
Tutorial: Policy Enforcement within Emerging Distributed,
Event-Based Systems

Jatinder Singh
Computer Laboratory

University of Cambridge, UK
jatinder.singh@cl.cam.ac.uk

Jean Bacon
Computer Laboratory

University of Cambridge, UK
jmb25@cl.cam.ac.uk

David Eyers
Dept. of Computer Science

University of Otago, NZ
dme@cs.otago.ac.nz

ABSTRACT
Computing is becoming increasingly ubiquitous. To fully re-
alise the potential of emerging distributed systems, it must
be possible to manage and bring together (coordinate) sys-
tem components in various ways—perhaps for purposes and
in circumstances not contemplated by their designers. There-
fore, we believe that the application logic embodied in com-
ponents should be separated from the policy that specifies
where, how and for what purpose they should be used.

This paper explores how supporting infrastructure can en-
able policy, representing high-level (user) or systems con-
cerns, to drive system functionality. SBUS is a middle-
ware that supports secure, dynamic reconfiguration, provid-
ing the means for policy enforcement across system compo-
nents. We present SBUS to demonstrate the practical as-
pects and design considerations in a) making infrastructure
policy-compliant, and b) leveraging the dynamic policy en-
forcement capabilities to achieve particular functional goals.

Categories and Subject Descriptors

H.3.4 [Systems and Software]: Distributed Systems

Keywords
middleware, policy, enforcement, reconfiguration, service,
event-based systems, pervasive, security, internet of things

1 Introduction
Trends in computing are towards an ever increasing number
of system components,1 that bring new functionality, and
produce and consume more data than ever before. The key
challenge is management: the benefits come from the in-
creased ability to analyse, process and react to data when
and where appropriate. It follows that components may no
longer operate in the context of a single application, but
may be relevant to, and across, a range of services.

1We define component broadly to refer not only to a system-
level service, as is common in this area, but also to include
whole applications and services, as well as parts thereof.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the Owner/Author.
Copyright is held by the owner/author(s).
DEBS’14, May 26–29, 2014, MUMBAI, India.
ACM 978-1-4503-2737-4/14/05.
http://dx.doi.org/10.1145/2611286.2611310.

To fully realise the potential of emerging distributed sys-
tems, it must be possible to manage and bring together (co-
ordinate) components in various ways—perhaps for purposes
and in circumstances not contemplated by their designers.
For example, components developed for monitoring patients
in hospital contexts are increasingly being used in personal
health and wellbeing monitoring. This requires the ability
for cross-component control.

Therefore, we believe that the application logic embod-
ied in components should be separated from the policy that
specifies where, how and for what purpose they should be
used. In addition to flexibility, abstracting policy concerns
in this way also lowers the barrier for entry (leaving com-
ponent designers to focus on core functionality, rather than
on policy concerning potential uses and interactions), while
fewer enforcement points can facilitate policy management
and reduce the chance for errors.

Middleware today tends to manage communication and
resources pertaining to an application, at the application’s
request. In emerging systems, the environment is highly
dynamic and variable; it is not just the infrastructure and
resources underlying applications that must be configured
and managed, but also the applications themselves.

Moving forward, the major requirement for application-
supporting infrastructure is the ability to reconfigure com-
ponents dynamically in response to changing circumstances;
for example, due to some failure, or on detecting a health
emergency or a change in location or underlying network.

SBUS [27] is a middleware that has evolved to provide
such a capability, in a secure, open decentralised manner.
This allows policy enforcement components to manage and
control components (and thus various systems), when and
where appropriate—in accordance with user-defined policy.

In this paper, we present the SBUS middleware, and use it
to explore concerns regarding a) the mechanisms for making
infrastructure policy-aware and compliant, and b) leverag-
ing the dynamic policy enforcement capabilities to achieve
particular functional goals. We describe the role of policy
engines in reconfiguring systems, present two such policy en-
gine implementations aimed at different concerns, and pro-
vide practical examples to illustrate the design considera-
tions of policy-based systems. In addition, we also consider
more general requirements on emerging distributed systems,
including the need for security—particularly where policy-
based reconfiguration is involved, and the need for middle-
ware to support a range of interaction paradigms, including
stream-based as well as the more traditional request-reply.

2 The SBUS middleware

SBUS [27] is a middleware for managing interactions in dy-
namic, pervasive environments. SBUS was originally devel-
oped for city-wide transport monitoring [14, 2], and has been
extended for healthcare and assisted living scenarios [26, 4].

SBUS is an open systems framework for securely reconfig-
urable components. It has standard middleware attributes,
such as a type system, a transfer syntax, a security regime,
and resource discovery components. Other features are its
support for multiple interaction patterns and for endpoint
type negotiation.

Crucially, SBUS supports dynamic reconfiguration for the
runtime management of interactions/information flows. Not
only can applications reconfigure themselves, but they can
control the interactions of others (subject to authorisation
checks). This functionality is critical, because it provides
the mechanism for policy to effect coordination and control.

This section presents SBUS and its reconfiguration capa-
bilities, which provides the basis for policy-based manage-
ment in emerging distributed systems. We later explore how
these are leveraged to enable a policy-enforcing capability.

2.1 General overview

SBUS is a messaging middleware that is designed to be open
and flexible. No structure is imposed on system design, but
rather, it provides the ‘building blocks’ to facilitate a variety
of structures to suit those using the middleware.

!!!!!RDC! Lsdfasasfsfasafsfsaafsasfas&Lsdfasasfsfasafsfsaafsasfas&L&(1)!

Lsdfasasfsfasafsfsaafsasfas&M&
control&(map)&

Lsdfasasfsfasafsfsaafsasfas&(3)!MAP!

(2)!lookup&

@msg_type_a&
{&….&}&

@msg_type_a&
{&….&}&

Message!Schema:&
for&each&endpoint&Endpoints:!either&client,&

server,&source,&or&sink&

Endpoint!Mappings:!!
matching&schema&

Message:!!
matches&schema&mulBple&

mappings&
Component:!!

An&SBUS&
enabled&process&

Resource!Discovery!Components&

register&&
metadata&

(1)&query&for&components&>>&
<<&(2)&[addresses]&

@msg_type_a&
{&….&}&

@msg_type_a&
{&….&}&

Message!Schema:&
for&each&endpoint&Endpoints:!either&client,&

server,&source,&or&sink&

Endpoint!Mappings:!!
matching&schema&

Message:!!
matches&schema&mulBple&

mappings&
Component:!!

An&SBUS&
enabled&process&

Resource!Discovery!Components&

register&&
metadata&

(1)&query&for&components&>>&
<<&(2)&[addresses]&

Figure 1: SBUS Conceptual Overview

SBUS is a component-based messaging middleware. In
SBUS, a component represents a process (i.e. application,
service or part thereof—in line with our previous definition)
whose communication is managed by SBUS. Communica-
tion occurs through endpoints, which are essentially typed
communication ports. A component will have a number of
endpoints, which can be connected (mapped) to endpoints
of other components to enable communication (see Fig. 1).

SBUS supports a range of basic interaction paradigms
that support both request-response and stream-based com-
munication (Fig. 2), which is important as emerging systems
will have requirements for both forms of communication. An
endpoint is defined to take an interaction mode: client (re-
quest) or server (response); or for streams, either a source
(producer) or sink (consumer). Mappings occur between
endpoints whose interaction modes correspond: sources with
sinks, clients with servers.

Although SBUS is inherently decentralised, it also pro-
vides the building blocks to enable other interaction mod-
els. Therefore, while communication is peer-to-peer, pub/
sub (event-bus) and message-queue brokers are easily imple-
mented, thus enabling indirect and asynchronous communi-
cation. The SBUS distribution includes a pub/sub broker,
its core functionality implemented in only a few lines of code.

SBUS is a messaging middleware, where communication

ferent components are connected together, or mapped. All commu-
nication between components takes place via mapped endpoints.
The basic mechanism is point-to-point; components send messages
to peers directly without requiring an intermediate broker.
The architecture is therefore decentralised, apart from a resource

discovery component (RDC), which acts as the name service. The
RDC is itself implemented as a component, and there may be more
than one, to avoid central points of failure or to create different do-
mains. RDCs may be federated (in which case they exchange state)
or separate. RDCs typically run at well-known or easily guessed
addresses (such as the standard port number on a local machine).
Most components perform either filtering, merging, storage, dis-

tribution or data mining. Figure 1 shows several example compo-
nents from the road traffic monitoring domain, and a possible set of
connections between them.

Driver
reports

GPS probe
vehicle

Numberplate
recognition

History

Group
location
service

Browser
map

City
signs

Emergency
services

Mobile
phone

Calculate
congestion

Incident
detection

Pseudonymise

Road flow
speeds

Queue
lengths

Estimated
journey
times

Select
buses

Change data
format

Sensor
fault detection

History

History

State
Mobile
phone

Bus
signs

State

Inductive
loop

sensors

Sensor Process

Key:

Store View

Figure 1: Example components

4. MULTI-MODAL OPERATION
Some kinds of message oriented middleware are more suitable

for certain communications paradigms. For example, remote method
invocation systems only allow RPC style interactions, whereas Elvin,
Gryphon andMuddleware only allow pub-sub (but not RPCs). JMS,
MQ and D-Bus allow pub-sub and also messages addressed to spe-
cific targets, but no replies. CORBA, ICE, SCOP, Web Services
and RUNES are more flexible, supporting RPC as well as pub-sub.
PIRATES extends this idea by attempting to support all reason-

able forms of communication between each pair of components.
We hope that by doing so a single mechanism will suffice for all
of an application’s communication needs. Figure 2 presents a par-
tial taxonomy of interaction patterns. We start by observing that in
any pairwise interaction one end must send the first message. We
assume this is the left-hand peer on the diagram, hence the first ar-
row is always left-to-right, without loss of generality. There may or
may not be a reply. If there is no reply, the interaction is either fin-
ished (one-shot), or the originator may continue sending messages
(push-stream).
If there is a reply, then again that may conclude business (RPC),

there may be many replies (pull-stream) or the process might repeat

one-shot push-stream rpc conversation pull-stream

source / sink client / server sink / sourceEndpoints:

Paradigm:

source / sink client / server

Figure 2: Pairwise interaction patterns

(conversation). More irregular message sequences can be coerced
into a conversation by inserting empty acknowledgement messages
as appropriate. This therefore covers all the major types of message
sequence. Note that a conversation (our name for messages which
ping-pong back and forth) is not the same as repeating an RPC
interaction many times. In particular, there may be state associated
with it. Web applications need cookies because the web effectively
provides RPCs, and not conversations.
PIRATES provides all of these interaction types, with the excep-

tion of conversations, using four types of endpoint: client, server,
source and sink. Clients must be mapped to servers and sources to
sinks, but the mapping can be done by either end (e.g. a source may
set up a mapping from itself to a sink, or a sink may map itself to
the source, and likewise for clients and servers). The source-sink
mapping is many-many, and the client-server mapping is many-
one. Pub-sub interactions are provided by pull-streams.
Another important distinction is that between a sequence of one-

shot messages and a push stream. The latter makes streams first-
class objects for PIRATES, which is not the case with a normal
event broker. The presence of explicit streams makes it possi-
ble for tools to understand when two components are “connected”,
which could not necessarily be determined from a sequence of sin-
gle events. This allows the stream to be automatically remapped if
one of the components moves or terminates, for example.

5. WRAPPERS

Component

Other components

Other components

Business
Logic

Process

Wrapper
Process

Admin
Tools

Sources,
Services

Clients,
Sinks

Library PipeMappings

Endpoints

Key

Figure 3: Parts of a component

Figure 3 shows the structure of a single PIRATES component. It
consists of the application (business logic) process, which commu-
nicates over a local pipe (via library calls) with a wrapper process
running on the same machine. The wrapper is provided and is the
same program for all components. It is implemented in C++, but
applications may be written in any language for which there exists
a language binding. Bindings are simply ports to the appropriate
language of the library which talks to the wrapper. The wrapper is
responsible for maintaining all connections to other components.

Figure 2: SBUS interaction paradigms

is data centric. A message encapsulates data of a particular
type, and is often used to represent the details of an event.
Message types are described in LITMUS [14] (Fig. 3), al-
lowing expressive definitions including arrays and lists. An
endpoint is associated with a schema describing the mes-
sage type(s)2 it handles. Mappings may only occur between
type-compatible endpoints.

int name dbl name Integer, Floating point,
flg name txt name Flag (boolean), Text string,
clk name loc name Date and time, Location,
bin name Binary data,
[elt] <elt1...eltN> Optional element, Choice,
- * Foo bar Unnamed elt, Comment,
@elt ^label name Type defn, Type reference,
@"filename" Import types from file,
name { elt1 ... eltN } Structure,
name (elt) List of elt,
name (+ elt) Non-empty list,
name (N elt) Array of N elements,
name < #val1 ... #valN > Enumeration,
name1 + ... + nameN Multiple declaration

Figure 3: LITMUS type-representation syntax

Once a mapping is established, messages may be trans-
mitted. SBUS validates each message against the relevant
schema. To reduce network overhead, messages between
components are binary encoded. LITMUS type hashes are
also included, making messages self-identifying. This allows
a fast (probabilistic) type check that is stronger than a type-
ID, and removes the need for a central type authority. Appli-
cations receive message data directly through library func-
tions that can access typed attributes, and/or through an
XML representation.

SBUS allows the definition of content-based filters to se-
lect (limit) the messages transmitted. Filters are connection
specific: different filters can apply to different mappings on
the same endpoint. They are evaluated in the context of
a message, and can be changed at runtime. The language
is highly expressive [14]. Filters aid efficiency by avoiding
unnecessary transmissions, and also security, by preventing
certain consumers from receiving particular messages.

2.2 Resource discovery

Connections can only be established where network addresses
are known. To assist this, a component can register its
metadata—describing itself, its function, and data handled—
with a Resource Discovery Component (RDC). RDCs main-
tain a directory of active (registered) components, to enable
the runtime discovery of components of interest.

The RDC provides a component lookup service that re-
turns the addresses of components whose metadata match
the criteria specified in a map-constraints query. Such queries
are made up of any number of constraints, which tend to-
wards two categories:

Identity: Concerns general aspects of the component, such
as its class (named-type), instance-name, owner, author (de-
veloper), or public key (identifying one specific component).

2Client/server interactions have one message type associated
with the request, and another for the response.

Original Message Repackaged Message

<place>

<coordinates>

<position>

<longitude>0.091732</longitude>

<latitude>52.210891</latitude>

<height>19</height>

</position>

</coordinates>

<placenm>somewhere</placenm>

</place>

<location>

<gps>

<longitude>0.091732</longitude>

<latitude>52.210891</latitude>

<altitude>19</altitude>

</gps>

<city>""</city>

</location>

Figure 4: Example schema negotiation, where the
<position> type is found and converted to <gps> for
a particular component.

Data: Concerns the data (endpoint schemata) that the com-
ponent offers. Generally, mappings will only occur between
matching endpoints.

Some data constraints enable schema negotiation, which
attempts to balance the benefits of strong typing with the
flexibility required by emerging systems, e.g. in supporting
mobility (see §3.1.1). Two operators, has and similar, exist
to negotiate the local endpoint’s schema with another com-
ponent. The operators take an attribute of the local LIT-
MUS schema as an argument, typically a structure, to find
a suitable (comparable) endpoint on the peer. Has ensures
that both attribute names and types match; similar com-
pares only the attribute types.3 If agreement is possible,
SBUS will enable a connection, and automatically repack
incoming messages into the local format (Fig. 4). This func-
tionality is useful where policy designers have some indica-
tion about the components that will need to interact, but
whose data models do not directly correspond.

Of course, the location of an RDC is also important. In
addition to prior knowledge and/or running at a well-known
address, each component maintains a list of RDCs with
which it interacts. This can be changed at runtime, meaning
components can be told of the relevant RDC addresses.

In practice, there will be a number of RDCs operating
within specific scopes. Some may be federated, perhaps
replicating the directory information across a global enter-
prise. Others might operate in a far more limited scope, e.g.
dealing only with components in a ward or patient’s house.
Any structuring will be defined by the particular application
domain. For example, one could imagine a number of RDCs
in the same physical space: several cooperating to manage
large-scale distributed application, and one managing end-
user services.

RDCs are optional components, existing only to assist
the management of components. Discovery is also possible
through inspection, where components send probe messages
to connected peers to obtain a view of available components
by trawling a connectivity graph.

2.3 Disconnections and Failures

In a dynamic environment, connectivity, disconnections and
failures must be managed. SBUS does not attempt to pre-
scribe how disconnections are handled. This is because the
proper response will depend on the application, environment
and circumstances. Thus, SBUS provides the mechanisms
to enable policy to detect and respond to disconnections/
failures as appropriate.

SBUS, through RDCs, can automatically connect a com-
ponent to a peer serving similar data [14]; although this is

3See [12] for a survey on metadata interoperability.

not always appropriate. Again, SBUS provides the building
blocks for more complex scenarios, such as those requiring
information outside component state (e.g. “two As must be
connected to a B”). This allows external components, such
as policy engines, to manage the mappings. Such an ap-
proach facilitates mobility management (§3.1.1), e.g. where
a person moves between active environments. To assist with
failures each endpoint appends a sequence number to each
message and mapping, enabling message buffering and re-
play where necessary. Again, broker components (such as
message-queues) can be built to manage data distribution
and consumption at a higher level.

It is important that RDC registries are accurate. SBUS
manages this in two ways: 1) components automatically in-
form RDCs when a peer unexpectedly disconnects; 2) each
RDC uses a (configurable) periodic ‘heartbeat’ to ensure the
liveness of the registered components.

2.4 Security

The SBUS security model enables governance and control
over middleware operations. These work to complement any
application-level security mechanisms that may be in place,
such as login services, biometric readers, etc.

2.4.1 Access control

Middleware must provide the means to protect data in
transit. Control is intuitive in SBUS, given communica-
tion is peer-to-peer; as opposed to an event-bus or other
shared communication channel where potentially a number
of components see the same message. SBUS uses Trans-
port Layer Security [11] to establish a secure communication
channel between components. Components must exchange
and validate certificates before any communication to pro-
tect both messages and protocol state. Unsecured (certifi-
cateless) communication is possible, but both peers are made
aware and must agree to interact in such a manner.

Regarding access control, each endpoint is associated
with an access control list (ACL) that describes the compo-
nents that may interact. On connection, each component
will consult its ACL to decide if the peer is authorised, a
mapping established only if each component authorises the
other. Should privileges change, any active mappings are re-
examined, with the connection closed if the particular peer
is no longer authorised.

Access control policy refers to the metadata of the com-
ponent, currently its class, instance name and/or public

key.4 This allows the ACL to vary in specificity, from ap-
plying to a specific component or a larger set. For strong
authentication, and to ensure that access control targets the
correct components, we couple identity information to cer-
tificates, verifiable through TLS. This results in a regulated
namespace, which can be useful in particular application do-
mains, e.g. in healthcare to regulate the components whose
identities are tied to a particular patient-ID [26]. If a com-
ponent cannot be authenticated (i.e. it lacks a certificate),
it may only interact with open (world-readable) endpoints.

To control access to particular data, filters can be imposed
on a mapping to select the messages suitable for transmis-
sion. This works as an authorisation rule that is evaluated
on message content.

4This can easily be extended to include other attributes of
component metadata, or perhaps tokens relating to other
authentication systems.

2.4.2 Secure discovery

Sometimes there are situations where knowledge compo-
nent’s existence may be sensitive, e.g. in a healthcare con-
text, those relating to sexual health. Components can hinder
discovery by electing not to register with an RDC or limiting
inspection operations, though this may preclude important
interactions.

RDCs have two mechanisms for controlling discovery op-
erations. Firstly, an RDC has access control policy defining
who may register and query. Secondly, an RDC mirrors the
ACLs of its registered components, which is enforced against
the results of a discovery query. This means a component
that issues a discovery query will only receive results for the
components whose endpoints it is authorised to access.

To regulate inspection operations, a component a) main-
tains access control policy restricting those that can issue
inspection queries, and b) can dictate whether its peers are
allowed to reveal its existence in inspection operations.

Though these approaches provide security by obscurity,
protecting discovery mechanisms helps prevent accidental
disclosure, and adds an extra hurdle for the malicious. In
any case, the access control mechanisms still operate to pro-
tect the data, even if the component is known.

2.5 Database integration

Most systems require persistence, with relational databases
being commonplace. Interacting with a database requires
much knowledge about its specifics, including the vendor,
its location, relevant driver(s), and the structure of the data
contained. This is inappropriate for the environment de-
scribed, where often a component will not know in advance
if, when, and where data is persisted, nor how data is repre-
sented in the database, which underpins the ability to query.

We therefore developed SBUS-PG to allow components
to take advantage of database functionality, purely through
the use of messages. SBUS-PG integrates SBUS and Post-
greSQL, by associating a database instance with a compo-
nent (proxy) to manage SBUS interactions. It can auto-
matically translate the relevant database objects into SBUS
message types, accounting for relations, e.g. where foreign
key constraints translate to nested LITMUS structures, cus-
tom types, etc. (Fig. 5). Marshalling between tuples and
messages is facilitated as the systems are written in C/C++.

PostgreSQL Table SBUS Type Definition

CREATE TYPE

complex

AS (Re float8, Im float8);

CREATE TABLE

FourierTransform (

‘label’ varchar(20) NOT NULL,

‘coefficients’ complex[] NOT NULL,

‘ts’ timestamp);

@FourierTransform {

label txt

coefficients (

coefficients {

Re dbl

Im dbl }

)

[ts clk]

}

Figure 5: Mapping a table, with a complex type, to
a LITMUS schema

This integration exposes core database functionality to
other SBUS components. Inserts involve having relations
correspond to a sink endpoint, into which any messages re-
ceived on that endpoint are inserted. Selects are imple-
mented to provide continuous (source/sink) or single query
(client/server) functionality. For the continuous query func-
tionality, an SBUS source endpoint is created and linked to
a relation, so that subsequent inserts are sent as messages
to the mapped components. This is similar to pub/sub.
For client/server, stored procedures are used to implement

a traditional, single SQL query. A stored procedure is de-
fined to take query variables as parameters and return the
query result as a set of tuples. The procedure is coupled
with an SBUS server endpoint, so the request corresponds
to the query variables, and the response is the messages rep-
resenting the tuples returned from the procedure. Updates

and deletes are possible, but must be implemented through
custom stored procedures that can properly account for the
semantics of such operations.

SBUS-PG allows components to interact with the database
without the need to know the relational data structures, nor
database specifics. The data available to/from the database
is immediately visible through the types exposed by the in-
tegration component. While not part of SBUS itself, SBUS-
PG facilitates dynamic component interactions with layers
of persistence, through a seamless interface (cf. database
drivers). This will be important for emerging systems. §3.2
describes how a policy engine was built from SBUS-PG.

2.6 Runtime reconfiguration

A key feature of SBUS is its capacity for runtime configura-
tion, the API for which is presented in Table 1. Components
use this to change their state. As part of a reconfiguration
operation, all related activities are performed; for example,
changing a privilege on an endpoint will close the connec-
tions no longer authorised, and the RDC will be told to
update the relevant ACL it mirrors.

map(map_params) Establishes a mapping between
endpoints.

unmap(map_params) Terminates a mapping.
divert(divert_params) Moves an endpoint’s map-

ping(s) to another component.
subscribe(filter) Changes a mapping’s content-

based filter(s).
privilege(ac_policy) Alters an endpoint(s)’ access

policy.
rdc_addr(addresses) Changes the RDCs that a com-

ponent uses.

Table 1: SBUS reconfiguration functions

Third-party initiated reconfiguration

The key feature of SBUS in enabling policy-enforcement is
the ability for third-party, or remote reconfiguration. SBUS
essentially allows a component’s reconfiguration API to be
remotely invoked; which means one component can instruct
another on how to behave.

This is implemented by each component having, as de-
fault, a set of control endpoints that correspond to the re-
configuration API (Table 1). When a component receives a
message on a control endpoint, it performs the related recon-
figuration operation (message content defining the parame-
ters), in the same way as if the operation was self-invoked.

The process is illustrated in Fig. 6, where a component in-
structs another to undertake a mapping (1). In this example,
as the map instruction contains map constraints (a compo-
nent metadata query), it implicitly forces a RDC query to
find the address of the component to map to (2), after which
the mapping is established (3).

Given the power of third-party reconfiguration, the ac-
cess control regime also applies to control endpoints (just as
any other), to ensure reconfiguration instructions are only
actioned when received from a trusted peer.

Third-party initiated reconfiguration is crucial for enabling

!!!!!"#$! !"#$%"%"$"$%"%$"$"%%$"%"$%"&!"#$%"%"$"$%"%$"$"%%$"%"$%"&!&%&'!

!"#$%"%"$"$%"%$"$"%%$"%"$%"&'&
()*+,)-&./%01&

!"#$%"%"$"$%"%$"$"%%$"%"$%"&%('!)*+!

%,'!-))230&

4/"56+7086%&
9&:;&<&

4/"56+7086%&
9&:;&<&

)-../0-!123-4/=&
$),&8%(>&8*#0)?*+&56789:6;.<!8?+>8,&(-?8*+@&

"8,A8,@&")3,(8@&),&"?*2&

56789:6;!)/88:60.<!!
/%+(>?*5&"(>8/%&

)-../0-<!!
/%+(>8"&"(>8/%&

/3-B0-8&
/%00?*5"&

$94896-6;<!!
C*&DEFD&

8*%G-8#&0,)(8""&

"-.9=>2-!#:.29?->@!$94896-6;.&

,85?"+8,&&
/8+%#%+%&

.H1&I38,7&$),&()/0)*8*+"&JJ&
KK&.L1&M%##,8""8"N&

Figure 6: Third-party initiated mapping

the type of policy enforcement described, as it provides the
mechanism to directly control components and their inter-
actions from outside their application logic.

2.7 SBUS summary

SBUS is a component-based messaging middleware that aims
to be sufficiently flat and flexible to support a range of con-
cerns and environments. It enables secure, type-safe, client/
server and stream-based interactions, facilitates discovery,
and can seamlessly integrate with databases. Importantly, it
is dynamically reconfigurable, where operations can be insti-
gated by components external to the action. This paves the
way for policy to control and reconfigure components, when
and where appropriate—functionality that is fundamental
to supporting emerging distributed event-based systems.

3 Policy enforcement
Policy encapsulates a set of concerns, defining the actions
to take in particular circumstances to effect some outcome.
With respect to middleware, policy has traditionally con-
cerned issues of network management, resource allocation
and/or quality of service. However, as discussed, in emerg-
ing distributed systems policy may also relate to high-level
(or user) concerns. This involves both managing and coor-
dinating components, dictating how they behave, and when
they interact.

Achieving this requires control mechanisms that can affect
a component from outside its application logic. Again, such
an approach enables new functional possibilities as compo-
nents can be used/reused in various ways, determined by
users rather than only the original developers. Further, the
abstraction of policy specifics lifts the burden on components
of maintaining their own internal policy representation, and
removes the unrealistic and unmanageable requirement for
component designers to account for all potential uses and
operating environments for their component, as well as all
possible components with which it may interact. This works
to facilitate policy management, while fewer points of en-
forcement can reduce the propensity for errors.

As middleware operates across applications, it is highly
amenable to implementing such a policy enforcement capa-
bility. Middleware supporting third-party reconfiguration,
like that provided by SBUS, enables flexible policy enforce-
ment since it allows a component to be instructed by poten-
tially any other (subject to privilege) to perform a particular
middleware action.

In SBUS, the reconfiguration capabilities (Table 1) can
generally be used to: a) directly effect an interaction, e.g.
force a connection or disconnection; or b) establish the ground-
work to allow a possible future interaction, e.g. changing
privileges or visibility from an RDC.

The SBUS discovery mechanisms also help flexible policy
definition by allowing policy to refer to components: a) ex-
plicitly, i.e. a particular component, perhaps at a particular
address; or b) more generally in terms of desired proper-
ties, such as any component(s) in the environment dealing
with particular data. This means the components for which

policy applies can be determined at runtime, enabling policy
that can, for e.g., find and connect any data source of type X

to the local datastore. As this paper focuses on middleware
concerns and enforcement, we do not discuss policy author-
ing considerations here, though we have previously [25, 24].

3.1 Policy engines (PEs)

Often, policies are represented in terms of event-condition-
action rules [9], where particular events, in certain situa-
tions, trigger an action, e.g. informing medics in a medical
emergency. In SBUS, such an event can be encapsulated and
communicated within a message. The event/trigger might
result from a single message indicating some occurrence,
some processing (complex-event detection), or some other
happening (where context may occur at a higher level).

Policy actions represent the response to take. With re-
spect to a policy-based middleware, actions tend towards
three categories:
Reconfiguration: Executing a reconfiguration operation
on particular components (i.e. Table 1).
Message production: Generating messages (representing
events) to communicate some information.
Policy management: Policy applies in a particular con-
text. Therefore, state changes can alter the set of applicable
(or active) policies, e.g. relaxing privacy policies in a medi-
cal emergency to facilitate the most appropriate response.

In SBUS, any component can execute these sorts of actions,
because any component can produce a message, and thus,
has the ability to reconfigure another.

A policy engine (PE) is a service that encapsulates, and
enforces, a set of policies. In practice, we expect PEs to
maintain sets of related policies, e.g. to a particular user,
organisation, physical space, service contract, and so forth.

We now present two policy engines that we have imple-
mented, each with a different focus, to show how policy can
be practically enforced.

3.1.1 Mobile Policy Engine (MPE)

The Mobile Policy Engine (MPE) is a component built for
Android mobile devices. Its aim is to support mobility, by
managing the interactions between the components on the
device and in its (physical) environment.

An MPE maintains a set of policies (rules) that execute
on particular events. Events correspond to endpoints, such
that receiving a message triggers the policy actions defined
for that event. SBUS content-based filters can further refine
the circumstances in which the rules apply, enabling fine-
grained policy. The MPE was integrated with the Android
Remote Sensing Service,5 allowing rules to be defined for any
of the 40+ sensor/event streams from an Android device.6

Our motivation for developing the MPE was to manage
mobility: components will need to adapt as the device moves
between different operating environments. This aims at pro-
viding more than just seamlessness, as it is often necessary
to change functionality and the associated goals given the
new environment, e.g. certain things should happen when
someone enters their home, which are different from when

5https://play.google.com/store/apps/details?id=
com.airs
6Other events can be integrated simply by adding a new sink
endpoint to the MPE, against which policy can be defined.
This allows the integration of complex event detectors, signal
processing modules, advanced positioning systems, etc.

they enter a shopping mall. Our focus was therefore on
related events, such as a change in network and/or the pres-
ence of new RDCs. Policies would automatically connect
device-components to relevant components in the new en-
vironment, and inform applications of the change to allow
them to adapt.

This work was part of the motivation for schema negotia-
tion (described in §2.2), where components want particular
data, but do not necessarily know the identity specifics or
availability of the components in the new environments.

3.2 Database policy engine (DBPE)

Databases are ideal for integrating PE functionality. This is
because most environments will require some form of persis-
tence, if only for audit. Adding policy engine capabilities to
a database means fewer overall components. The data held,
combined with the database’s management features (tables,
active rules, views), enables rich and complex representa-
tions of state, thus allowing fine-grained policies [29, 24].
Further, databases already operate across a range of compo-
nents, playing an important role in asynchronous communi-
cation, and are designed to be robust, manage simultaneous
connections, and can be tuned for performance.

Implementing PE functionality is straightforward when
using SBUS-PS (§2.5). All that is required is the definition
of active rules (triggers) that represent the policy rules. On a
particular event (table update, message receipt), the trigger
action can: 1) cause a reconfiguration, by sending a control
message (or messages) to the relevant component(s); 2) send
general messages to inform component(s) of some change of
state; or 3) change the set of active polices (rules).

Though useful for a range of different application scenar-
ios, our initial use of this database-policy engine (DBPE) was
to manage the components in a physical space/environment.

3.3 Use and conflict

Policy conflict is a serious concern. We have considered
issues of conflict detection and resolution for policy that
is based on triggers [29, 24], but only concerning conflicts
within the same enforcement engine.

In practice, a number of PEs will operate simultaneously.
Thus issues of policy conflict between different PEs is an
ongoing challenge. That said, the scope and purpose for
which the PE operates can inherently limit the potential
for policy conflicts. Firstly, a PE can only execute actions
on components for which it is authorised. This means that
component owners, or those in control, are able to set the
bounds for what is possible. Further, PEs will likely operate
within a particular functional scope.

To illustrate, a DBPE might manage a physical space,
such that when an individual enters, policy authorises them
to discover and access selected local components. This sets
up the bounds for, and regulates, the potential interactions
between the individual and the environment. The indi-
vidual’s MPE (on their phone) searches and interacts with
the components of interest within that (regulated) physical
space, controlling the interactions of the phone (the device
the individual owns) with components in the environment.

4 Demonstration of approach

This section describes how our policy-enforcing middleware
supports assisted living, using real-world scenarios to show
how policy enables the realisation of high-level functional

!"#$#%&#'
(#%$)"'

!)*+&,'
-%.+%#'

!"#$%&'()$*+(*,)$
$-".)+/0($123)$

4*/"5$6*7+($
8"/"$

!"#$#%&#'
(#%$)"'

!)*+&,'
-%.+%#'

!9#$%&'()$5)":*+7$
$-".)+/0($123)$

/01'8)/);/$$
$$$$$$%&'()0($)<*/$

/21'8)"
&/12'*(

)$

$$$%&'()
$

/31'=)'3*+"/)$
$$$$>2++);.2+$

!"#$%&'()*+,"-./00,"1*)"--
2$)-3(4()"-5*)"-6%7/)$%8"%49-

!"#$%&'()*$%+,-)!'"%)."/0%)

>&'')+/$ 1)"5/1;"')$ (?(/)3($ "')$ 2@)+$
;52(),$"+,A2'$2+5?$!*+/)'#2-)'"/)$*+$(-);*B;$
)+:*'2+3)+/($2'$"--5*;".2+$;2+/)</(C$$
$
D&/&')$;"')$ ()':*;)($ E*55$ *+:25:)$ &(*+7$
()+(*+7F$ 32+*/2'*+7F$ 329*5)$ "+,$ 2/1)'$
(?(/)3$;23-2+)+/($ /2$ *3-'2:)$,*"7+2(*(F$
G)),9";H$ "+,$ ')(-2+()C$ >23-2+)+/($;"+$
9)$&()G&5$*+$3)).+7$"$'"+7)$2G$72"5(F$2@)+$
+$ E"?($ +2/$;2+/)3-5"/),$ 9?$ /1)'$
,)(*7+)'(C$
$
45#'6)"#'7#&5%)*).,'8#'&9%'*#:#"9.#;'75#'

<#=#"'75#'>?9*+7,')@'&9"#'

D"3*5?$

!)*+&,'
-%.+%#'

I".)+/0($8J$

I1?(*2527*;"5$
6)+(2'($

KLM$

K&/12'*()$$
KLM$

/01'

K&/12'*()$$
KLM$

/01'

K5)'/$/A1'

N*:)$8"/"$6/')"3$$/21'

O)P&)(/$6/2'),$
8"/"$

/31'

!9#$M3)'7)+;?$O);2+B7&'".2+$

I".)+/0($I12+)$

I".)+/0($8J$

I1?(*2527*;"5$
6)+(2'($!"#$Q)+)'"5$R("7)$

N*:)$8"/"$6/')"3$

N*:)$8"/"$6/')"3$$
!B5/)'),#$

S + G '"(/ '&;/&')$ (&--2'.+7$ (&;1$ "+$
)+:*'2+3)+/$ 3&(/$ G";*5*/"/)$!""#$%&'("&!"
#$%&%" '(&)*+,(&" *-&*+./0(1*%/" 2%3%10/4"
5%0%&.-1%" 0$%" -10%&(*)61/" 7%0#%%1"
*6.'61%10/8""
$
T)$ 1":)$,):)52-),$ "$ -25*;?$)+7*+)F$ E1*;1$
E2'H($E*/1$ "$3)(("7*+7$3*,,5)E"')$!9:;9#$
/2$,?+"3*;"55?$ ');2+B7&')$ /1)$ (?(/)3$ /2$
3))/$G&+;.2+"5$72"5(C$
$
U&'$ "--'2";1$ "552E($;23-2+)+/($ /2$ G2;&($
2+$/1)*'$;2')$/"(H($E*/12&/$;2+;)'+$"($/2$/1)$
;2+/)</F$)+:*'2+3)+/($ "+,$;2+(/'"*+/($ *+$
E1*;1$ /1)?$2-)'"/)C$ =1*($ 52E)'($ /1)$9"''*)'$
G2'$)+/'?F$ "+,$)+"95)($;23-2+)+/($ /2$ 9)$
&(),A')&(),$ *+$:"'*2&($ E"?($ /2$3))/$ 1*71V
5):)5$;"')$')P&*')3)+/(C'

U+5?$;"')'($/1"/$"')$-1?(*;"55?$-')()+/$"')$"&/12'*(),$/2$";;)(($:*/"5$(*7+($,"/"$
W*,,5)E"')$)X);/($/1*($-25*;?F$*+,)-)+,)+/$2G$/1)$()+(2'$2'$%&'()0($"--5*;".2+($

S+$"+$)3)'7)+;?F$/1)$3*,,5)E"')$"&/23".;"55?$');2+B7&')($/1)$(?(/)3$/2$"5)'/$
G"3*5?$3)39)'(F$"+,$)+"95)$/1)$";;*,)+/$L$)3)'7)+;?$()':*;)($/2$')(-2+,$

$
%2/)$/1"/$!Y#F!Z#$"+,$![#$')-')()+/($"+$"&/23".;$-25*;?V9"(),$')(-2+()F$E1)')"($
!\#$*($"$3"+&"55?$*+*."/),$2-)'".2+F$3",)$-2((*95)$9?$/1)$-'*:*5)7)$;1"+7)($2G$!Y#$

>23-&/)'$N"92'"/2'?$
R+*:)'(*/?$2G$>"39'*,7)$

>2+/";/]$^".+,)'C6*+71_;5C;"3C";C&H$

(a) General case

!"#$#%&#'
(#%$)"'

!)*+&,'
-%.+%#'

!"#$%&'()$*+(*,)$
$-".)+/0($123)$

4*/"5$6*7+($
8"/"$

!"#$#%&#'
(#%$)"'

!)*+&,'
-%.+%#'

!9#$%&'()$5)":*+7$
$-".)+/0($123)$

/01'8)/);/$$
$$$$$$%&'()0($)<*/$

/21'8)"
&/12'*(

)$

$$$%&'()
$

/31'=)'3*+"/)$
$$$$>2++);.2+$

!"#$%&'()*+,"-./00,"1*)"--
2$)-3(4()"-5*)"-6%7/)$%8"%49-

!"#$%&'()*$%+,-)!'"%)."/0%)

>&'')+/$ 1)"5/1;"')$ (?(/)3($ "')$ 2@)+$
;52(),$"+,A2'$2+5?$!*+/)'#2-)'"/)$*+$(-);*B;$
)+:*'2+3)+/($2'$"--5*;".2+$;2+/)</(C$$
$
D&/&')$;"')$ ()':*;)($ E*55$ *+:25:)$ &(*+7$
()+(*+7F$ 32+*/2'*+7F$ 329*5)$ "+,$ 2/1)'$
(?(/)3$;23-2+)+/($ /2$ *3-'2:)$,*"7+2(*(F$
G)),9";H$ "+,$ ')(-2+()C$ >23-2+)+/($;"+$
9)$&()G&5$*+$3)).+7$"$'"+7)$2G$72"5(F$2@)+$
+$ E"?($ +2/$;2+/)3-5"/),$ 9?$ /1)'$
,)(*7+)'(C$
$
45#'6)"#'7#&5%)*).,'8#'&9%'*#:#"9.#;'75#'

<#=#"'75#'>?9*+7,')@'&9"#'

D"3*5?$

!)*+&,'
-%.+%#'

I".)+/0($8J$

I1?(*2527*;"5$
6)+(2'($

KLM$

K&/12'*()$$
KLM$

/01'

K&/12'*()$$
KLM$

/01'

K5)'/$/A1'

N*:)$8"/"$6/')"3$$/21'

O)P&)(/$6/2'),$
8"/"$

/31'

!9#$M3)'7)+;?$O);2+B7&'".2+$

I".)+/0($I12+)$

I".)+/0($8J$

I1?(*2527*;"5$
6)+(2'($!"#$Q)+)'"5$R("7)$

N*:)$8"/"$6/')"3$

N*:)$8"/"$6/')"3$$
!B5/)'),#$

S + G '"(/ '&;/&')$ (&--2'.+7$ (&;1$ "+$
)+:*'2+3)+/$ 3&(/$ G";*5*/"/)$!""#$%&'("&!"
#$%&%" '(&)*+,(&" *-&*+./0(1*%/" 2%3%10/4"
5%0%&.-1%" 0$%" -10%&(*)61/" 7%0#%%1"
*6.'61%10/8""
$
T)$ 1":)$,):)52-),$ "$ -25*;?$)+7*+)F$ E1*;1$
E2'H($E*/1$ "$3)(("7*+7$3*,,5)E"')$!9:;9#$
/2$,?+"3*;"55?$ ');2+B7&')$ /1)$ (?(/)3$ /2$
3))/$G&+;.2+"5$72"5(C$
$
U&'$ "--'2";1$ "552E($;23-2+)+/($ /2$ G2;&($
2+$/1)*'$;2')$/"(H($E*/12&/$;2+;)'+$"($/2$/1)$
;2+/)</F$)+:*'2+3)+/($ "+,$;2+(/'"*+/($ *+$
E1*;1$ /1)?$2-)'"/)C$ =1*($ 52E)'($ /1)$9"''*)'$
G2'$)+/'?F$ "+,$)+"95)($;23-2+)+/($ /2$ 9)$
&(),A')&(),$ *+$:"'*2&($ E"?($ /2$3))/$ 1*71V
5):)5$;"')$')P&*')3)+/(C'

U+5?$;"')'($/1"/$"')$-1?(*;"55?$-')()+/$"')$"&/12'*(),$/2$";;)(($:*/"5$(*7+($,"/"$
W*,,5)E"')$)X);/($/1*($-25*;?F$*+,)-)+,)+/$2G$/1)$()+(2'$2'$%&'()0($"--5*;".2+($

S+$"+$)3)'7)+;?F$/1)$3*,,5)E"')$"&/23".;"55?$');2+B7&')($/1)$(?(/)3$/2$"5)'/$
G"3*5?$3)39)'(F$"+,$)+"95)$/1)$";;*,)+/$L$)3)'7)+;?$()':*;)($/2$')(-2+,$

$
%2/)$/1"/$!Y#F!Z#$"+,$![#$')-')()+/($"+$"&/23".;$-25*;?V9"(),$')(-2+()F$E1)')"($
!\#$*($"$3"+&"55?$*+*."/),$2-)'".2+F$3",)$-2((*95)$9?$/1)$-'*:*5)7)$;1"+7)($2G$!Y#$

>23-&/)'$N"92'"/2'?$
R+*:)'(*/?$2G$>"39'*,7)$

>2+/";/]$^".+,)'C6*+71_;5C;"3C";C&H$

(b) Automated response

Figure 7: Carers may only access vital-signs infor-
mation when physically present

goals. We also discuss design decisions relevant to applying
policy-enforcing technology in emerging distributed systems.

As the middleware for the PAL project [4], SBUS has been
demonstrated to the UK Technology Strategy Board.

4.1 Assisted living domains

Assisted living involves providing ongoing care and support
services to assist those elderly, disabled, infirm or ill.

Given that assisted living is patient-centric, we define a
domain for each patient to encapsulate the components per-
taining to them. A domain refers to a group of resources
under common administrative control [28]. Domains are log-
ical constructs, the components of which may, for instance,
be in the patient home, some may be mobile (e.g. phones),
and others hosted remotely (e.g. in the cloud).

We associate an RDC and a DBPE with each patient
domain to manage component visibility, persist data, and
enforce policy where appropriate. Most interactions occur
within the domain, focusing on the patient and the services
they deal with. However, interactions with external entities
(e.g. a home nurse, GP surgery) are also managed by the pa-
tient’s domain, where services are regulated, discovered and
accessed by way of the patient’s RDC/PE. Fig. 7 illustrates
the enforcement of a patient’s privacy policy, functionality
that is effected independently of the sensor and nurse’s ap-
plications.

The appropriate structure depends on the environment.
Given the trend towards smart cities, it is reasonable to have
a domain with a heavyweight PE (e.g. as in §3.2) to gov-
ern more fixed infrastructures, e.g. the components in the
home, a mall, etc. Other PEs, such as the MPE (§3.1.1), will
work to control interactions with the environment. Here, for
example, the nurse’s MPE automatically connects to the rel-
evant services on entering the patient’s home. Our approach
enables both centralised and decentralised coordination, as
appropriate for the situation.

4.2 Scenario: Patient fall—detection and response

We present an implemented scenario demonstrating how
middleware capabilities support assisted living. Oscar is an
elderly patient who invests in infrastructure to: a) collect
detailed data on his daily activities, aiding diagnosis and
management of his health conditions, and b) to offer assis-

tance in case of an emergency. His home is fitted with a
number of sensors that operate through a sensor gateway
(SG). The SG persists data in a storage engine (SE) for
subsequent analysis, to provide insight into his well-being.
The SG is also connected to a PE to enable a response to
significant events. For clarity, we present a conceptual view,
in our implementation the DBPE encapsulates both the SE
and PE. Fig. 8(a) represents the initial configuration.

!"#$
!"#$%"%"$"$%"%$"$"%%$"%"$%"&!& !"#$%"%"$"$%"%$"$"%%$"%"$%"&!& !"#$%"%"$"$%"%$"$"%%$"%"$%"&'&

!"#$%"%"$"$%"%$"$"%%$"%"$%"&'&
%&'$%('$

%)'$

!"#$

*+$

,-$

*-$

./0102343$

(")%*+"&#,-%./&
!"#$

*+$

,-$

*-$

0,1/&2-.31&

!"#$

*+$

,-$

*-$

523/6$

783/9$

./0102343$

./0102343$

(")%*+"&#,-%./&

:;13:3<6$

:;13:3<6$

!"#$
!"#$%"%"$"$%"%$"$"%%$"%"$%"&!& !"#$%"%"$"$%"%$"$"%%$"%"$%"&!"#$%"%"$"$%"%$"$"%%$"%"$%"&

!"#$%"%"$"$%"%$"$"%%$"%"$%"&'&
%&'$%('$

%)'$

!"#$
!"#$%"%"$"$%"%$"$"%%$"%"$%"&!& !"#$%"%"$"$%"%$"$"%%$"%"$%"&!"#$%"%"$"$%"%$"$"%%$"%"$%"&

!"#$%"%"$"$%"%$"$"%%$"%"$%"&'&
%&'$

%('$
%)'$

!"#$%"%"$"$%"%$"$"%%$"%"$%"&4& !"#$%"%"$"$%"%$"$"%%$"%"$%"&:5.=.5/5:>$ %?'$

(")%*+"&#,-%./&

!"#$
!"#$%"%"$"$%"%$"$"%%$"%"$%"&!& !"#$%"%"$"$%"%$"$"%%$"%"$%"&!"#$%"%"$"$%"%$"$"%%$"%"$%"&

!"#$%"%"$"$%"%$"$"%%$"%"$%"&'&
%&'$

%('$
%)'$

!"#$%"%"$"$%"%$"$"%%$"%"$%"&4&:5.=.5/5:>$ %?'$,-$

%&'&

./0102343$%&'&

523/6$%('&

>6/35:$%)'&

783/9$%?'&

2;;@8.$%)A?'&

(a) General situation

!"#$
!"#$%"%"$"$%"%$"$"%%$"%"$%"&!& !"#$%"%"$"$%"%$"$"%%$"%"$%"&!& !"#$%"%"$"$%"%$"$"%%$"%"$%"&'&

!"#$%"%"$"$%"%$"$"%%$"%"$%"&'&
%&'$%('$

%)'$

!"#$

*+$

,-$

*-$

./0102343$

(")%*+"&#,-%./&
!"#$

*+$

,-$

*-$

0,1/&2-.31&

!"#$

*+$

,-$

*-$

523/6$

783/9$

./0102343$

./0102343$

(")%*+"&#,-%./&

:;13:3<6$

:;13:3<6$

!"#$
!"#$%"%"$"$%"%$"$"%%$"%"$%"&!& !"#$%"%"$"$%"%$"$"%%$"%"$%"&!"#$%"%"$"$%"%$"$"%%$"%"$%"&

!"#$%"%"$"$%"%$"$"%%$"%"$%"&'&
%&'$%('$

%)'$

!"#$
!"#$%"%"$"$%"%$"$"%%$"%"$%"&!& !"#$%"%"$"$%"%$"$"%%$"%"$%"&!"#$%"%"$"$%"%$"$"%%$"%"$%"&

!"#$%"%"$"$%"%$"$"%%$"%"$%"&'&
%&'$

%('$
%)'$

!"#$%"%"$"$%"%$"$"%%$"%"$%"&4& !"#$%"%"$"$%"%$"$"%%$"%"$%"&:5.=.5/5:>$ %?'$

(")%*+"&#,-%./&

!"#$
!"#$%"%"$"$%"%$"$"%%$"%"$%"&!& !"#$%"%"$"$%"%$"$"%%$"%"$%"&!"#$%"%"$"$%"%$"$"%%$"%"$%"&

!"#$%"%"$"$%"%$"$"%%$"%"$%"&'&
%&'$

%('$
%)'$

!"#$%"%"$"$%"%$"$"%%$"%"$%"&4&:5.=.5/5:>$ %?'$,-$

%&'&

./0102343$%&'&

523/6$%('&

>6/35:$%)'&

783/9$%?'&

2;;@8.$%)A?'&

(b) Emergency reconfiguration

Figure 8: Fall scenario reconfiguration

The sensors detect and communicate to the PE that Oscar
has collapsed (rapid acceleration/orientation change). The
PE maintains policy in order to assess the incident’s severity.
Here, a rule operates to map the PE to the SG so that the
PE receives more detailed movement information (dashed
line in Fig. 8(a), rule Fig. 9(a)), and another rule activates a
PE detection algorithm on this movement stream to trigger
an emergency should Oscar remain motionless (Fig. 9(b)).

a) on SG_FALL execute map(PE,movement,SG,movement)
b) on SG_FALL execute load_rule(monitor_movement)
c) on EMERGENCY execute privilege(SG,*,EmServ,Allow)
d) on EMERGENCY execute

pe_map_send(es_alert,EmServ,*,RDCAdd,@alertparams)

Figure 9: Simplified policy rules (only the significant
parts shown)

In an emergency, the system reconfigures to enable the
Emergency Services (ES) to respond, as shown in Fig. 8(b).
Policy operates to alert the ES of the situation, by mapping
the PE to the ES, and by sending a message with details
of the incident and the location of Oscar’s RDC (Fig. 9(d)).
The ES are also granted permission to access Oscar’s live
data from the SG’s endpoints, (Fig. 9(c)), and his historical
data from the SE. These privileges are reflected in the RDC.

On receiving an alert, the ES operator tries to ascertain
Oscar’s state, by (manually) mapping to the SG to exam-
ine several live data streams, and querying the SE for data
prior to the fall. These operations implicitly involve an RDC
query. If the ES operator considers the situation serious, an
ambulance is assigned and Oscar’s streams are diverted (di-
vert()) to aid the paramedics response.

This scenario demonstrates the power of policy in driving
system functionality. Specifically, it shows that automated
policy-enforcement not only effects an immediate response
(Fig. 8(b), actions (1,2)), but also makes possible subsequent
application/user initiated operations (actions (3,4)).

4.3 Design considerations

Our middleware aims to be open and generic, to support
a range of functionality in various environments. As such,
we now outline some design considerations, through some
micro-benchmarks that indicate the tradeoff between per-
formance and flexibility.

4.3.1 Mapping establishment

First we consider the time to establish a mapping (Fig. 10).
Each component ran on a separate Intel Core Duo 2 OSX
machine, on an 100BASE-T Ethernet network to avoid the
variability of wireless networks. Intuitively, a mapping in-
volving a RDC query takes around twice as long as map-
ping to a known address, because of the extra connection.
This shows the overhead of flexible addressing, which is im-
portant in pervasive systems as component availability and
addresses are often unknown.

!" #" $!" $#" %!" %#" &!" &#" '!" '#"

())*+,"

())*+,"-.)"/(01"

2.)3."4556788"

2.)3."4556788"
-.)"/(01"

!"#$%&#'(%

9:;" 0)<*7=">.?=" ;).."@A.58BA*7" C=B76"D6)<788?.E"

Figure 10: Time for establishing a mapping

We see that the handshaking for a TLS mapping, which
validates peer certificates and establishes a secure channel,
takes the longest time. This overhead can be avoided in cases
where security is a non-issue. To put the times in perspec-
tive, it took on average ∼22.6ms to transmit 1024 messages
(4secs of historical ECG data). This suggests that here the
time for even the most secure mapping is not particularly
onerous, as catchup is possible even with ECG data, which
has one of the highest sampling rates (∼3.9ms) of assisted
living environments. Whether this suits other application
domains depends on the particular requirements.

4.3.2 Policy enforcement: Reconfiguration

We now investigate the time taken for the PEs to issue re-
configuration instructions. The experiments involved the PE
effecting a number of reconfiguration policies for a particular
event, including local components (on the same machine as
the PE), remote components (at known addresses), or dy-
namic component selection through an RDC lookup. The
PE was connected to its access point via 802.11g Wi-Fi. The
RDC and remote components ran on separate machines. We
measured the time to respond to the event (trigger), con-
struct the reconfiguration messages and send them to the
relevant components. The results are presented in Fig. 11.

Given policies are enforced sequentially, we see a roughly
linear increase in the time for policies enforced.7 Fig. 11 also
indicates the overhead incurred by policies that are dynamic
in their addressing, i.e. policy that resolves the applicable
components at runtime.

Though the results confirm the intuition that more net-
work traffic entails a greater overhead, this is less pronounced
for the MPE. We see similar gradients for all three MPE

7Here, each policy was self-contained. If more complex poli-
cies are required, e.g. two reconfigurations must happen
together, these can be composed (see [24]).

Policy enforcement: Reconfiguration. We now investigate the time for the
PEs to issue reconfiguration instructions. The experiments involved the PE ef-
fecting a number of reconfiguration policies for a particular event, affecting local
components (on the same machine as the PE), remote components (at known
addresses), or dynamic component selection through an RDC lookup. The PE
was connected to access point via 802.11g Wi-Fi. The RDC and remote compo-
nents ran on separate machines. We measured the time to respond to the event,
construct the reconfiguration messages and send it to the relevant components.
The results are presented in Fig. 13.

1 2 3 4 5 6 7 8 9 10
Number of Policies Enforced

0

25

50

75

100

125

150

175

200

225

Ti
m

e
(m

s)

DBPE (local)
DBPE (remote)
DBPE (RDC)

(a) Database Policy Engine (DBPE)

1 2 3 4 5 6 7 8 9 10
Number of Policies Enforced

100

200

300

400

500

600

700

800

Ti
m

e
(m

s)

MPE (local)
MPE (remote)
MPE (RDC)

(b) Phone Policy Engine (MPE)

Fig. 13. Reconfiguration policy enforcement

Given policies are enforced sequentially, in a single thread (MPE) or transac-
tion (DBPE), we see a roughly linear increase in the time for policies enforced.7

Fig. 13 also indicates the overhead incurred by policies that are dynamic in the
their addressing, i.e. policy that resolves the applicable components at runtime.

Though the results confirm the intuition that more network traffic entails a
greater overhead, this is less pronounced for the MPE. We see similar gradients
for all three MPE experiments, with relatively similar results, even for the local
experiment that avoids network traffic. This is because the overheads of process-
ing, context-switching, etc. of our Android device was more significant than the
network traffic. This is compounded by the fact that Android OS is relatively
closed, limiting the ability for customisation and tuning (without rooting), and
that we used a Samsung Galaxy S, which in terms of mobile hardware is several
generations old (e.g. a single-core CPU). This is in contrast to the DBPE, which
ran on a dedicated machine, and thus the network effects are pronounced. Such
factors may be useful when designing for particular environments.

Policy enforcement: Alerting. We also consider a medication reminder (alert)
scenario, showing the DBPE processing incoming events, and producing general
(non-reconfiguration) messages. An event is sent to the DBPE to trigger the
reminder. Policy rules detect the state change and respond by mapping to a
component and sending an alert. We measure two types of alerting policy: 1)

7 We handle failures, to ensure that policies do not interfere. This assumes that each
policy is self-contained. If more complex policies are required, e.g. two reconfigura-
tions must happen together, these can be composed (see [22]).

(a) Database Policy Engine (DBPE)

Policy enforcement: Reconfiguration. We now investigate the time for the
PEs to issue reconfiguration instructions. The experiments involved the PE ef-
fecting a number of reconfiguration policies for a particular event, affecting local
components (on the same machine as the PE), remote components (at known
addresses), or dynamic component selection through an RDC lookup. The PE
was connected to access point via 802.11g Wi-Fi. The RDC and remote compo-
nents ran on separate machines. We measured the time to respond to the event,
construct the reconfiguration messages and send it to the relevant components.
The results are presented in Fig. 13.

1 2 3 4 5 6 7 8 9 10
Number of Policies Enforced

0

25

50

75

100

125

150

175

200

225

Ti
m

e
(m

s)

DBPE (local)
DBPE (remote)
DBPE (RDC)

(a) Database Policy Engine (DBPE)

1 2 3 4 5 6 7 8 9 10
Number of Policies Enforced

100

200

300

400

500

600

700

800

Ti
m

e
(m

s)

MPE (local)
MPE (remote)
MPE (RDC)

(b) Phone Policy Engine (MPE)

Fig. 13. Reconfiguration policy enforcement

Given policies are enforced sequentially, in a single thread (MPE) or transac-
tion (DBPE), we see a roughly linear increase in the time for policies enforced.7

Fig. 13 also indicates the overhead incurred by policies that are dynamic in the
their addressing, i.e. policy that resolves the applicable components at runtime.

Though the results confirm the intuition that more network traffic entails a
greater overhead, this is less pronounced for the MPE. We see similar gradients
for all three MPE experiments, with relatively similar results, even for the local
experiment that avoids network traffic. This is because the overheads of process-
ing, context-switching, etc. of our Android device was more significant than the
network traffic. This is compounded by the fact that Android OS is relatively
closed, limiting the ability for customisation and tuning (without rooting), and
that we used a Samsung Galaxy S, which in terms of mobile hardware is several
generations old (e.g. a single-core CPU). This is in contrast to the DBPE, which
ran on a dedicated machine, and thus the network effects are pronounced. Such
factors may be useful when designing for particular environments.

Policy enforcement: Alerting. We also consider a medication reminder (alert)
scenario, showing the DBPE processing incoming events, and producing general
(non-reconfiguration) messages. An event is sent to the DBPE to trigger the
reminder. Policy rules detect the state change and respond by mapping to a
component and sending an alert. We measure two types of alerting policy: 1)

7 We handle failures, to ensure that policies do not interfere. This assumes that each
policy is self-contained. If more complex policies are required, e.g. two reconfigura-
tions must happen together, these can be composed (see [22]).

(b) Phone Policy Engine (MPE)

Figure 11: Reconfiguration policy enforcement

experiments, with relatively similar timings, even for the
local experiment that avoids network traffic. This is be-
cause the overheads of processing, context-switching, etc.,
of our Android device was more significant than the net-
work traffic. This is compounded by the fact that Android
is relatively closed, limiting the ability for customisation
and tuning (without rooting), and that we used a Samsung
Galaxy S, which in terms of mobile hardware is several gen-
erations old (e.g. a single-core CPU). This is in contrast to
the DBPE, which ran on a dual-core OSX machine, where
the network effects were are more visible. Such factors may
be useful when designing for particular environments.

4.3.3 Policy enforcement: Alerting

We also consider a medication reminder (alert) scenario,
showing the DBPE processing incoming events, and produc-
ing general (non-reconfiguration) messages. An event is sent
to the DBPE to trigger the reminder. Policy rules detect the
state change and respond by mapping to a component and
sending an alert. We measure two types of alerting policy:
1) forwarding the original message; and 2) creating a new
alert, which involves a database query (join) to modify the
message by adding text associated with an identifier (a for-
eign key relation). We measured the time from sending the
initial event to the receipt of the PE-issued alert (similar to
a round-trip, but with additional processing). Each com-
ponent ran on a separate machine, connected by Ethernet,
or by Wi-Fi on the same access point—all with the same
specifications previously described.

Table 2 presents the mean timings over 500 trials. The
Ethernet values are statistically significant (p < 0.01); how-
ever the Wi-Fi ones are not (p < 0.29). This implies that
any overhead of the more complex policy action is lost in
the overheads and variability of the Wi-Fi infrastructure.
As Wi-Fi is the main communication medium for assisted
living, it suggests that enforcing policy, even with more in-
volved operations (SQL queries, event creation), does not

necessarily introduce a perceivable overhead. That is, much
of the speed of the policy enforcement capability is deter-
mined by the underlying infrastructure.

Network Connection Original Message Generated Alert

Ethernet 16.3490 18.4083
Wi-Fi 30.7355 35.5482

Table 2: Mean reconfiguration timings (ms)

4.3.4 Discussion

We presented measurements to give an indication of the
overheads of policy enforcement. This information is rel-
evant in deciding whether such an architecture is appropri-
ate given the operational requirements of the application
domain, and the considerations for developing components
and policy.

Our numbers illustrate the tradeoff between flexibility and
performance. For example, hardcoding or caching location
information—which may be suitable for more fixed infras-
tructure (e.g. components hardwired into buildings)—can
avoid discovery overheads, but tends to limit a component
to a particular application scope. In pervasive environments,
however, it is important that policy can dynamically select
the components affected. This is facilitated through RDCs
and flexible addressing. Another example concerns security;
some data streams are sensitive, and can be protected, at a
cost. These are design decisions, depending on the specifics
of the application domain and environment. Our results il-
lustrate these overheads. That said, as Table 2 shows, even
a less flexible approach (e.g. implementing policy concerns
in application-logic, forcing simple policy, etc.) may not
necessarily result in an overall performance gain.

At a lower-level, our results highlight the fact performance
will depend on the underlying infrastructure. Ultimately,
performance will vary according to the implementation and
the environment, depending on factors such as the phys-
ical infrastructure, operating system, network load, mes-
sage sizes/frequency, database size and structure, number
of rules, users and components, etc. Also relevant is the
application domain, and its requirements. It follows that
performance results are valid only within the context of the
specific deployment.8

Overall, our results indicate the feasibility of the policy
based approach, and highlight the overheads and tradeoffs
of taking particular design decisions. The middleware’s sub-
second response provides the flexibility for pervasive systems
to support a range of application domains.

5 Related work

Our approach to policy-driven middleware complements ex-
isting research, and in this section we put our work in the
broader context. Importantly, emerging middleware require-
ments bring challenges [18], and it is unlikely that any single
approach could address all of these in their entirety [22].

In terms of sensor networks (SNs), wireless sensor net-
works (WSNs) [1] and body sensor networks (BSNs) [10] are
common focus areas. Much of the research examines low-
level details of devices, and resource management: power
use, communication minimisation, etc. Middleware infras-

8We are unaware of any directly comparable middleware,
nor standard policy-driven workloads enabling comparison.
See [14] for some more general SBUS measurements.

tructure remains at a low level, considering data acquisi-
tion, node placement, routing protocols, code deployment
and failure handling [32]. More recent work considers the
need for virtualisation within sensor networks [17]. Our fo-
cus is on providing the broader system infrastructure into
which SNs will be integrated, e.g. through gateways. This
will include having policy affect SN behaviour, e.g. modify-
ing communication behaviour in emergency situations.

There are many types of reconfigurable middleware. Adap-
tive middleware [23] allows configuration and customisation,
whereas reflective middleware [16] goes further to expose
the current system configuration and allow inpection-based
reconfiguration. Applications can apply inspection, as can
low-level software. Our work complements these types of
middleware by working at a higher-level—controlling across
applications. Our research is based on insight that the ap-
plications themselves need to be able to be configured and
managed, so as to effectively optimise their (inter)operation.
This often involves policy representing user-level concerns.

Related to application-level management and reconfigu-
ration is service composition (SC) middleware [13]. This
involves mapping application-level requests to a set of ser-
vices [15]. Such work is highly topical given the rapidly
increasing numbers of system components [6]. SC is again
complementary to our approach, but different from it. SC
considers resource allocation and orchestration in a more
generic fashion. In contrast, we aim to directly control sys-
tem components and infrastructure, and these controls may
or may not be application-specific, and can be for reasons
other than service coordination.

Work that involves policy enforcement at a similarly high
level [30] often imposes a particular structure/environment.
For example, in Ponder2 [31] there are self-managed cells
and in LGI there are trusted controllers [20]. There may
also be restrictions related to a particular form of interac-
tion [28, 33, 19]. In contrast for the emerging middleware
applications targeted in this work we try to avoid impos-
ing particular constraints on how applications need to be
modelled or designed.

Various models have been proposed that provide complex
state representations [7, 5], e.g. to combine and process data
from various sources. We are more interested in the mecha-
nisms that enable enforcement and reconfiguration than the
contextual modelling itself, although we aim to retain sup-
port of developments such as the use of ontologies to effect
context modelling [8].

Finally, at the level of interaction paradigms, there is
much research into schemes such as remote procedure call
(RPC) and pub/sub (see [21] for an overview). The mid-
dleware we have developed supports both request/reply and
stream-based communication, so as to limit application de-
signs as little as possible. While there has been research into
integrating policy directly into pub/sub infrastructure [33,
28, 29], pub/sub is not going to suffice as the only communi-
cation paradigm: request-reply is necessary for various con-
trol actions, but is cumbersome to implement using pub/
sub. Using an event-bus style routing approach has good
support for anonymous (or at least decoupled) interactions
between components, but this feature may cause security
and enforcement difficulties.

Note also that we have recently considered SBUS as a
‘proof-of-concept’ in exploring the requirements of future
healthcare services [26].

6 Conclusion
The major insight from developing middleware to best lever-
age emerging distributed systems is that the ability to con-
trol, coordinate and manage components is crucial. Policy
plays an important role, since it describes how and when
components can and should behave and interact.

To indicate the practicality and technical considerations of
policy-enforcing infrastructure, we presented a middleware
that uniquely facilitates coordination by providing dynamic,
third-party initiated reconfiguration, supports a range of in-
teraction types, and offers a relevant security model. Im-
portantly, such an approach facilitates open, decentralised
policy-based control capable of working across components.

The approach and means for enforcement was explored
through two policy engines: one integrated into a database,
the other for a mobile device. These engines encapsulate
user preferences, realising their goals by driving system func-
tionality when and where appropriate. Preliminary results
indicate that not only can the policy overhead be manage-
able, but in certain circumstances, negligible. More experi-
ence with real workloads will allow further performance and
scalability testing in different environments.

We believe that policy-based middleware is crucial for best
leveraging emerging systems, as it allows the use of com-
ponents for a variety of purposes, and improves flexibility,
by abstracting away environmental and usage specifics from
application-logic. Note, however, that we aim to support
general infrastructure, applicable system-wide. Specialised
systems, such as those for high-frequency trading or low-
level sensor management are tightly specified, have strict
performance requirements, and are tuned to the operating
environment. Much is known at design time. Such sys-
tems are perhaps better implemented separately, integrated
(if appropriate) into the wider systems environment through
gateway components.

Currently, we are integrating Information Flow Control [3]
into SBUS, which involves labelling data in order to track
and limit its propagation. This is particularly relevant for
cloud computing where application services providers are re-
sponsible to their end users yet, with cloud deployment, may
use services from several providers, directly and indirectly.
Compliance with policy is an unsolved problem for cloud
computing. We also have funding to re-engineer SBUS from
monolithic middleware to be more modular and lightweight,
thus able to bring its reconfiguration capabilities to a variety
of platforms and communication infrastructures.

Given technological trends, there must be a movement
away from closed, application-specific services to more open
environments, where components can be used and reused to
meet a range of variable, user-defined functional goals. Our
contribution lies not only in making the case for reconfig-
urable policy-based middleware and in demonstrating that
the approach is capable of supporting real-world scenarios,
but also in giving insight into the design considerations for
emerging distributed systems. We feel that this is an excit-
ing time, as middleware is moving beyond passive ‘systems
glue’, to actively driving system functionality.

7 Acknowledgments
This work was supported by the UK Technology Strategy
Board and Engineering and Physical Sciences Research Coun-
cil, grant TP/AN072C“Personal and Social Communication
Services for Health and Lifestyle Monitoring”.

8 References

[1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and
E. Cayirci. Wireless Sensor Networks: A Survey.
Computer Networks, 38(4):393–422, Mar. 2002.

[2] J. Bacon, A. I. Bejan, A. R. Beresford, D. Evans, R. J.
Gibbens, and K. Moody. Using Real-Time Road
Traffic Data to Evaluate Congestion. In LNCS 6875,
pages 93–117. Springer, 2011.

[3] J. Bacon, D. Eyers, T. Pasquier, J. Singh,
I. Papagiannis, and P. Pietzuch. Information flow
control for secure cloud computing. Transactions on
Network and Service Management, Special Issue on
Cloud Service Management, PP(99):1–14, 2014.

[4] J. Bacon, J. Singh, D. Trossen, D.Pavel,
A. Bontozoglou, N.Vastardis, K. Yang, S. Pennington,
S. Clarke, and G.Jones. Personal and social
communication services for health and lifestyle
monitoring. In Global Health 2012, Venice, Oct 2012.

[5] M. Baldauf, S. Dustdar, and F. Rosenberg. A survey
on context-aware systems. International Journal of Ad
Hoc and Ubiquitous Computing, 2(4):263–277, June
2007.

[6] A. Ben Hamida, F. Kon, G. Ansaldi Oliva, C. E. M.
Dos Santos, J.-P. Lorré, M. Autili, G. De Angelis,
A. Zarras, N. Georgantas, V. Issarny, and
A. Bertolino. The Future Internet, chapter An
Integrated Development and Runtime Environment
for the Future Internet, pages 81–92. Springer-Verlag,
Berlin, Heidelberg, 2012.

[7] C. Bettini, O. Brdiczka, K. Henricksen, J. Indulska,
D. Nicklas, A. Ranganathan, and D. Riboni. A survey
of context modelling and reasoning techniques.
Pervasive and Mobile Computing, 6(2):161–180, 2010.

[8] G. S. Blair, A. Bennaceur, N. Georgantas, P. Grace,
V. Issarny, V. Nundloll, and M. Paolucci. The Role of
Ontologies in Emergent Middleware: Supporting
Interoperability in Complex Distributed Systems. In
ACM/IFIP/USENIX Middleware 2011, Springer
LNCS 7049, pages 410–430, 2011.

[9] S. Chakravarthy. Early active database efforts: A
capsule summary. IEEE Transactions on Knowledge
and Data Engineering, 7(6):1008–1010, 1995.

[10] M. Chen, S. Gonzalez, A. Vasilakos, H. Cao, and
V. C. Leung. Body Area Networks: A Survey. Mobile
Networks and Applications, 16(2):171–193, 2011.

[11] T. Dierks and C. Allen. The TLS Protocol (RFC
2246). Internet Engineering Task Force, 1999.

[12] B. Haslhofer and W. Klas. A Survey of Techniques for
Achieving Metadata Interoperability. ACM
Computing Surveys, 42(2):1–37, Mar. 2010.

[13] N. Ibrahim and F. Le Mouël. A Survey on Service
Composition Middleware in Pervasive Environments.
International Journal of Computer Science Issues,
1:1–12, Aug 2009.

[14] D. Ingram. Reconfigurable Middleware for High
Availability Sensor Systems. In ACM 3rd
International Conference on Distributed Event-Based
Systems (DEBS’09), 2009.

[15] S. Kalasapur, M. Kumar, and B. Shirazi. Dynamic
Service Composition in Pervasive Computing. IEEE
Transactions on Parallel and Distributed Systems,
18(7):907–918, 2007.

[16] F. Kon, F. Costa, G. Blair, and R. H. Campbell. The

case for reflective middleware. Communications of the
ACM, 45(6):33–38, Jun 2002.

[17] I. Leontiadis, C. Efstratiou, C. Mascolo, and
J. Crowcroft. SenShare: Transforming Sensor
Networks into Multi-application Sensing
Infrastructures. In European Conference on Wireless
Sensor Networks, pages 65–81, 2012.

[18] C. Mascolo, L. Capra, and W. Emmerich. Advanced
Lectures on Networking, chapter Mobile Computing
Middleware, pages 20–58. Springer, 2002.

[19] N. Matthys, C. Huygens, D. Hughes, J. Ueyama,
S. Michiels, and W. Joosen. Policy-Driven Tailoring of
Sensor Networks. In Springer, Sensor Systems and
Software, S-CUBE’10, pages 20–35, 2010.

[20] N. H. Minsky and V. Ungureanu. Law-governed
interaction. ACM Transactions on Software
Engineering Methodologies, 9(3):273–305, 2000.

[21] G. Mühl, L. Fiege, and P. Pietzuch. Distributed
Event-Based Systems. Springer-Verlag, New York,
2006.

[22] V. Raychoudhury, J. Cao, M. Kumar, and D. Zhang.
Middleware for pervasive computing: A survey. Perv.
Mob. C., 9(2):177–200, 4 2013.

[23] S. M. Sadjadi and P. K. McKinley. A survey of
adaptive middleware. Michigan State University
Report MSU-CSE-03-35, 2003.

[24] J. Singh. Controlling the dissemination and disclosure
of healthcare events. PhD thesis, University of
Cambridge, and Computer Laboratory Technical
Report TR 770, 2009.

[25] J. Singh and J. Bacon. Governance in patient-centric
healthcare. In i-Society, pages 502–509, 2010.

[26] J. Singh and J. Bacon. On middleware for emerging
health services. In Journal of Internet Services and
Applications (to appear), 2014.

[27] J. Singh and J. Bacon. SBUS: A generic,
policy-enforcing middleware for open pervasive
systems. University of Cambridge Computer
Laboratory Technical Report TR 850, 2014.

[28] J. Singh, D. M. Eyers, and J. Bacon. Disclosure
control in multi-domain publish/subscribe systems. In
ACM 5th International Conference on Distributed
Event-Based Systems, DEBS’11, pages 159–170, 2011.

[29] J. Singh, L. Vargas, J. Bacon, and K. Moody.
Policy-Based Information Sharing in
Publish/Subscribe Middleware. In IEEE 9th
Symposium on Policy for Distributed Systems and
Networks, Policy’08, pages 137–144, Palisades, NY,
USA, June 2008. IEEE Computer Society.

[30] M. Sloman. Policy driven management for distributed
systems. Kluwer, Journal of Network and Systems
Management, 2:333–360, 1994.

[31] K. Twidle, E. Lupu, N. Dulay, and M. Sloman.
Ponder2 - A policy environment for autonomous
pervasive systems. In IEEE Symposium on Policy for
Distributed Systems and Networks (Policy’08), pages
245–246, 2008.

[32] M. Wang, J. Cao, J. Li, and S. K. Das. Middleware for
wireless sensor networks: A survey. Journal of
Computing Science and Technology, 23(3):305–326,
2008.

[33] A. Wun and H.-A. Jacobsen. A Policy Management
Framework for Content-Based Publish/Subscribe. In
ACM/IFIP/USENIX Middleware 2007, Springer
LNCS 4834, pages 368–388, 2007.

