to trace where information
has flowed from and to where, and also to set certain
constraints on its flow at runtime (e.g. it must not pass
certain boundaries, or must touch certain systems be-
fore flowing to others)–see [18]. Sometimes uncovering
the mere existence of a service associated with a pa-
tient may be damaging, e.g. services relating to sexual
health; and as pervasive health will involve many per-
sonal services (surrounding an individual user), it is
likely that many of these should be hidden from others.
Thus, service discovery processes must also have the
possibility of being regulated. Finally, audit gives visi-
bility, which not only enables the ability to unpick the
past, but also provides a normative form of behaviour
control (the knowledge of being watched can prevent
misuse). Audit is crucial to supporting governance in
the health services. Such concerns are particularly im-
portant in this pervasive environment, as interactions
will occur ad hoc, with potentially any source.

Singh and Bacon Page 7 of 19

Requirement 3: Future healthcare requires security-
capable middleware

3.4 Supporting dynamic reconfiguration and adaptation
We have described how the emerging care environment
entails many different system components interacting
with each other in various ways, to achieve various
outcomes. A rigid workflow is no longer an option and
systems must be configured to meet individuals’ needs.
Further, it will not be possible to predetermine all
the required components and interactions when tailor-
ing to individuals. Thus, the role and functionality of
middleware must be extended to include mechanisms
to drive and control the interactions between compo-
nents dynamically. To achieve this, it must be possible
to specify and enforce, at the middleware level, how
and when interactions should occur.

In practical terms, this means that there must be a
mechanism for the middleware to reconfigure systems
at runtime, adapting to circumstances as they occur.
Given that middleware provides communication, this
means the ability to manage runtime interactions. The
key is the ability to control connections between com-
ponents. At present, most middleware leaves this to
the applications, as discussed above.

Enabling runtime connection management brings
much flexibility; for example, to control the properties
of an interaction (i.e. who is talking to whom), perhaps
they should interact with someone else, perhaps some
change in context implies a different set of interactions
should take place, in addition to lower-level concerns,
e.g. component failure. Initiating (or ceasing) an in-
teraction is one aspect of this. Reconfiguration is also
highly relevant to security, as it also involves changing
the properties of the components themselves; security
policy will certainly be dynamic, and thus the system
must be able to manage components and their inter-
actions to properly effect this properly — a simple ex-
ample may be “nobody may access my location infor-
mation except in an emergency, when my doctor can”.
This means the location component must be able to
enforce such a constraint (either directly, or by being
‘told’ what to do) as appropriate.

Such scenarios involve components relying on others
to initiate and manage interactions on their behalf.
Middleware must therefore support both direct and
third-party initiated interactions. The latter is partic-
ularly important, bringing flexibility as it allows inter-
actions to be managed outside component application-
logic.

In summary, middleware for the emerging care en-
vironment must not only support the interoperability
between systems, but also the means to drive those in-
teractions, and reconfigure the system as appropriate

to the circumstances. However, middleware provides
merely the mechanism. It is policy that will manage
and define these orchestrations, coordinating between
the various components, often across application and
administrative boundaries, when and where appropri-
ate in order to meet particular functionality goals.

Requirement 4: Future healthcare requires a middle-
ware capable of effecting dynamic reconfiguration of
system components in response to event-driven policy

The next section focuses on how policy can be ex-
pressed and enforced to meet this requirement.

4 The role of policy
Policy-based systems operate to effect some change (by
taking actions) in response to particular happenings or
circumstances. It is the role of policy to express these
circumstances and actions.

Traditionally, the policy used by middleware targets
network management, resource allocation and/or qual-
ity of service e.g. dealing with node failure, or allocat-
ing sufficient resources as requested by an application.
However, as technology becomes increasingly pervasive
and connected, it is important that policy encapsulates
higher-level concerns, to bring about user-level goals.
The emerging healthcare environment takes advantage
of functionality coming from a number of different sys-
tems, used in different ways, by different people.

The focus is no longer solely on managing resources
to serve a particular application requirement, but also
on managing ranges of system components across ap-
plication boundaries. More specifically, policy can trig-
ger, or regulate user/application actions or behaviour,
or react/respond to data generation and inference.
Such actions are aspects of coordination, operating to
mediate and orchestrate components to meet high-
level functional goals. Coordination may include ac-
tively generating data or starting/stopping an interac-
tion e.g. emergency action is to send an alert message
to paramedics, and to set up a voice connection to
a relative. Coordination may also enable (or prevent)
some potential interaction, e.g. authorising a carer to
access sensor devices when visiting a home.

Effecting such coordination requires the means to
control components from outside their application
logic. That is, enabling reconfigurations initiated by
third-parties. This means that it is no longer the indi-
vidual components that must manage and enforce pol-
icy, but rather, the components can be instructed (by
those who are ‘policy aware’) to take specific actions
to meet user goals. This is key to enabling systems to
be user-driven, to coordinate component use to meet
specific, individual concerns. It also allows new func-
tional possibilities, where system components can be

Singh and Bacon Page 8 of 19

used/reused in various ways, not envisaged by the orig-
inal developers. Clearly, this becomes increasingly im-
portant in a pervasive health environment which needs
to account for individual preferences, user mobility en-
tailing interactions in completely new environments,
and the fact that care interventions are event-based -
requiring response on certain happenings. All of these
could result in different component compositions and
interactions in different circumstances.

In summary, policy in a middleware context rep-
resents user specified goals and functional concerns,
meeting these by operating to a) bring functional-
ity, and b) regulate/control within and across ap-
plications, by reconfiguring the system/environment.

Fig. 2 shows a policy-based reconfiguration for an
emergency situation concerning an elderly male pa-
tient. In the general case, some of the patient’s data
is streamed to his phone to provide feedback on his
current state. Data is also stored persistently to assist
in diagnosis and prognosis. In an emergency situation,
policy exists to bring help. This entails alerting his
wife and the emergency services (A&E) of the inci-
dent; sending vital signs streams directly to A&E so
they have a better indication of the situation and pro-
gression; and relaxing privilege constraints on various
data sources to enable those providing help to access
data that may assist.

4.1 Context and events
Context is crucial to policy enforcement; policy com-
bined with context determines when various systems
are brought together. Since the emerging care environ-
ment is user-centric, the infrastructure and environ-
ment must be tailored to individuals. Patients (with
help from their support network), informal carers and
medical professionals will all have preferences as to
how the services supporting them are managed and
controlled. These preferences form the policy that man-
ages and governs systems environments.

In a pervasive care environment, context can be
derived from many aspects: treatment/intervention
regimes, practitioner interactions, feedback from phys-
iological (e.g. heart rate, movement) and environmen-
tal (e.g. location, pollution levels) sensors, interactions
with clinical services (e.g. querying electronic health
records), etc.

Policy is context-sensitive, e.g. a patient may say
that nobody can access their location, except in an
emergency, or “only my treating doctor can access my
vital-signs data”; or a practitioner may only access
clinical systems when they are physically present in
a hospital ward.

Policy actions are tied to context, where changes in
context lead to defined responses. For example, the re-
sults from a laboratory test will define a particular care

pathway (treatment plan); detection of some anomaly
leads to referral to a specialist. A timer might remind
a patient to take medication, a doctor leaving a ward
or going “off duty” might lose certain access rights,
an alert might be sent on detection that someone has
fallen, a doctor querying a health record must be au-
thorised and audited.

As established above, healthcare is data driven, and
thus is amenable to an event-driven systems approach.
Information can generally be broken down into partic-
ular events (occurrences) that individually, or in aggre-
gate, through event composition, represent some sig-
nificant change in state. For example, an event might
represent a single occurrence, such as someone entering
a ward, taking a reading, taking medication, leaving
home; or can be composed with other events to repre-
sent some higher-level event, e.g. a significant rise in
heart rate with a drop in blood pressure could mean a
blood-loss event, or leaving home without taking med-
ication should result in an extra reminder. Events can
also represent concerns at various levels, e.g. systems
level concerns such as a loss of connectivity, or higher-
level concerns, such as a user action (e.g. pressing a
panic button, initiating a query, entering a hospital).
Policy rules can be defined to respond to these events,
by dictating the components that could or should in-
teract and the associated security and governance con-
cerns.

In Fig. 2, the reconfiguration is triggered by an emer-
gency. This could be represented by a single event that
may have been derived through analysis of the underly-
ing sources, e.g. a rapid accelerometer change followed
by some period without subsequent movement (GPS,
indoor positioning) suggests a serious fall.

We have argued that an event-based representation
of context is particularly suitable for emerging health-
care. Firstly, events facilitate a response. Aside from
the more complex examples listed, in an environment
where information is sensitive, even the most basic
happenings (data access, sensor samples) require some
sort of response, such as being stored persistently or
logged. Events provide well-defined hooks enabling re-
sponse actions to occur. Secondly, an event-based ap-
proach facilitates context awareness in the middle-
ware. Middleware concerns data communication, while
events encapsulate data (e.g. a message can neatly en-
capsulate the data for an occurrence); thus rather than
merely managing the conduit, the middleware can be
active with respect to the data it handles.

4.2 Policy actions and engines
We have identified three general types of policy action
relevant to healthcare. These are:
Reconfiguration: Taking a configuration action,

Singh and Bacon Page 9 of 19

Patie
nt
DB!

Policy!
Engine!

A&E!

Policy'
Engine'

Pa#ent’s)DB)

Body)Sensor)
Network)

A&E)

Authorise))
A&E)&)wife)

(1)'

Authorise))
A&E)

(1)'

Alert)(2)'

Live)Data)Stream))(3)'

Request)Stored)
Data)

(4)'

(b))Emergency)Reconfigura#on)

Body Sensor!
Network!

alert!

conne
ct to
A&E!

authorise!
wife, A&E!

Location!

data flow!

reconfiguration!Patient’s wife!

al
er

t!

Body)Sensor)
Network)

Pa#ent’s)Phone)

Pa#ent’s)DB)

(a))General)Usage)

Live)Data)Stream)

Live)Data)Stream))
(filtered))

Pa#ent’s)wife)

(a) General usage

Patie
nt
DB!

Policy!
Engine!

A&E!

Policy'
Engine'

Pa#ent’s)DB)

Body)Sensor)
Network)

A&E)

Authorise))
A&E)&)wife)

(1)'

Authorise))
A&E)

(1)'

Alert)(2)'

Live)Data)Stream))(3)'

Request)Stored)
Data)

(4)'

(b))Emergency)Reconfigura#on)

Body Sensor!
Network!

alert!

conne
ct to
A&E!

authorise!
wife, A&E!

Location!

data flow!

reconfiguration!Patient’s wife!

al
er

t!

Body)Sensor)
Network)

Pa#ent’s)Phone)

Pa#ent’s)DB)

(a))General)Usage)

Live)Data)Stream)

Live)Data)Stream))
(filtered))

Pa#ent’s)wife)

(b) Emergency response

Figure 2 Policy driven reconfiguration reacting to an emergency situation.

such as initiating/removing a connection or changing
the privilege of particular components.
Event production: Generating an event to transfer
some information, e.g. to raise an alert, inform of some
happening, or simply respond to a query.
Policy Management: Policies are contextual, thus
a change in state might change the set of active (appli-
cable) policies, e.g. a set of restrictive privacy policies
may be relaxed in a medical emergency, making more
components visible to an entity.

To effect these actions, a) the communications sup-
port in the middleware must allow, through the ap-
propriate hooks and interfaces, reconfigurations to be
initiated by third-parties, external to the application
logic of the components being affected; b) the com-
ponents enforcing policy should be integrated into the
same middleware, in order to receive events (context)
to evaluate policy rules, produce new events, and so
forth.

To manage policy, there is a requirement for system
components that are dedicated to managing the pol-
icy process. Policy engines are services that encapsu-
late, and enforce, a set of policies. Policies often take
the form of Event-Condition-Action (ECA) rules [19].
A policy engine will watch for particular events cor-
responding to its ruleset. On the occurrence of these
events (which may be composite), the action selected
by the policy rule will be executed. Some events might
trigger a change in the active rules, while others might
produce events, or issue the middleware with partic-
ular reconfiguration operations for particular compo-
nents.

Fig. 2 shows these actions. Event production pol-
icy enables the alerting of the patient’s wife (step 2).
The reconfiguration alters privileges on the database
and sensor network (step 1), so that the wife can ac-
cess sensor information (such as her husband’s loca-
tion) and A&E has the ability to access both the live
sensor information, and the patient database in case
historical information is relevant. A connection is then
automatically established between the sensor network
and A&E (step 3) so that A&E is immediately made

aware of the patient’s current state and ongoing pro-
gression. More generally, policy exists to relax privi-
leges in an emergency situation to aid response; thus
the policy engine will deactivate some of the more re-
strictive policies (not illustrated in the figure). A&E
may then, manually, query the database for any rel-
evant historical data (step 4), made possible by the
earlier privilege reconfiguration (step 1).

4.3 Taking a policy-driven approach
So far, we have seen the following advantages from
taking a policy driven approach. Firstly, it can break
down vertical application silos. Operating outside ap-
plication logic, and across system boundaries, it allows
for more functionality and flexibility, enabling compo-
nents to be used and reused in ways not previously
possible. It allows for fine-grained personalisation and
customisation, responsive to a range of different cir-
cumstances. Such functionality is crucial for systems
supporting emerging care services.

In addition, this approach greatly reduces the burden
on application/service developers, and the likelihood of
errors. This is because developers need not account for
individual users’ requirements by having some mech-
anism for them to specify and encapsulate their pref-
erences, and then, only from the concerns foreseen by
the developers. Also, the burden of maintaining the
details of all potential contexts in which components
can operate is removed from developers. This facili-
tates component use/reuse, paving the way for new
components to be integrated with minimal configura-
tion. Otherwise, developers would need to enumerate
all possible circumstances in which particular systems
might be used, including the specifics of the operating
environment, such as nearby components and interac-
tion protocols.

The use of policy engines means fewer policy def-
inition/enforcement points, which can simplify man-
agement. The alternative, of having each application
maintain and enforce its own policy leads to policy
gaps and inflexibility since systems will be limited
in the policy functionality they provide. In practice,
components would only provide for specified policy

Singh and Bacon Page 10 of 19

that they deem relevant. Further, trying to encapsu-
late cross-system functionality in each application it-
self is not only impractical, but is prone to errors, par-
ticularly as different applications may have different
mechanisms for accounting for preferences. All of this
is a major concern in healthcare where governance is
central.

There will be a number of policy engines operating
simultaneously within various environments. Issues of
conflict arising from competing engines poses a sig-
nificant challenge, and requires careful consideration.
However, the scope and reach of the policy engines
can lead to a natural resolution. In practice, a policy
engine should only effect actions on components that
authorise it to do so, which models the real-world in
the sense that only those who ‘own’ an entity can con-
trol it. This inherently limits the scope for conflict. For
example, there may be a policy engine managing a hos-
pital ward, and one on a doctor’s phone. The ward’s
engine will set the baseline for interaction, e.g. who
can access the various monitoring equipment, whereas
the doctor’s engine will reflect the doctor’s individual
preferences regarding when it connects to particular
components within the ward. Having an engine that
encapsulates policy aids policy management. The al-
ternative is to have policy fragmented among differ-
ent components, using and limited by the expression
mechanism of each.

Given that policy entails some components control-
ling others, trust becomes an issue. To function effec-
tively, there needs to be the ability to regulate who
can access, and reconfigure, particular components in
specified circumstances. And such regulation must, it-
self, be dynamically reconfigurable. Further, there is
often the requirement for audit, not only of the ac-
tions taken but also the policy applied. Such concerns
will vary depending on the circumstances and envi-
ronment. Indeed, issues of trust can be encoded in
policy, which if the middleware supplies appropriate
security/governance mechanisms, can be implemented
through similar mechanisms to effect control over man-
agement processes.

Overhead is another concern of policy-based sys-
tems. Given that policy enforcement involves rule eval-
uation, based on particular events (communicated by
data flows), which also involve reconfigurations, there
will naturally be some impact on performance. How-
ever, this must be considered with respect to the flex-
ibility of the approach. We explore this more in §7.3.

4.4 Policy summary

Middleware is required that enables policy to coordi-
nate the components in the system. Policy-enforcing

middleware allows control across components, irrespec-
tive of their individual logic. This is crucial as it en-
ables user goals to drive the system, bringing com-
ponents together in particular circumstances to meet
users’ requirements. It enables components to be used/
reused for a number of purposes, facilitates person-
alisation/customisation, and naturally helps to group
related policy through dedicated policy components.

From the middleware perspective, this approach
moves middleware beyond its traditional role of en-
abling communication. Instead, it provides the abil-
ity for components to be managed by third parties,
and means that middleware can actively drive how and
when communication occurs.

This is important for emerging healthcare, which
requires a pervasive systems environment. A policy-
driven approach allows flexible functionality, operat-
ing across systems, tailored to individuals, in order to
effect a range of health-related goals.

5 Moving towards the vision
So far, we have outlined the requirements that the
emerging model of healthcare imposes on supporting
infrastructure, arguing for a policy-based middleware
with dynamic, third-party initiated reconfigurability.
There is no single solution or approach that addresses
all these challenges. However, there has been work in
a number of areas that provides a solid foundation on
which to build. Rather than providing an exhaustive
literature review, we instead highlight general areas
of relevant systems research and their fit within the
broader vision of pervasive health.

We have reached these requirements for future mid-
dleware through focussing on the healthcare domain. It
is interesting to note the overlap with work on generic
requirements for emerging middleware, as explored in
FOME (Future of Middleware) [20]. For the health-
care domain we concur with the findings of FOME for
future complex and dependable systems and our work
begins to address the highlighted challenges, in a tar-
geted manner—see §6.

5.1 Service composition and adaptive middleware
Reconfigurable middleware is an area of much re-
search. Middleware that allows configuration and cus-
tomisation is generally termed adaptive (see [21]) or
reflective (see [22]). Such middleware exposes the cur-
rent system configuration and state to enable recon-
figuration based on inspection. Reconfigurations may
come from applications themselves, or involve man-
aging lower-level concerns (e.g. the network) to ful-
fil application resource or quality of service require-
ments. Work in this area clearly relevant to pervasive
healthcare, reconfiguring lower-level systems concerns

Singh and Bacon Page 11 of 19

to meet application requirements. However, there is
also the need for higher-level controls through policy,
not only to serve application requirements, but to work
within and across a range of applications to meet users’
functional goals.

Related is service composition middleware (SC) (see
[23]), which combines services to provide particular
functionality. This involves taking an application-level
task (request) and mapping it to a combination of ser-
vices [24]. SC considers resource allocation and task
distribution and ordering in response to application-
specific requests or goals. Again, SC is highly relevant,
however healthcare requires the means to directly con-
trol system components. In a general policy-based mid-
dleware, meeting the goals of service composition is
only one of the targets that policy could address.

Given the trend towards the internet of things, some
recent work considers service composition at scale [25].
Certainly, over time the line will blur between infras-
tructure for supporting care, and that for more gen-
eral concerns; however, for the moment, the nature of
healthcare imposes specific requirements that must be
directly accounted for (§3.1).

Work in this area is ongoing. The authors of [26]
are concerned with dependable systems and highlight
“better coordination facilities” as a topic for future re-
search. The six research challenges for middleware for
future complex systems addressed in [27] include “de-
riving valid, high-performance configurations of highly
configurable infrastructure platforms” and “static con-
figuration and dynamic reconfiguration”.

5.2 Sensor networks
Sensor networks (SNs) are well researched, with much
literature focusing on networking, addressing the con-
straints imposed by devices and the operating environ-
ment. A lot of work takes place in the context of wire-
less sensor networks [28], and to a lesser extent body
sensor networks [29]. The focus is low-level, consider-
ing sensor nodes/devices and their specifics, includ-
ing data acquisition, resource management (power,
memory, and other hardware constraints), node place-
ment, failures, routing protocols, code migration/
deployment, etc. [30, 28]. Data aggregation [31] con-
cerns how and when to aggregate and fuse data across
nodes to improve efficiency and data richness. Some
recent work considers network abstractions and vir-
tualisations [32, 33]. Sensors provide much important
data for pervasive healthcare. It is, however, explic-
itly recognised that sensor networks must be inte-
grated into a broader system infrastructure [30, 33].
Thus, middleware aiming to support emerging health-
care must be able to incorporate (or interface with) a
range of sensors and sensor networks (see requirement

1, §3.1). This not only allows sensor data to be pro-
cessed and consumed throughout the system, but also
allows policy to influence sensor network behaviour,
such as prioritising the data flows that pertain to an
emergency situation.

Generally, our insight is that for future health ser-
vices, it is not just the infrastructure and resources
underlying applications and services that must be con-
figured and managed, but also the applications and
services themselves, in terms of how and when they
(inter)operate. Configuration at this higher-level is en-
capsulated by user-defined policy — which can operate
across applications, as well as manage lower-level con-
cerns on behalf of applications. The work in adaptive,
reflective and SC systems is of direct relevance to the
latter, and provides useful insight into realising the
former.

5.3 Policy-based systems
There is work that considers high-level policy enforce-
ment [34]. However, these policy models typically in-
volve imposing a particular structure on the environ-
ment; for instance, defining entities as managed ob-
jects e.g. the self-managed cells of Ponder2 [35], the
grouping of agents with trusted controllers [36], and/or
other constraints, e.g. a particular form of interac-
tion [37, 38, 39] (see §5.5). Clearly, policy specification
and enforcement specifics are relevant; however, the
nature of pervasive health systems requires systems to
be open and flexible. Thus, any policy-based middle-
ware must deliberately avoid imposing modelling, de-
sign or communication constraints such that any struc-
turing is dictated by user and usage requirements.

Reasoning about policy is difficult, especially about
consistency when policy is decentralised. A formalism
is proposed in [33] which allows for reasoning about
access control, especially relating to emergency man-
agement.

5.4 Representing context
Policy is contextual, in that it is enforced in particu-
lar circumstances. It follows that richer representations
of state entail more flexible policy. There are a num-
ber of contextual/reasoning models that enable com-
plex state representations [40, 41], which in pervasive
environments often involve combining and processing
data across many underlying sources. Richer and com-
plex state models provide the means for more power-
ful, granular and expressive policy rules, which allows
for policy that better represents particular healthcare
concerns. If the context model is well structured, it
enables analysis and reasoning over policy behaviours,
useful for determining operational semantics, potential

Singh and Bacon Page 12 of 19

policy (or contextual) errors or omissions—which one
can imagine would be most useful for health services.

Managing context in emerging systems is difficult,
due to its inherent dynamic and heterogenous na-
ture. An ontological approach presents a promising
way forward [17], as it enables modelling of context,
message types, namespaces, etc. based on semantic
meaning. This can assist managing dynamism and
reconfigurablity, for example the ability to dynami-
cally negotiate a method for system interoperability
at runtime [42]. Such work directly supports the policy
driven approach we advocate, as policy will impose the
constraints and circumstances for facilitating an inter-
action, in addition to enabling direct interventions to
trigger system changes. However, managing semantics
is not without its challenges [43], for example agreeing
a common vocabulary/coding scheme. This is a long-
standing problem even in the more specialist clinical
care domain [44]; such concerns will likely be exacer-
bated by integrating informal care scenarios.

5.5 Communication specifics
Regarding communication (see requirement 2, §3.2),
the design and optimisation of interaction paradigms,
such as RPC and pub/sub (see [45]) have been well re-
searched. However, we see that much healthcare infras-
tructure accounts only for a single form of interaction,
often RPC. It is important that the supporting mid-
dleware enables both request-reply and stream-based
communication, which is important to serving a range
of application requirements.

With respect to communication, there is some work
that considers integrating policy into pub/sub infras-
tructure [38, 39, 46], for enforcement throughout a
broker network. Pub/sub, however, is inappropriate as
the sole means of communication for emerging health-
care, as it provides only for stream-based interactions
(request-reply is cumbersome), and the layer of in-
direction (event-bus) favours anonymous interactions
through a shared communication channel, which is in-
appropriate for healthcare as it raises identity, security
and policy enforcement concerns.

6 SBUS: Middleware towards this aim
Having argued the need for a policy-based approach,
we now introduce SBUS [47], a middleware designed
and developed to support the requirements of emerg-
ing healthcare. SBUS provides an open systems frame-
work for securely reconfigurable components. Its main
contribution lies in its support for policy-driven recon-
figuration of components, and management of their in-
teractions, with fully decentralised management. This
enables policy to represent high-level concerns, to op-
erate across applications to achieve users’ functional
goals.

Here, we present SBUS as a proof-of-concept to give
an overview of the concepts, considerations, and design
processes for a policy-based approach.[10] The focus is
on policy for directly controlling components and their
interactions; in moving to wider solutions, such func-
tionality will complement other work, e.g. that con-
cerning contextual representation.

In order to indicate the practicalities of policy-driven
healthcare infrastructure, we now provide an overview
of SBUS functionality, and follow by describing the
means for policy enforcement.

6.1 SBUS architecture (requirement 1, §3.1)
SBUS aims to provide the mechanisms for building and
managing complex systems environments. As such,
there is deliberately no particular structure imposed
on system design. Its design aim is openness and flex-
ibility, to provide the building blocks to enable any
structuring required by the user, of applications or the
operating environment.

In line with this, and to account for the variability
and requirements of the emerging care environment,
the architecture allows incorporation of other systems,
such as closed or proprietary networks, wireless and
body sensor networks and other systems that manage
device and resource constraints in specific operating
environments. This, of course, requires gateway com-
ponents to export data outside the subnet’s environ-
ment (see Fig. 1). Closed or proprietary sensor net-
works usually provide this gateway functionality [30].

6.2 Communication (requirements 1, §3.1 and 2, §3.2)
SBUS is a data-centric communications middleware.
Data is encapsulated within a message of a specific
type. A messaging approach suits healthcare, as a mes-
sage can neatly encapsulate details of an event.

The basic unit in SBUS is a component: an SBUS-
enabled process (i.e. an application, service, or part
thereof) that uses the middleware to manage its com-
munication. Each component has a number of end-
points, which can be thought of as typed communica-
tion ports. The endpoints of different components are
connected (mapped) together to enable communication
(Fig. 3).

Each endpoint is associated with a schema (in LIT-
MUS [48]) describing the message type(s) it handles.
Communication is type safe, the middleware ensuring
that mappings only occur between compatible end-
points, i.e. that schema and interaction modes agree,
and messages correspond to the schema for that map-
ping. Type identifiers (hashes) are encoded to make
messages self identifying, removing the need for a cen-
tral type authority. Content-based filters can be im-
posed on mappings to control message flows.

[10]See [47] for further technical details on SBUS.

Singh and Bacon Page 13 of 19

!!!!!"#$! !"#$%"%"$"$%"%$"$"%%$"%"$%"&!"#$%"%"$"$%"%$"$"%%$"%"$%"&!&%&'!

!"#$%"%"$"$%"%$"$"%%$"%"$%"&'&
()*+,)-&./%01&

!"#$%"%"$"$%"%$"$"%%$"%"$%"&%('!)*+!

%,'!-))230&

4/"56+7086%&
9&:;&<&

4/"56+7086%&
9&:;&<&

)-../0-!123-4/=&
$),&8%(>&8*#0)?*+&56789:6;.<!8?+>8,&(-?8*+@&

"8,A8,@&")3,(8@&),&"?*2&

56789:6;!)/88:60.<!!
/%+(>?*5&"(>8/%&

)-../0-<!!
/%+(>8"&"(>8/%&/3-B0-8&

/%00?*5"&
$94896-6;<!!

C*&DEFD&
8*%G-8#&0,)(8""&

"-.9=>2-!#:.29?->@!$94896-6;.&

,85?"+8,&&
/8+%#%+%&

.H1&I38,7&$),&()/0)*8*+"&JJ&
KK&.L1&M%##,8""8"N&

Figure 3 SBUS communications overview

ferent components are connected together, or mapped. All commu-
nication between components takes place via mapped endpoints.
The basic mechanism is point-to-point; components send messages
to peers directly without requiring an intermediate broker.
The architecture is therefore decentralised, apart from a resource

discovery component (RDC), which acts as the name service. The
RDC is itself implemented as a component, and there may be more
than one, to avoid central points of failure or to create different do-
mains. RDCs may be federated (in which case they exchange state)
or separate. RDCs typically run at well-known or easily guessed
addresses (such as the standard port number on a local machine).
Most components perform either filtering, merging, storage, dis-

tribution or data mining. Figure 1 shows several example compo-
nents from the road traffic monitoring domain, and a possible set of
connections between them.

Driver
reports

GPS probe
vehicle

Numberplate
recognition

History

Group
location
service

Browser
map

City
signs

Emergency
services

Mobile
phone

Calculate
congestion

Incident
detection

Pseudonymise

Road flow
speeds

Queue
lengths

Estimated
journey
times

Select
buses

Change data
format

Sensor
fault detection

History

History

State
Mobile
phone

Bus
signs

State

Inductive
loop

sensors

Sensor Process

Key:

Store View

Figure 1: Example components

4. MULTI-MODAL OPERATION
Some kinds of message oriented middleware are more suitable

for certain communications paradigms. For example, remote method
invocation systems only allow RPC style interactions, whereas Elvin,
Gryphon andMuddleware only allow pub-sub (but not RPCs). JMS,
MQ and D-Bus allow pub-sub and also messages addressed to spe-
cific targets, but no replies. CORBA, ICE, SCOP, Web Services
and RUNES are more flexible, supporting RPC as well as pub-sub.
PIRATES extends this idea by attempting to support all reason-

able forms of communication between each pair of components.
We hope that by doing so a single mechanism will suffice for all
of an application’s communication needs. Figure 2 presents a par-
tial taxonomy of interaction patterns. We start by observing that in
any pairwise interaction one end must send the first message. We
assume this is the left-hand peer on the diagram, hence the first ar-
row is always left-to-right, without loss of generality. There may or
may not be a reply. If there is no reply, the interaction is either fin-
ished (one-shot), or the originator may continue sending messages
(push-stream).
If there is a reply, then again that may conclude business (RPC),

there may be many replies (pull-stream) or the process might repeat

one-shot push-stream rpc conversation pull-stream

source / sink client / server sink / sourceEndpoints:

Paradigm:

source / sink client / server

Figure 2: Pairwise interaction patterns

(conversation). More irregular message sequences can be coerced
into a conversation by inserting empty acknowledgement messages
as appropriate. This therefore covers all the major types of message
sequence. Note that a conversation (our name for messages which
ping-pong back and forth) is not the same as repeating an RPC
interaction many times. In particular, there may be state associated
with it. Web applications need cookies because the web effectively
provides RPCs, and not conversations.
PIRATES provides all of these interaction types, with the excep-

tion of conversations, using four types of endpoint: client, server,
source and sink. Clients must be mapped to servers and sources to
sinks, but the mapping can be done by either end (e.g. a source may
set up a mapping from itself to a sink, or a sink may map itself to
the source, and likewise for clients and servers). The source-sink
mapping is many-many, and the client-server mapping is many-
one. Pub-sub interactions are provided by pull-streams.
Another important distinction is that between a sequence of one-

shot messages and a push stream. The latter makes streams first-
class objects for PIRATES, which is not the case with a normal
event broker. The presence of explicit streams makes it possi-
ble for tools to understand when two components are “connected”,
which could not necessarily be determined from a sequence of sin-
gle events. This allows the stream to be automatically remapped if
one of the components moves or terminates, for example.

5. WRAPPERS

Component

Other components

Other components

Business
Logic

Process

Wrapper
Process

Admin
Tools

Sources,
Services

Clients,
Sinks

Library PipeMappings

Endpoints

Key

Figure 3: Parts of a component

Figure 3 shows the structure of a single PIRATES component. It
consists of the application (business logic) process, which commu-
nicates over a local pipe (via library calls) with a wrapper process
running on the same machine. The wrapper is provided and is the
same program for all components. It is implemented in C++, but
applications may be written in any language for which there exists
a language binding. Bindings are simply ports to the appropriate
language of the library which talks to the wrapper. The wrapper is
responsible for maintaining all connections to other components.

Figure 4 SBUS interaction paradigms, encapsulating both
stream and client-server based interactions

It is important for healthcare applications that
the infrastructure supports a range of interaction
paradigms. Thus, SBUS was designed to support clien-
t/serverand stream-based interactions. An endpoint
takes an interaction mode: either a client (the query
issuer) or server (returning a result); or for stream
communications, either a source (producer) or sink
(consumer). Fig. 4 illustrates the directly supported
interaction paradigms. Mappings only occur between
endpoints with corresponding types and interaction
modes, i.e. sources with sinks (possibly 1-to-many), or
clients with servers.

Communication is naturally peer-to-peer and thus
the infrastructure is inherently decentralised. Again,
this is to provide the building blocks; more complex
interaction models can be built where required. For in-
stance, it is simple to implement pub/sub (event-bus)
functionality and message-queue brokers to enable in-
direct and asynchronous communication. Such flexibil-
ity is important in supporting pervasive healthcare.

Resource discovery

We have described how resource discovery is a sig-
nificant concern for emerging healthcare, due to the
variability of the computing environment. Components
(including policy engines) must be able to find dynam-
ically the appropriate components to interact with,
when and where necessary.

For a connection, one requires the network address of
the component with which to interact. Resource Dis-
covery Components (RDCs) assist by maintaining a
directory of active (registered) components in the en-
vironment. A component registers with an RDC so it
is discoverable by others. The RDC provides a lookup
service returning the addresses for components who
match a query, somewhat similar to DNS. Components
register their metadata with RDCs—each describing it-
self, its functionality, and data handled—thus enabling
powerful lookup queries.

The lookup query constraints tend towards two cat-
egories:

Identity: Concerns component specifics, such as its
class (named-type), instance-name, author, owner, or
public key (i.e. when seeking one specific component).
Data: Concerns the data that the component offers,
based on endpoint types, interaction modes, etc.

The purpose of the lookup queries is to facilitate the
flexible discovery of relevant components at runtime,
based on the data they serve, aspects of their identity,
or some combination thereof. Thus such constraints
can apply in combination. The constraints are encap-
sulated within a mapping operation, so that rather
than connection requests necessarily being address-
based, they can also be metadata-based. Such queries
could look for a component with a particular name (of
a particular public key), or any component serving a
particular video data, or a component owned by ‘Ward
1’ that serves patient administration data, etc.

For further flexibility, we have also explored schema
negotiation, which aims to enable communication be-
tween components whose endpoint type schemas only
partially match (see [47] for details). This involves dis-
covery query operators that compare of the endpoint
type structures of a potential connection, to determine
whether a connection can be agreed. If so, SBUS will
automatically convert incoming messages into the for-
mat the component expects.

Singh and Bacon Page 14 of 19

This represents only our initial steps regarding ne-
gotiation,[11] requiring guidance of the attributes to
negotiate. The ability to take account of event seman-
tics enables more powerful, automated interoperability
functionality [17]. However, as our initial focus is on
SBUS specifics, our approach is an attempt to balance
the advantages of strong typing with the flexibility re-
quired for dealing with different environments. Such
functionality is useful for policy designers who have
some knowledge about the components needing to in-
teract; allowing communication that would not other-
wise be possible.[12] This is not unrealistic, as there
may be some knowledge of the components that could
interact; for instance, a user buying new sensor kit, or
a hospital by way of procurement.

There may be any number of RDCs in an operating
environment. RDCs may be federated and replicate
information, e.g. across a national health service. Oth-
ers may operate within a specific scope, dealing only
with a particular set of components, such as those in
a patient’s house. Again, it is important not to im-
pose any structure on the operating environment; but
rather to allow any structuring to come from user re-
quirements. For instance, there may be a number of
RDCs in the same environment, several cooperating
to manage the lower-level concerns for components of
a large-scale distributed application, and one to handle
the user-facing services.

The location of an RDC must be known/discoverable:
perhaps by running at a well-known address; infras-
tructure providing the address on connection (e.g.
through DHCP options at a low-level, or a policy-
engine at a higher level); or by prior knowledge if de-
liberately obscured. A component maintains a list of
RDCs with which it interacts, which is changeable at
runtime.

SBUS is decentralised, RDCs exist only to aid in-
teractions. Discovery without RDCs is through inspec-
tion, where a component is probed to retrieve informa-
tion via its endpoints and connected peers, enabling
service discovery by trawling a connectivity graph.
This is useful when an RDC is unavailable, or inap-
propriate.

To reiterate, SBUS aims to provide a number of dif-
ferent discovery capabilities that can be leveraged as
appropriate, in an attempt to address the inherent
variability of the emerging systems environment.

SBUS also provides mechanisms to manage discon-
nections and failures, the technical specifics are given
in [47]. We mention this as dynamic reconfiguration

[11]See [49] for a survey of various techniques.
[12]By policy designers we mean those who manage
the environment or user preferences and/or system
deployment—not general application developers.

around failures are crucial for pervasive health, for ex-
ample, in providing a seamless/continuous service to
the sick and vulnerable.

6.3 Security (requirement 3, of §3.3)
The SBUS security model enables the protection and
control of middleware operations. These complement
application-specific security mechanisms, e.g. clinician
log-on services, or biometric protection for mobile de-
vices. The security mechanisms fall into three cate-
gories:
Transmission. Given SBUS is peer-to-peer, control
is intuitive because communication is directed. This
differs from an event-bus approach where a shared
communication channel potentially allows many com-
ponents to see the same message. To protect the
data (messages) and metadata (e.g. protocol state)
from eavesdropping at lower network layers, Trans-
port Layer Security (TLS) [50] is used. Before any
SBUS communication, components exchange certifi-
cates, which after validation are used to create a secure
communication channel.
Access Control. Each component maintains an ac-
cess control list (ACL) for each endpoint describing
the components that may connect. A mapping is es-
tablished only if each peer authorises the other.

All privileges can be dynamically changed; when
this occurs, all mappings are examined to determine
whether they remain authorised—if not, the connec-
tion is closed.

Access control policy is defined for a component by
its class (self-described type), instance name and/or
public key. This enables a range of specificity, allow-
ing security policy and component discovery queries
to apply to a particular component, or a group. Cou-
pling component identity to certificates enables strong
authentication, which is important to ensure that the
access control policy is applied to the correct compo-
nents.

The result is a regulated namespace, which is appro-
priate for healthcare; e.g. if the name of the compo-
nent should encapsulate a patient-ID, instance names
must be governed. This is important in environments
such as healthcare where data is inherently sensitive.
If components do not specify a certificate, and thus
cannot be authenticated, by default they may only in-
teract with remote endpoints without access control
constraints (world-readable).

Of course, the ACL can be extended to incorporate
other component metadata or even other authentica-
tion systems.
Filtering: There are cases where a particular compo-
nent should only receive some of the messages emitted
from an endpoint. To effect this, filters can be imposed

Singh and Bacon Page 15 of 19

map(map params) Establishes a mapping between endpoints.
unmap(map params) Terminates a mapping.
divert(divert params) Moves an endpoint’s mapping(s) to another component.
subscribe(filter) Changes a mapping’s content-based filter(s).
privilege(ac policy) Alters an endpoint(s)’ access policy.

Table 1 SBUS reconfiguration functions

(by parties external to the communication) on a map-
ping to select the messages transmitted. In this way,
the filter acts as an authorisation rule evaluated in the
context of each message, based on its content.
Protecting discovery: There will be instances where
even the existence of a component may be sensitive,
e.g. services relating to sexual health. A component
can avoid being discovered, by electing (or being told)
not to register with an RDC. However, this may pre-
clude important interactions. An RDC maintains ac-
cess control policy to dictate the components that may
register and query, which is useful where an RDC is
responsible for a particular grouping. However, more
flexible, granular controls are also required. As such,
the local RDC mirrors (where appropriate) the ACLs
of its registered components. These are used to filter
the results of a discovery query, so that only details of
accessible components are returned by a query.

Discovery by inspection can reveal sensitive infor-
mation. For this, SBUS provides two forms of control.
First, a component maintains access control policy re-
stricting the components that may inspect it. Secondly,
a component can dictate whether its existence is re-
vealed to others in an inspection operation.

Though security by obscurity, these measures help
prevent inadvertent discovery of services, providing an
extra hurdle for the malicious. Of course, the access
control regime still protects the data and component
metadata even if an address is known.

6.4 Reconfiguration (requirement 4, §3.4)
Runtime reconfiguration is crucial to supporting emerg-
ing health services, and was the fundamental concern
in designing SBUS. Table 1 presents the SBUS recon-
figuration API, which a component uses to change its
state. SBUS ensures that all related operations are
performed, e.g. that removing a privilege closes con-
nections that are no longer authorised, and that the
RDC is informed of the privilege change.

Third-party initiated reconfiguration
A key contribution of SBUS is that it enables third-
party initiated, or remote reconfiguration, where a
component effectively ‘invokes’ the SBUS operations
of another. This makes it possible to instruct com-
ponents on how and when to behave; e.g. to map or
unmap, update privileges, apply filters, etc.

Such functionality is implemented through control
messages. Each component has a set of default con-
trol endpoints that directly correspond to the recon-
figuration API (Table 1). If a component receives a
control message, it will perform the relevant operation
according to the control message’s parameters; this is
equivalent to self-invocation of the operation. The se-
curity mechanisms ensure that control messages are
only acted on when issued by appropriately trusted
peers.

Fig. 5 illustrates a component instructing another to
undertake a mapping (step 1). Here the control mes-
sage forces an RDC query (step 2), though passing the
network address avoids this step. The component, as
instructed, then establishes the mapping (step 3).

!!!!!"#$! !"#$%"%"$"$%"%$"$"%%$"%"$%"&!"#$%"%"$"$%"%$"$"%%$"%"$%"&!&%&'!

!"#$%"%"$"$%"%$"$"%%$"%"$%"&'&
()*+,)-&./%01&

!"#$%"%"$"$%"%$"$"%%$"%"$%"&%('!)*+!

%,'!-))230&

4/"56+7086%&
9&:;&<&

4/"56+7086%&
9&:;&<&

)-../0-!123-4/=&
$),&8%(>&8*#0)?*+&56789:6;.<!8?+>8,&(-?8*+@&

"8,A8,@&")3,(8@&),&"?*2&

56789:6;!)/88:60.<!!
/%+(>?*5&"(>8/%&

)-../0-<!!
/%+(>8"&"(>8/%&

/3-B0-8&
/%00?*5"&

$94896-6;<!!
C*&DEFD&

8*%G-8#&0,)(8""&

"-.9=>2-!#:.29?->@!$94896-6;.&

,85?"+8,&&
/8+%#%+%&

.H1&I38,7&$),&()/0)*8*+"&JJ&
KK&.L1&M%##,8""8"N&

Figure 5 Third-party initiated mapping

It is this capability that enables powerful and flexi-
ble policy enforcement. Further, as any component can
influence another, it allows decentralised control. Such
an approach is crucial to realising the vision of perva-
sive healthcare (for example, it underpins the function-
ality of Fig. 2). This is because it enables application-
independent support, where data and components may
be used for a number of purposes; at a high-level to
meet user and application-level goals, as well as at the
system level, for service composition, connection man-
agement, etc.

7 Policy Enforcement
Policy encodes particular goals. Its role is to regulate,
coordinate, control and manage a system, by perform-
ing actions in the particular circumstances. It is SBUS’
third-party reconfiguration capability that paves the
way for application-independent and cross-application
policy enforcement. That is, policy actions achieve
goals through executing SBUS reconfiguration oper-
ations.

In §4 we described the general categories of policy ac-
tions relevant to care, which in SBUS include: reconfig-
uration, involving the management of components, e.g.
altering mappings, privileges, and filters; messaging—
generating and transmitting new events and alerts; and

Singh and Bacon Page 16 of 19

policy management selecting (or de/activating) the ap-
plicable ruleset.

SBUS provides the mechanism for any component to
(potentially) affect another. This means, for example,
a distributed application can control its components as
it deems appropriate. However, as discussed in §4, to
assist in managing complex environments and inter-
actions, and to deal with cross-application concerns,
it is useful to have components dedicated to policy
specifics.

To explore policy enforcement, we implemented two
policy engines that aim at different environments. One
approach was to integrate policy engine functionality
into a relational database, the other more lightweight,
designed to run on a mobile device. The reasoning was
to demonstrate a powerful, expressive policy engine,
suitable for managing the components belonging to
a particular systems environment such as a hospital,
surgery or patient’s home; while the mobile policy en-
gine encapsulates an individual’s preferences, to gov-
ern the interactions between their mobile device and
components in their surroundings.

Both approaches defined policy in ECA rules, where
each rule embodies a specific action, to be applied in
response to a particular happening. Thus, high-level
policy is encoded, and the response automatically ef-
fected, through a set of rules.

7.1 Database policy engine
Databases are highly amenable to policy enforcement
capabilities. Firstly, databases operate across applica-
tions, enabling indirect and asynchronous communica-
tion between components. More importantly, systems
require persistence. Coupling policy enforcing capa-
bilities with databases allows policy to leverage the
rich representation of state and context encapsulated
within the datastore.

We built policy engine functionality into a database
by first making the database an SBUS component
(see [47]). Relations were defined between endpoints
and table schemata, so that a database tuple converts
(in a type-safe manner) to an SBUS message and vice-
versa to enable the sending and receiving of messages.
Policy rules were then implemented as database trig-
gers (ECA rules), where the enforcement conditions
referenced tables—perhaps corresponding to an end-
point (incoming message), or a more complex state
representation. The database rules engine would then
enforce these on the relevant happening, taking the
defined action which could include creating and trans-
mitting a message, altering the triggers to change the
active policy set, updating state representations by up-
dating/persisting data, or effecting a reconfiguration
through sending SBUS control messages.

Initially, the database policy engine was developed
for managing particular environments, for instance,
to control interactions between systems (and people)
perhaps within a hospital, particular ward, or patient
home. This is because a database requires a server, and
thus is part of a relatively fixed infrastructure. How-
ever, with the increase in the availability and preva-
lence of cloud services, such an engine could also facil-
itate policy enforcement at a number of locations.

7.2 Mobility: Lightweight engines
Some components are mobile, moving between differ-
ent operating environments and infrastructures; e.g.
from leaving a car to entering a hospital. Policy en-
gines can enforce user preferences to manage and gov-
ern the interactions with the particular environment,
e.g. automatically connecting a nurse to a patient’s
vital-signs sensor when entering their home.

We implemented a lightweight policy engine on An-
droid to manage the interactions between components
on the device in its physical environment. Developed
as a service component, it maintains a simple rules
engine, where rules can be defined to execute on par-
ticular events. Though the engine could respond to any
event, our focus was changes in location. On moving to
a new environment, as determined by OS-events (e.g.
connecting to a new network) or higher-level event def-
initions (e.g. sensor-data indicating a location change),
the service automatically applies rules to manage and
dis/connect components (typically those on the device
with those in physical proximity) as appropriate.

7.3 Policy considerations
Since policy actions are triggered by changes in state, a
policy engine needs the ability to detect, or be told of,
state changes relevant to the policies it is responsible
for enforcing. Our approach leverages the existing mes-
saging capability to also provide both the representa-
tion of context (as events) and policy actions (as mes-
sages and reconfiguration instructions through control
messages). Such an approach precludes the need to
implement any specific policy layers, or particular con-
straints over the infrastructure and its design. Policy
engines are components like any other and render the
middleware policy and context aware.

The event processing capabilities of the middleware
directly impact the flexibility and expressiveness of the
policy rules. That is, a system only capable of deal-
ing with primitive events is far more limited than one
employing composite events [51] or other context mod-
elling techniques [40] that can correlate and compose
events within and across message streams. Such capa-
bilities may be built into policy engines, and/or imple-
mented in other components (such as sensor gateways)

Singh and Bacon Page 17 of 19

that report the relevant state transitions to policy en-
gines.

Without event semantics, higher-level components
would need to understand and interpret the data. Rea-
soning over events and event flows facilitates data
transformation and informed choices, e.g. in service
discovery. As §5.4 mentions, while the role of seman-
tics is clear, it remains an ongoing challenge in health-
care. Interoperability is difficult, even between the two
prominent clinical coding schemes [52]: HL7,[13] and
SNOMED.[14] There are groups dedicated to such is-
sues, including OpenEHR[15] (see also [53]), and In-
tegrating the Healthcare Enterprise,[16] though these
focus on the clinical perspective. Issues of semantics
compound in the pervasive health environment, given
the enormous range of potential components, interac-
tions, and usage scenarios.

Policy conflict is a concern, particularly in an en-
vironment with dynamically changing users and ser-
vices, and with numerous policy engines. We have pre-
viously considered issues of conflict detection and res-
olution for trigger-based policy [54]. Thus far we have
encountered few conflicts primarily because in prac-
tice, there will be a number of policy engines (oper-
ating within different scopes)—likely linked to com-
ponent/infrastructure ownership—each having specific
concerns. For instance, a policy engine might manage
the components in an hospital ward; policies relating
to that ward will be centrally defined. Similarly, a user
will have their own policies that dictate how the local
components (on their phone) interact with an environ-
ment; e.g. a doctor may wish to interact with compo-
nents in a ward, but this only with those components
that the environment (here, the ward’s policy engine)
authorises.

Note that our focus thus far has been generic, pro-
viding the mechanism for policy enforcement that is
capable of effecting a wide range of goals. Further work
is required to explore effective mechanisms (interfaces)
for users to author policy. In practice, policy authoring
and rule derivation will necessarily be determined by
the applications being targeted, depending on likely
users, components, etc. For more on policy specifica-
tion issues, see [55].

There is generally a tradeoff between flexibility and
efficiency. Thus, one intuitively expects policy enforce-
ment to entail performance overheads. This is because
such an approach involves policy engines, and the asso-
ciated monitoring of state changes, evaluating policies
and taking relevant actions. Firstly, it is important to

[13]www.hl7.org (21 Mar 2014)

[14]www.ihtsdo.org/snomed-ct (21 Mar 2014)

[15]www.openehr.org (21 Mar 2014)

[16]www.ihe.net/ (21 Mar 2014)

note that healthcare presents an environment that op-
erates at human speed. Therefore, in many situations,
any degree of automatic response will be more than
adequate, especially given the status-quo in which in-
terventions tend to be manual, with little automated
assistance, e.g. using a pager or telephone.

We explored some overheads with respect to policy
enforcement—see [47] for details of the experiments—
which indicate the practicality of policy-based coordi-
nation, and third-party initiated reconfiguration. We
found for a particular scenario involving the database
policy engine, that the overheads of policy enforce-
ment were lost in the network variability when clients
components connected through a particular wireless
network; with a small statistically significant overhead
(∼5ms out of a ∼35ms operation) for the same sce-
nario where components connected through a particu-
lar Ethernet network. This is important, given wireless
networks will be a predominant medium for commu-
nication in pervasive care environments. Our Android
implementation, for a particular scenario, was signif-
icantly slower at rule evaluation for a particular sce-
nario (∼75ms to enforce a policy, cf. ∼12.5ms for the
database policy engine).

We mention these results as they indicate that per-
formance will depend on the underlying infrastructure,
and that policy may not necessarily introduce a tangi-
ble overhead. Ultimately, any timing information will
vary according to the implementation and the envi-
ronment: depending on factors such as the physical
infrastructure, OS (e.g. Android), network load, cross-
traffic, database size, message sizes/frequency, number
of rules, users and components, etc.

Such factors must be considered by those designing
for emerging care environments, if their system has
specific performance requirements. For example, sys-
tems that require a particular service level, e.g. a pace-
maker system, may be better developed as a bespoke,
closed system to ensure the performance necessary for
safety. Interfaces (or gateways) can still provide for
integration of the specialist system with the general
systems environment, for non time-critical operations
(e.g. parameter tweaking). However, many health in-
terventions occur minutes or even hours after inci-
dent detection; certainly, an automated response is a
movement in the right direction. Indeed, our particular
experiments resulted in sub second functionality (see
[47]), which opens up real healthcare possibilities.

The focus of our policy work is to bring together sys-
tems in a more general manner, focusing on flexibility
and adaptability to bring functionality and efficiencies
previously not available.

Singh and Bacon Page 18 of 19

8 Summary and concluding remarks
Healthcare is undergoing an evolution, driven and sup-
ported by the health profession, government initiatives
and technological innovation. The healthcare systems
environment will thus involve an increasing number of
applications, systems and services. Users, be they clin-
ical, informal carers or patients, will leverage these in
various ways, to provide a number of different health
outcomes relevant to their preferences and circum-
stances.

Information, communication and management capa-
bilities underpin the vision of pervasive, preventative
and personalised healthcare. In this paper we have pre-
sented and discussed the requirements for middleware
to support this. We see the open challenges as follows:

1 The need to incorporate existing and future sensor
technologies into a generic system architecture.

2 The need to move towards an open systems ap-
proach by developing applications without embed-
ded policy and predefined interactions.

3 The need to support policy authoring on behalf
of many categories of individuals.

4 The need to develop an event-based middleware
architecture to achieve:
• Response to changes in people’s and environ-

mental contexts.
• Support for a wide range of communication

patterns.
• Support for policy engines as middleware ser-

vice components.
• Support for policy-driven, dynamic reconfig-

uration of components by third parties, when
authorised.

• Support for security and privacy.

Our work on the SBUS middleware infrastructure
and policy engines demonstrates the feasibility of this
open systems approach. This moves beyond providing
‘systems-level-glue’ to actively driving new functional
possibilities through high-level, user-specified prefer-
ences, thus making the vision of pervasive, preventa-
tive and personalised healthcare a real possibility.

Competing interests

The authors declare that they have no competing interests.

Author’s contributions

This article represents our work and experience over many years in

infrastructure for supporting health services. Both authors contributed with

respect to the concepts, technical work and text provided in this paper, and

both have read and approved the final manuscript.

Acknowledgements

We acknowledge the support of the UK Technology Strategy Board and the

Engineering and Physical Sciences Research Council for the PAL project,

grant TP/AN072C, 2009-12.

References
1. World Health Organisation, US National Institute of Aging: Global

health and ageing (2011)

2. Department of Health (UK): Improving Chronic Disease Management

(2004)

3. World Health Organisation: Innovative Care for Chronic Conditions

(2002)

4. Department of Health (UK): NHS 2010–2015: from good to great.

Preventative, people-centred, productive. (2009)

5. W.R., H.: Medical informatics: Improving health care through

information. Journal of the American Medical Association 288(16),

1955–1958 (2002)

6. Department of Health: Supporting people with long term conditions to

self care (2006)

7. European Science Foundation: Personalised Medicine for the European

citizen (2012)

8. Franko, O.I., Tirrell, T.F.: Smartphone app use among medical

providers in ACGME training programs. Journal of Medical Systems

36(5), 3135–3139 (2012)

9. Baum, P., Abadie, F.: Strategic intelligence monitor on personal health

systems phase 2, market developments - remote patient monitoring

and treatment, telecare, fitness/wellness and mhealth. JRC-IPTS

Working Papers JRC71141, Institute for Prospective and Technological

Studies, Joint Research Centre, European Commission (2012)

10. Rashidi, P., Mihailidis, A.: A survey on ambient-assisted living tools for

older adults. IEEE Journal of Biomedical and Health Informatics 17(3),

579–590 (2013)

11. Mihailidis, A., Bardram, J.E.: Pervasive Computing in Healthcare. CRC

Press, FL, USA (2010)

12. Bernstein, P.A.: Middleware: a model for distributed system services.

Communications of the ACM 39(2), 86–98 (1996)

13. Payne, K.F.B., Wharrad, H., Watts, K.: Smartphone and medical

related app use among medical students and junior doctors in the

United Kingdom (UK): a regional survey. BMC Medical Informatics

and Decision Making 12, 121 (2012)

14. Next Generation European Ambient Assisted Living Innovation

Alliance: AALIANCE2 Roadmap (2013)

15. Groves, P., Kayyali, B., Knott, D., Van Kuiken, S.: The big data

revolution in healthcare: accelerating value and innovation. New York

(NY): McKinsey Global Institute (2013)

16. Mattern, F., Floerkemeier, C.: From the internet of computers to the

internet of things. In: From Active Data Management to Event-Based

Systems and More, pp. 242–259. Springer, Berlin, Heidelberg (2010)

17. Blair, G.S., Bennaceur, A., Georgantas, N., Grace, P., Issarny, V.,

Nundloll, V., Paolucci, M.: The Role of Ontologies in Emergent

Middleware: Supporting Interoperability in Complex Distributed

Systems. In: ACM/IFIP/USENIX Middleware 2011, Springer LNCS

7049, pp. 410–430 (2011)

18. Bacon, J., Eyers, D., Pasquier, T., Singh, J., Papagiannis, I., Pietzuch,

P.: Information flow control for secure cloud computing. Transactions

on Network and Service Management, Special Issue on Cloud Service

Management PP(99), 1–14 (2014)

19. Chakravarthy, S.: Early active database efforts: A capsule summary.

IEEE Transactions on Knowledge and Data Engineering 7(6),

1008–1010 (1995)

20. Issarny, V., Blair, G.: Guest editorial: Special issue on the Future of

Middleware (FOME’11). Journal of Internet Services and Applications

3(1), 1–4 (2012)

21. Sadjadi, S.M., McKinley, P.K.: A survey of adaptive middleware.

Michigan State University Report MSU-CSE-03-35 (2003)

22. Kon, F., Costa, F., Blair, G., Campbell, R.H.: The case for reflective

middleware. Communications of the ACM 45(6), 33–38 (2002)

23. Ibrahim, N., Le Mouël, F.: A survey on service composition middleware

in pervasive environments. International Journal of Computer Science

Issues 1, 1–12 (2009)

24. Kalasapur, S., Kumar, M., Shirazi, B.: Dynamic service composition in

pervasive computing. IEEE Transactions on Parallel and Distributed

Systems 18(7), 907–918 (2007)

25. Ben Hamida, A., Kon, F., Ansaldi Oliva, G., Dos Santos, C.E.M.,

Lorré, J.-P., Autili, M., De Angelis, G., Zarras, A., Georgantas, N.,

Issarny, V., Bertolino, A.: The future internet, pp. 81–92. Springer,

Singh and Bacon Page 19 of 19

Berlin, Heidelberg (2012). Chap. An Integrated Development and

Runtime Environment for the Future Internet

26. Little, M., Shrivastava, S.: Another look at the middleware for

dependable distributed computing. Journal of Internet Services and

Applications 3(1), 95–105 (2012)

27. White, J., Dougherty, B., Schantz, R., Schmidt, D.C., Porter, A.,

Corsaro, A.: R&D challenges and solutions for highly complex

distributed systems: a middleware perspective. Journal of Internet

Services and Applications 3(1), 5–13 (2012)

28. Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless

sensor networks: A survey. Computer Networks 38(4), 393–422 (2002)

29. Chen, M., Gonzalez, S., Vasilakos, A., Cao, H., Leung, V.C.: Body

Area Networks: A Survey. Mobile Networks and Applications 16(2),

171–193 (2011)

30. Wang, M., Cao, J., Li, J., Das, S.K.: Middleware for wireless sensor

networks: A survey. Journal of Computing Science and Technology

23(3), 305–326 (2008)

31. Rajagopalan, R., Varshney, P.K.: Data aggregation techniques in

sensor networks: A survey. IEEE Communications Surveys & Tutorials

8, 48–63 (2006)

32. Leontiadis, I., Efstratiou, C., Mascolo, C., Crowcroft, J.: Senshare:

Transforming sensor networks into multi-application sensing

infrastructures. In: European Conference on Wireless Sensor Networks,

pp. 65–81 (2012)

33. Marinovic, S., Craven, R., Ma, J., Dulay, N.: Rumpole: A Flexible

Break-glass Access Control Model. In: Proceedings of the 16th ACM

Symposium on Access Control Models and Technologies (SACMAT),

pp. 73–82 (2011)

34. Sloman, M.: Policy driven management for distributed systems.

Kluwer, Journal of Network and Systems Management 2, 333–360

(1994)

35. Twidle, K., Lupu, E., Dulay, N., Sloman, M.: Ponder2 - A policy

environment for autonomous pervasive systems. In: IEEE Symposium

on Policy for Distributed Systems and Networks (Policy’08), pp.

245–246 (2008)

36. Minsky, N.H., Ungureanu, V.: Law-governed interaction. ACM

Transactions on Software Engineering Methodologies 9(3), 273–305

(2000)

37. Matthys, N., Huygens, C., Hughes, D., Ueyama, J., Michiels, S.,

Joosen, W.: Policy-driven tailoring of sensor networks. In: Springer,

Sensor Systems and Software, S-CUBE’10, pp. 20–35 (2010)

38. Singh, J., Eyers, D.M., Bacon, J.: Disclosure control in multi-domain

publish/subscribe systems. In: ACM 5th International Conference on

Distributed Event-Based Systems, DEBS’11, pp. 159–170 (2011)

39. Wun, A., Jacobsen, H.-A.: A Policy Management Framework for

Content-Based Publish/Subscribe. In: ACM/IFIP/USENIX Middleware

2007, Springer LNCS 4834, pp. 368–388 (2007)

40. Bettini, C., Brdiczka, O., Henricksen, K., Indulska, J., Nicklas, D.,

Ranganathan, A., Riboni, D.: A survey of context modelling and

reasoning techniques. Pervasive and Mobile Computing 6(2), 161–180

(2010)

41. Baldauf, M., Dustdar, S., Rosenberg, F.: A survey on context-aware

systems. International Journal of Ad Hoc and Ubiquitous Computing

2(4), 263–277 (2007)

42. Bennaceur, A., Blair, G., Chauvel, F., Gang, H., Georgantas, N.,

Grace, P., Howar, F., Inverardi, P., Issarny, V., Paolucci, M., Pathak,

A., Spalazzese, R., Steffen, B., Souville, B.: Towards an architecture

for runtime interoperability. In: Leveraging Applications of Formal

Methods, Verification, and Validation. Lecture Notes in Computer

Science, LNCS 6416, pp. 206–220. Springer, Berlin, Heidelberg (2010)

43. Paolucci, M., Souville, B.: Data interoperability in the future of

middleware. Journal of Internet Services and Applications 3(1),

127–131 (2012)

44. Campbell, J.R., Carpenter, P., Sneiderman, C., Cohn, S., Chute, C.G.,

Warren, J.: Phase II evaluation of clinical coding schemes:

Completeness, taxonomy, mapping, definitions, and clarity. Journal of

the American Medical Informatics Association 4(3), 238–251 (1997)

45. Mühl, G., Fiege, L., Pietzuch, P.: Distributed Event-Based Systems.

Springer, New York (2006)

46. Singh, J., Vargas, L., Bacon, J., Moody, K.: Policy-Based Information

Sharing in Publish/Subscribe Middleware. In: IEEE 9th Symposium on

Policy for Distributed Systems and Networks, Policy’08, pp. 137–144.

IEEE Computer Society, Palisades, NY, USA (2008)

47. Singh, J., Bacon, J.: SBUS: A generic, policy-enforcing middleware for

open pervasive systems. University of Cambridge Computer Laboratory

Technical Report (TR 850) (2014)

48. Ingram, D.: Reconfigurable Middleware for High Availability Sensor

Systems. In: ACM 3rd International Conference on Distributed

Event-Based Systems (DEBS’09) (2009)

49. Haslhofer, B., Klas, W.: A survey of techniques for achieving metadata

interoperability. ACM Computing Surveys 42(2), 1–37 (2010)

50. Dierks, T., Allen, C.: The TLS Protocol (RFC 2246). Internet

Engineering Task Force, (1999). Internet Engineering Task Force

51. Chakravarthy, S., Krishnaprasad, V., Anwar, E., Kim, S.-K.: Composite

events for active databases: Semantics, contexts and detection. In:

Very Large Data Bases, VLDB’94, pp. 606–617 (1994)

52. Benson, T.: Why interoperability is hard. In: Principles of Health

Interoperability HL7 and SNOMED. Health Information Technology

Standards, pp. 21–32. Springer, London (2012)

53. Garde, S., Knaup, P., Hovenga, E.J., Heard, S.: Towards semantic

interoperability for electronic health records–domain knowledge

governance for open ehr archetypes. Methods of information in

medicine 46(3), 332–343 (2007)

54. Singh, J.: Controlling the dissemination and disclosure of healthcare

events. PhD thesis, University of Cambridge, and Computer Laboratory

Technical Report TR 770 (2009)

55. Reeder, R.W., Karat, C.-M., Karat, J., Brodie, C.: Usability challenges

in security and privacy policy-authoring interfaces. In: Proceedings of

the 11th IFIP TC 13 International Conference on Human-computer

Interaction - Volume Part II. INTERACT’07, pp. 141–155 (2007)

