
Enforcing User Privacy in Web Applications using Erlang

Ioannis Papagiannis∗, Matteo Migliavacca∗, David M. Eyers†, Brian Shand‡, Jean Bacon† and Peter Pietzuch∗
∗Department of Computing, Imperial College London, United Kingdom, {ip108, migliava, prp}@doc.ic.ac.uk
†Computer Laboratory, University of Cambridge, United Kingdom, {firstname.lastname}@cl.cam.ac.uk
‡CBCU, Eastern Cancer Registry, National Health Service, United Kingdom, brian.shand@cbcu.nhs.uk

Abstract—Social networking applications on the web han-
dle the personal data of a large number of concurrently
active users. These applications must comply with complex
privacy requirements, while achieving scalability and high
performance. Applying constraints to the flow of data through
such applications to enforce privacy policy is challenging
because individual components process data belonging to many
different users.

We introduce a practical approach for uniformly enforcing
privacy requirements in such applications using the actor-based
Erlang programming language. To isolate the personal data
of users, we exploit Erlang’s inexpensive process model and
use Erlang’s message passing mechanism to add policy checks.
We illustrate this approach by describing the architecture of
a privacy-preserving message dispatcher in a micro-blogging
service. Our performance evaluation of a prototype imple-
mentation shows that this approach can enforce fine-grained
privacy guarantees with a low performance overhead.

I. INTRODUCTION

Today’s web applications have to comply with complex
privacy requirements. Social networking websites, such as
Facebook, Twitter and LinkedIn, handle a large amount of
user-contributed data that is potentially private. They must
manage this data in compliance with the privacy settings
specified by users. For example, the visibility of status
updates by users may have to be restricted to pre-approved
friends only. In a micro-blogging website, users subscribing
to the same anonymous discussion channel may have to
be prevented from discovering each other’s identities. The
enforcement of such privacy policies in web applications
is challenging in practice. A single programming error or
design flaw in the application can result in violations of
user privacy.

Ideally, web applications should uniformly enforce pri-
vacy policies by isolating data belonging to different users.
Previous research on information flow control (IFC) [1], [2],
[3], [4] has shown a possible solution by controlling the
spread of data through a system. In IFC, the system tracks
the taint caused by the data across components and prevents
undesirable data flows that may potentially violate privacy
policy. However, when applying IFC to web applications,
two open challenges remain:

First, web applications must include IFC checks at com-
ponent boundaries to enforce flow constraints. Current IFC
approaches rely on static analysis or manual annotation to

identify component boundaries [5], [6]. Employing unnec-
essary IFC checks will reduce performance but on the other
hand, a single missing check may result in the leakage of
private data.

Second, data from different users may be processed by
the same component because web applications must scale
to a large number of concurrent users. This prevents IFC
from guaranteeing data isolation because data belonging
to different users is interspersed within the component.
For example, a dispatching component in a micro-blogging
service may process messages on behalf of many users.

In this paper, we show how these problems can be solved
by applying IFC to web applications implemented in Er-
lang [7], an actor-based programming language that relies on
message passing. By avoiding shared state, IFC constraints
in Erlang only need to be checked when passing messages
between Erlang processes, resulting in a small amount of
trusted code. To avoid that data flows belonging to different
users mix in application components, Erlang’s lightweight
process primitives can be used to create fresh instances of
components cheaply and thus to maintain isolation between
components.

This approach enables the building of massively concur-
rent web applications that enforce IFC constraints with a low
performance impact. We demonstrate this through the design
and evaluation of a prototype implementation of a Twitter-
like micro-blogging service that guarantees users’ privacy.
Our system can provide different privacy guarantees by
maintaining isolation through the dispatching of messages.
The results from an experimental evaluation show that this
has an acceptable impact on performance and scalability of
the dispatching service.

In summary, the main contributions of the paper are:
• an approach for practical enforcement of IFC con-

straints in Erlang with massive concurrency;
• a corresponding architecture for privacy-preserving

message dispatching in a micro-blogging service;
• an experimental evaluation of a prototype implementa-

tion in comparison with a traditional dynamically-typed
programming language.

The next section explores the privacy requirements in a
micro-blogging web application. In §III, we describe how
IFC can achieve these privacy goals and how it can be
applied to Erlang processes. We describe the architecture

of a Twitter-like dispatching service based on this idea
in §IV, followed by evaluation results in §V. The paper
finishes with related work (§VI), future work (§VII) and
conclusions (§VIII).

II. PRIVACY IN MICRO-BLOGGING

We chose a micro-blogging web application as a case
study because it (1) must support complex privacy policies;
(2) must handle a large number of concurrent users; and
(3) includes non-trivial processing for disseminating mes-
sages to users. Today, micro-blogging allows only limited
control over privacy. For example, while publishers can
limit the set of subscribers who can view their messages,
subscribers cannot control who can observe their member-
ship; nor can they ensure that their subscription requests are
delivered to the correct party.

For example, Twitter [8] is a micro-blogging service
that allows users to exchange short text messages known
as “tweets”. Users can publish messages and subscribe
to other users to receive their messages. Twitter currently
supports a simple privacy model: users can choose to protect
their messages by authorising subscribers before they start
receiving messages. The list of subscribers is public and
accessible from user profiles. Thus, compared to other social
networks, Twitter offers limited privacy by default, with few
options that users can customise.

Our approach can enhance such a micro-blogging service
with more fine-grained, enforceable privacy controls, with-
out sacrificing performance and scalability. Our goal is to
provide the following privacy guarantees in micro-blogging:

G1 Messages from a publisher shall be received only by
authorised subscribers. This ensures that a publisher
can maintain control over its set of subscribers.

G2 Authorised subscribers shall not be disclosed to any
other publisher or subscriber. This means that each
subscription is kept private and no other user of the
system, apart from the authorising publisher, may link
a subscriber to a publisher.

G3 Subscription authorisation requests from subscribers
shall be delivered only to the relevant publisher. This
guarantees that no other user can perceive them and
either authorise or leak them to third parties.

These privacy guarantees enable use cases that diverge
from the default “share everything” paradigm of Twitter. G1
is already an option in Twitter because many users want to
control the distribution of their tweets. On the other hand,
G2 is not provided and subscription lists are public. As a
result, having Bill Gates subscribe to his favourite singer’s
messages can become a worldwide topic of interest [9].
Finally, G3 can be seen as a necessary step in order to
achieve G1 and G2.

Privacy guarantees, such as the ones stated above, are
essentially end-to-end constraints on the system behaviour:
they depend on how an application controls the flow of

information, its processing and its external visibility. In prac-
tice, users’ privacy is threatened by bugs, error conditions
and unforeseen interactions between components. Despite
the need for end-to-end enforcement, privacy often depends
on the correct composition of local mechanisms scattered
throughout an application. To increase confidence that the
system has a correct, privacy-preserving implementation,
IFC provides a systematic, end-to-end approach to the
capturing of privacy policies and enforces them uniformly.

Designing global security mechanisms for web applica-
tions is challenging: the number of users of popular services
is still growing exponentially, which makes scalability and
performance requirements paramount. Selecting a mecha-
nism that enforces privacy policy at the right granularity is
crucial: mechanisms that require many policy checks cause
high overhead, conversely mechanisms that are too coarse-
grained risk missing violations of privacy policy. Next we
describe how IFC applied to an actor-based programming
language can achieve fine-grained privacy control for web
applications.

III. FINE-GRAINED PRIVACY CONTROL

Information flow control (IFC), and particularly its De-
centralised variant (DIFC) [10], is a flexible technique
for enforcing end-to-end security guarantees. It has been
applied to various domains, ranging from programming
languages [5] to OS design [1], [2] and web services [4],
[11]. IFC is a form of mandatory access control that restricts
the way information flows in a system. This is achieved by
associating data with tags. Tagged data “taints” components
that receive it, potentially restricting future flows of data
to and from those components. Components can possess
privileges to override IFC restrictions.

When using IFC for privacy enforcement, a system can
be divided into three stages: (1) data enters the system, the
privacy concern is identified and a tag is used to label the
data; (2) data is processed by the system respecting the
tag, preventing unauthorised components from accessing the
data; and (3) a privileged component can decide when the
privacy concern is satisfied or no longer relevant, and can
thus remove the tag and possibly output the data externally.

Figure 1 shows these three stages in the context of a
micro-blogging service that uses IFC to enforce the privacy
guarantees from §II. The confidentiality of a subscriber
should be protected by disclosing the subscription only to the
relevant publisher. In step 1, after the subscriber has received
a new subscription, it creates a subscription request and
attaches to it the new tag t. The request has to be mediated
by a request processor before it is delivered to the publisher.
For this to happen, the subscriber grants a privilege t+, i.e.
clearance to access data in the request message, only to the
request processor. In order to exercise clearance over t, a
component must taint itself with t and afterwards, it can
only modify resources that are also tainted by t. In step 2,

Key

PublisherSubscriber Request
Processor

Log

Subscription
Request

Processed
Request

Publisher
Socket

Subscriber
Socket

This event flow would not be permitted
because the Logger component has

no access to the r tag

1 2

3

4

t+, t− t+, t−t+

t t

t t

Logger
Component

privileges

tags

t
Message

tags

Path along which
messages travel

Figure 1. Enforcing privacy guarantees with IFC in micro-blogging. A subscriber produces a subscription request protected with a unique tag t. The
request can only be delivered to the intended publisher, even if processed by a component that contains a bug that would otherwise violate this policy.

the request processor has used the t+ clearance and is able
to output the processed request, but again protected by t.

Now consider the case in which the request processor
erroneously tries to send the request data to an unauthorised
component, e.g. by posting the request to an unconstrained
logger. As shown in step 3, the mandatory part of IFC (i.e.
the “no-write-down” property) prevents this from occurring:
the logger has no t+ and thus cannot perceive any message
published by the request processor. This mechanism guaran-
tees that once data is labeled by a tag, the tag is preserved
while the data is processed or copied. The protection on
the request must be lifted when the request reaches its
intended destination, the publisher. There, the subscriber
must delegate to the publisher, along with t+, the privilege
to remove t, i.e. the t− declassification privilege. Using t−,
the publisher component can ask the user for approval of
the request in step 4.

While the above example shows the use of a single tag,
multiple tags can be used to put additional restrictions on
selected data. The set of all taints associated with compo-
nents (and resources) is collected in the confidentiality label.
Labels are partially ordered under the “can-flow-to” relation,
which in this case is the subset relation. An IFC system
ensures that any flow of data between execution compo-
nents A and B only occurs if label(A) ⊆ label(B) [3].
It is thus easy to translate a privacy guarantee into initial
taints and privileges and use IFC to provide its end-to-end
enforcement.

To enforce IFC, the interaction between any components
in Figure 1 must be controlled. Any leakage of information
between components would defeat the purpose of IFC. In
addition, we only focused on a single publisher-subscriber
interaction but in a micro-blogging application, thousands
of users are connected to the service concurrently. This
precludes the use of IFC-secure operating systems [1], [3],
[2], in which labels are assigned to OS processes. OS

processes impose a high cost for each independent entity
that needs to be protected by a label. Splitting the application
into separate OS processes would force all communication
to happen through IPC during the dispatching of published
messages, severely limiting the maximum throughput [12].

Instead we propose an approach where the granularity of
enforcement remains flexible, similar to OS-level IFC, but
that has lower overhead than using separate OS processes.
The gap between the two approaches can be closed by
using languages such as Erlang, which adopt a model of
computation that imposes isolation of functional compo-
nents except for when explicit communication is performed
through message passing.

A. Erlang
Erlang is an actor-based programming language [7] whose

shared-nothing concurrency model makes it a natural fit for
IFC. Shared-nothing concurrency is seeing increasing inter-
est from research and industry because it supports scaling
up applications over multi-core infrastructure well. Erlang is
a widespread and mature language that uses this paradigm.
Applications in Erlang are partitioned into communicating
processes that encapsulate concurrent computation. We ex-
ploit the following features to provide efficient IFC and thus
privacy guarantees:
Message passing. Erlang processes communicate through
explicit message passing, with no shared state between them.
The actor model helps effect an enforcement mechanism for
IFC because it avoids sharing data between threads; shared
memory concurrency complicates reasoning about data own-
ership of processes by effectively blending the distinction
between different protection domains [13]. Secondly, the
actor model provides natural boundaries at which to carry
out IFC checks: when messages are sent and received, label
checks can be applied.
Isolation. To enforce IFC constraints, it is important that
compartments annotated with tags are kept isolated. The

sequential part of Erlang is a functional language with
single assignment and no direct access to global state. These
features provide process isolation trivially; there is no other
way of communication apart from message passing. In a
system without such a property, IFC requires interception of
every possible interaction between compartments. This is a
challenging task that potentially reduces performance [12].

Lightweight processes. Erlang processes are lightweight
compared to threads in most conventional programming
languages: due to a small memory footprint, they are in-
expensive to create and context switch to. This is important
for IFC: in many applications, a component must handle
the confidential data of many different users. IFC then
imposes the partitioning of data into isolated compartments.
Using conventional threads or processes to handle each
compartment introduces significant load to a system. As we
show in §IV, maintaining the privacy of publishers requires
the use of individual dispatching threads per publisher.

B. Supporting IFC in Erlang

We support IFC in Erlang by attaching labels to Erlang
process identifiers (pid), which are checked when messages
are sent. Erlang processes can create new tags by invoking
the new_tag function:

new_tag() -> tag()

Creating a fresh tag automatically grants the calling process
clearance and declassification privileges over that tag.

Processes are created in Erlang by the spawn function.
We add two parameters to this function, TagsAdd and
TagsRemove, to specify the label of the spawned process
with respect to the label of the spawning process:

spawn(TagsAdd, TagsRemove, Fun,
Params) -> pid

The invoker must have clearance privileges for all tags
specified in TagsAdd and declassification privileges for all
tags specified in TagsRemove.

To send messages, processes use a send primitive, in-
stead of the standard Erlang send operator (!):

send(PidReceiver, TagsAdd,
TagsRemove, Message) -> ok|fail

Before sending a message, send checks if the label of
the sending process, after adding tags in TagsAdd and
removing those in TagsRemove, can flow to the label of
the destination. The sending process needs to have declas-
sification privileges for all tags in TagsRemove. An IFC-
compliant Erlang implementation has to enforce the use of
send using one of several approaches, from simple source-
level transformation, through transparent bytecode rewriting,
to a direct modification of the Erlang runtime. We leave this
for future work.

Processes can grant their privileges to other processes by
calling the delegate function:

Dispatcher

S1

S2

S3

P1

P2

P3

P4

...

Publishers SubscribersDispatcher

Figure 2. Typical architecture for dispatching messages. The use of
tags to protect the privacy of the publishers is not possible because of a
single dispatcher process.

delegate(PidReciever, Tag,
Type) -> ok|fail

The function checks that the delegating process has the
privilege to be delegated. Type specifies whether clearance
or declassification is delegated.

To reduce the cost of IFC label checks, our Erlang IFC
implementation caches the results of previous checks. This
is possible because in our label model, the label of an Erlang
process does not change over its lifetime. For a process
to use a dynamic privilege, it must spawn a child and
continue processing in the new context. After an IFC (“can
flow to”) check is performed between two processes, its
result will always hold. We believe that this approach would
be infeasible in other IFC systems because the overhead
of instantiating isolated compartments, for example, when
implemented as traditional OS processes, outweighs the
benefit of faster label checking.

IV. ARCHITECTURE

The core functionality of a micro-blogging service is
the dispatch of messages between users. Figure 2 shows a
typical architecture for dispatching messages. Publishers on
the left-hand side send messages to a dispatcher component,
which forwards a copy to each interested subscriber. A bug
in the dispatcher implementation could send messages to the
wrong subscribers or leak sensitive subscription choices to
other users, thus violating our privacy guarantees (§II).

Using IFC, these threats can be mitigated by a system that
tags, tracks and confines personal data. In the above exam-
ple, publisher P1 could be tainted to only output messages
with a tag p1. Subscriber S3, which is not subscribed to P1,
is not granted p+

1 (clearance over p1) and thus is unable to
receive messages from P1, even if the dispatcher sends them
to S3 by mistake. This means that privacy guarantee G1 from
§II is enforced.

Publisher-side. However, the approach above cannot be
applied directly: the dispatcher would need to be tainted with
all publisher tags to be able to receive published messages.

S1

S2

S3

P1

P2

P3

P4

D1

D2

D3

D4

Publishers SubscribersDispatchers

Figure 3. Protecting publisher privacy by partitioning the dispatcher
into per-publisher instances.

As a consequence, its output would be contaminated by all
publisher tags, resulting in taint levels that would prevent it
from communicating with any of the subscribers.

A simple solution is a forked server model, that uses a
separate dispatcher per publisher, as shown in Figure 3. This
is impractical if the cost of creating and switching between
component instances is high. However, with Erlang’s pro-
cess model, switching processes is efficient, allowing many
processes to be active at the same time with little overhead.
These processes, when scheduled on a multi-core system,
can increase performance with the number of cores.

Subscriber-side. While the above approach is sufficient to
provide privacy guarantee G1 to the publisher, the confiden-
tiality of subscriptions is still at risk: a crash report from D1
may contain all of P1’s subscribers. The report is protected
only by the p1 tag. It can thus be sent to any of P1’s
subscribers and reveal all of P1’s subscribers, violating G2.

Subscriber S1 could, in principle, tag the subscription data
with a tag s1, similarly to the publisher case, to protect
its privacy. However, as explained above, the dispatcher
would hold subscription information from many subscribers,
resulting in an overly-tainted dispatching process. To solve
this issue and guarantee G2, we again partition the dispatcher
into multiple instances so that each identifier of a subscriber
is contained in its own protected instance (see Figure 4):
D1 from Figure 3 is split into D1, A1 and A2 in Figure 4.
To avoid disclosing its identity to D1, S1 first spawns a
tainted A1 and then sends a message to D1, passing A1’s
pid, thus anonymising its subscription. A1 learns S1’s pid
but is tainted and thus cannot communicate with any other
component except S1.

Finally, a subscription request must also be guaranteed
only to reach the relevant publisher (G3). For this, the
approach from §III can be applied. Alternatively, each pub-
lisher can allocate another tag and never share clearance over
it. In the example above, P1 allocates a new tag q1. Each
subscriber only has to protect its authorisation request to P1
with q1. Since only P1 has clearance q+

1 , only P1 can read
the authorisation request, effectively enforcing G3.

A1

A2

A3

A4

S1

S2

S3

P1

P2

P3

P4

D1

D2

D3

D4

Publishers SubscribersDispatchers Anonymisers

p1 p1 p1 s1

s2

s3

p1

s2

s1p1

s2p1

s3

Figure 4. Protecting subscriber privacy by further partitioning the
dispatcher state with anonymisers.

A. Discussion

In the above architecture, components have to trade off
two conflicting requirements: (1) they have to observe
potentially sensitive data belonging to multiple users and
(2) they have to respect user privacy using IFC. This
makes a forked server model necessary, in which separate
component instances per user are created. Although this is
infeasible for conventional programming language threads
or OS processes, it is reasonable in the context of Erlang
processes. An Erlang process has an overhead of 1 KB of
memory [14], thus effectively enabling millions of processes.
Process creation time is also low, allowing 200,000 process
creations per second even on modest hardware [15]. As a
result, we can support per-user dispatcher and anonymiser
components in our architecture and still scale to a large
number of concurrently active users (as shown in §V).

A limitation of our approach is that it complicates the
architecture of the application. A software designer must
ensure that separate components are created per user and
carefully manage the interaction between them to avoid
unnecessary contamination. Messages sent by components
must be tagged correctly according to the privacy policy
goals. As typical of DIFC systems, components must also
allocate tags and posses the correct privileges. Ongoing
research on high-level policy specification for IFC and
techniques for transparently inferring IFC policy may help
manage this complexity [16].

Of course an implementation of a dispatcher is only
one part of a fully-featured micro-blogging website. In this
work, we ignore any presentation and storage functionality
that would be commonly found in such an application. In
practice, a database backend would be used to make all
messages persistent and often this becomes a scalability
bottleneck. Considering current architectures of scalable web
applications, such as Twitter and Facebook, they rely on
caching layers (e.g. memcached [17] and ehcache [18])
to avoid database requests on the critical path. Through
caching, such applications try to keep data relating to
active users in memory. In that sense, they resemble our

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800

 0 1000 2000 3000 4000 5000 6000 7000

La
te

nc
y

(m
s)

Number of active users

Erlang with IFC
Erlang with IFC + caching

Erlang without IFC

Figure 5. Latency of message delivery with increasing number of users
(i.e. subscribers and publishers). Publishers produce messages at a rate
of 10 msgs/sec.

dispatching architecture after relevant user data was retrieved
from the database to memory.

V. EVALUATION

We evaluate the potential of our approach for providing an
efficient mechanism for privacy enforcement. The goals of
our evaluation are twofold: (1) to show that Erlang compares
favourably to imperative languages commonly used for web
development, and (2) to confirm that the extra IFC label
checks do not introduce undue overhead.

We compare three implementations of our simple micro-
blogging service: in Python, in Erlang and in Erlang with
IFC. In each case, the implementation attempts to follow
that language’s best practice. The Python prototype was
modelled after Figure 2. Because Python threads have sig-
nificant overhead compared to those in Erlang, the Python
implementation is synchronous to maximise throughput.1

The Erlang implementation follows the architecture in Fig-
ure 3 and the Erlang with IFC design is shown in Figure 4.
Unlike the Erlang with IFC prototype, the other two do not
include labels and thus do not enforce any of the privacy
requirements described in §II.

We use two performance metrics in our experiments: end-
to-end message throughput and latency. We assume that all
users, at all times, are about to send or receive messages. In
other words, even if the application has millions of registered
users, in these experiments we only focus on the ones that
we consider to be constantly active.

All experiments were run on a dual processor Intel Xeon
E5540 2.53 GHz machine with 24 GiB of memory running
64 bit Ubuntu Linux 9.04. We used the Erlang (BEAM)
emulator version 5.6.5 and CPython version 2.6.2.

A. Experimental Results

In the first experiment, we measure the 90th percentile of
latencies observed when dispatching a message from a pub-

1Note that CPython implementations currently cannot make efficient use
of multi-core architectures.

 0

 50

 100

 150

 200

 250

 0 5000 10000 15000 20000 25000

T
hr

ou
gh

pu
t (

10
00

 m
sg

s/
se

c)

Number of active users

Erlang without IFC
Erlang with IFC + caching

Python without IFC
Erlang with IFC

Figure 6. Message throughput with increasing number of users (i.e.
publishers and subscribers). Publishers produce messages at a rate of
10 msgs/sec.

lisher to its subscribers, as we increase the number of users
in the system. In each run, for each user we instantiate a
publisher and a subscriber process. In order to avoid the need
to offload inactive users’ data to a database, as discussed
in §IV, the publication rate per publisher is 10 msgs/sec.
Finally, we assume 10 subscriptions per subscriber.

The results are shown in Figure 5. Latencies in an under-
loaded system are low: for 1000 users without IFC, it
takes 0.5 ms to deliver a message and, with IFC, it takes
0.7 ms. The overhead of 0.2 ms is caused by the three
label checks in the corresponding message exchanges en
route from the publisher to its subscribers. As the number
of users increases the load in the system, the switching and
scheduling overhead also increases the latency significantly.
This is mainly because each subscription in the IFC case
requires an additional anonymiser, thus the total number of
Erlang processes increases tenfold. The Python prototype
(not shown in the graph) remained consistently below the
1 ms range because of the structured, synchronous manner in
which the code delivers messages. This shows that intimate
knowledge about the dispatching behaviour of a system can
be used to optimise for low latency message delivery.

The second experiment measures the achieved throughput
in terms of published messages/second. In Figure 6, we
again have a fixed message rate of 10 msgs/sec per user
as we increase the number of users. With 10 subscriptions
per user, the total delivery rate in Figure 6 reaches 1 million
msgs/sec. Here the caching of the label checks leads to a
30% increase in the throughput at saturation compared to
regular IFC. Without IFC, Erlang’s throughput at saturation
is 30% higher than the cached version. Python performs
similarly to Erlang with cached IFC checks even though it is
confined to a single OS process. This can be attributed to the
label checks being of similar complexity to the application’s
procedural code: an application with more features (e.g.
complex filtering of message content) would have lowered
the load on the communication channels.

Note that these results constitute a worst case scenario:

all IFC-related code operates on top of the runtime and
is written in Erlang itself. An implementation within the
runtime not only could enforce the use of IFC mechanisms,
but would have the potential to improve performance further.
Critical operations, such as label checks, could be also
optimised in more efficient procedural languages.

VI. RELATED WORK

Privacy in Social Web Applications. A great deal of re-
search has been done into the user-facing aspects of privacy
in social networking applications, both in terms of the risks
to users [19], and techniques for policy specification [20].
However, the insubstantial impact, and then demise of the
W3C P3P project [21], suggests that implementation and
enforcement of privacy controls tends to be done in an ad
hoc manner. To address this gap, a number of systematic
approaches that rely on IFC have recently been proposed to
offer the necessary privacy guarantees.
Information Flow Control. IFC originated in the military
domain when implementing Multi Level Security (MLS).
Myers and Liskov’s seminal work [10] extended the label
model to provide Decentralised Information Flow Con-
trol (DIFC). In this model, new labels can be created at
runtime by unprivileged application components, which can
delegate declassification privileges to other components.
The availability of fine-grained labels with decentralised
declassification makes the “principle of least privilege”
enforceable [22].

Approaches for applying IFC to applications differ in
(a) how they define labels to protect flows, (b) how they
track labels as data is processed and copied, and (c) when
labels are checked at certain propagation boundaries.
OS-level IFC, such as Asbestos [1], Flume [3] and Hi-
Star [2], define dataflow boundaries around OS processes.
Each process is assigned a label at runtime and labels form a
lattice under a “can-flow-to” ordering relation. For example,
in Flume labels are attached by spawning processes and by
creating communication channels. Taint tracking is provided
by the system that performs IFC checks between processes
and channels. It guarantees that tags are preserved as data is
exchanged among processes. As discussed previously, OS-
level IFC is too coarse-grained for our goals.
Language-level IFC provides protection at the granularity
of individual variables. Jif [10] extends Java to control data
flow. It uses a static approach, in which labels are attached
to variable declarations and checked by a compiler. This
makes it unsuitable for our scenario because new users
(and associated data) are created dynamically at runtime.
On the other hand, proposals for checking variable labels
at runtime [4], [6], [23] impact performance because they
introduce a constant overhead, as described below.
xBook [11] is a framework for developing extensions for
social networking platforms. It addresses the problem that

such extensions have access to personal information, yet
they are not confined. xBook uses the Jif label model to
monitor and limit communication at runtime. Extensions
are written in ADSafe, a subset of JavaScript that prevents
two components from communicating unless they use the
provided asynchronous message passing interface that ver-
ifies label compatibility. xBook highlights the applicability
of Erlang for enforcing IFC; the programming style imposed
by xBook closely follows the mainstream Erlang paradigm.
In addition, Erlang offers superior scalability on multi-core
platforms and a fast message passing interface. Thus, it is
more suitable to support the high message rates and a large
number of isolated components, as required in our micro-
blogging scenario.
SIF [4] is similar to xBook in that it aims to support
general purpose web applications with privacy guarantees.
It provides an alternative Java Servlet Framework where
servlets are written in Jif. In order to support new users,
SIF augments Jif with principals and labels that are checked
at runtime. The authors do not report to what extent variable-
level runtime checks affect the performance of CPU-bound
applications.
Trishul [23] and Resin [6] provide dynamic, fine-grained
IFC by modifying the language runtime to attach labels
to values. In Resin, labels do not form a lattice but are
sets of policy objects. For example, a password could be
annotated by a policy object preventing it from being sent
over an unencrypted connection. When data is copied, the
runtime maintains the link with the policy. Policies are
enforced when data crosses specific boundaries, such as
marshalling a string before a socket write. This approach
requires programmers to define these boundaries explicitly.
If a dangerous boundary is not identified, private user data
could be revealed. By instrumenting message passing in
Erlang, we avoid this problem in our work.

VII. FUTURE WORK

In this paper, we address only one component required in
a micro-blogging service, namely the message dispatching
system. Our focus on the dispatching engine means that we
ignore other parts of a practical web application, such as
low-level communication, message marshalling, user man-
agement and the web front-end. Integrating our message
queue with an Erlang-based web server would allow us
to apply previous research on securing web servers using
IFC [6]. Exploiting IFC in conjunction with Erlang’s seam-
less distribution features can potentially secure distributed
applications.

We also do not consider data persistence using a database
back-end. Integration of IFC security with persistent storage
is still in its infancy and constitutes an interesting area
for future research. It is orthogonal to the runtime aspects
described in this work. In particular, we plan to augment
Erlang’s distributed Mnesia database with IFC support.

From a language perspective, Erlang is not a pure func-
tional language: there are, in fact, several library functions
that allow Erlang processes to communicate without ex-
changing messages, e.g. by using non-private term stores
or by accessing external resources such as files. We plan
to secure these features in the language runtime to achieve
complete isolation.

Moreover, aspects that facilitate lightweight processes in
Erlang are beginning to appear in other languages: we
are keen to test the applicability of the IFC model in
environments such as Stackless Python and the Kilim [15]
actor environment for Java.

VIII. CONCLUSIONS

We have shown the viability of applying (decentralised)
Information Flow Control (IFC) to preserve the privacy
of users within a social micro-blogging application, both
from the publishers’ and the subscribers’ perspective. Our
implementation uses the Erlang programming language and
exploits its key features, such as shared-nothing compu-
tation, message passing and lightweight processes. These
features make Erlang an ideal choice for implementing IFC
with low overhead and minimal effort. We have described
the architecture of a Twitter-like dispatching service in
Erlang that creates fresh instances of components to isolate
data belonging to different users. Our evaluation results show
that applying IFC in this way achieves uniform privacy
preservation, even in an application with significant numbers
of concurrent users, at a reasonable cost.

Acknowledgements

We would like to thank Cristian Cadar and Steven Hand
for comments on an earlier paper draft. This work was sup-
ported by grants EP/F042469 and EP/F044216 (”SmartFlow:
Extendable Event-Based Middleware”) from the UK Engi-
neering and Physical Sciences Research Council (EPSRC).

REFERENCES

[1] P. Efstathopoulos, M. Krohn, S. VanDeBogart et al., in
ACM Symposium on Operating Systems Principles (SOSP),
Brighton, UK, pp. 17–30.

[2] N. Zeldovich, E. Kohler et al., “Making information flow
explicit in HiStar,” in OSDI ’06, Seattle, WA, USA.

[3] M. Krohn, A. Yip, M. Brodsky et al., “Information flow
control for standard OS abstractions,” in ACM Symposium on
Operating Systems Principles (SOSP), Stevenson, WA, USA,
2007, pp. 321–334.

[4] S. Chong, K. Vikram, and A. C. Myers, “SIF: enforcing
confidentiality and integrity in web applications,” in USENIX
Security Symposium, Boston, MA, USA, 2007, pp. 1–16.

[5] A. C. Myers, “JFlow: Practical mostly-static information flow
control,” in POPL ’99, San Antonio, TX, USA.

[6] A. Yip, X. Wang, N. Zeldovich, and M. F. Kaashoek, “Im-
proving application security with data flow assertions,” in
ACM Symposium on Operating Systems Principles (SOSP),
Big Sky, MA, USA, 2009, pp. 291–304.

[7] J. Armstrong, Programming Erlang: Software for a Concur-
rent World. Pragmatic Bookshelf, 2007.

[8] Twitter Website, www.twitter.com.

[9] G. Clarke, “Bill Gates hits Twitter, re-opens Facebook,” The
Register, 2010.

[10] A. Myers and B. Liskov, “Protecting privacy using the
decentralized label model,” ACM Transactions on Software
Engineering and Methodology, vol. 9, no. 4, 2000.

[11] S. Kapil, B. Sumeer, and L. Wenke, “xBook: Redesigning
privacy control in social networking platforms,” in USENIX
Security Symposium, Montreal, Canada, 2009.

[12] M. Miglivacca, I. Papagiannis, D. Eyers, B. Shand, J. Bacon,
and P. Pietzuch, “High-performance event processing with in-
formation security,” in USENIX Annual Technical Conference,
Boston, MA, USA, 2010.

[13] C. Hawblitzel, C.-C. Chang, G. Czajkowski, D. Hu, and
T. von Eicken, “Implementing multiple protection domains
in Java,” in USENIX Annual Technical Conference, Berkeley,
CA, USA, 1998.

[14] J. Haln, R. Karlsson, and M. Nilsson, “Performance measure-
ments of threads in Java and processes in Erlang,” Ericsson,
Tech. Rep., 1998.

[15] S. Srinivasan and A. Mycroft, “Kilim: Isolation-typed actors
for Java,” in European Conference on Object-Oriented Pro-
gramming (ECOOP), Paphos, Cyprus, 2008.

[16] P. Efstathopoulos and E. Kohler, “Manageable fine-grained
information flow,” in European Conference on Computer
Systems (EuroSys). Glasgow, UK: ACM, 2008.

[17] Memcached Website, www.memcached.org.

[18] Ehcache Website, www.ehcache.org.

[19] D. Rosenblum, “What anyone can know: The privacy risks of
social networking sites,” IEEE Security and Privacy, vol. 5,
no. 3, pp. 40–49, 2007.

[20] G. Danezis, “Inferring privacy policies for social networking
services,” in AISec, 2009, pp. 5–10.

[21] L. Cranor, M. Langheinrich, M. Marchiori, and J. Reagle,
“The platform for privacy preferences 1.0 (P3P 1.0)
specification,” W3C Recommendation, 2002. [Online].
Available: www.w3.org/TR/P3P

[22] M. Krohn, P. Efstathopoulos, C. Frey, and all, “Make least
privilege a right (not a privilege),” in Hot Topics in Operating
Systems (HOTOS), Santa Fe, NM, USA, 2005, pp. 21–21.

[23] S. Nair, P. Simpson et al., “A virtual machine based informa-
tion flow control system for policy enforcement,” Electronic
Notes in Theoretical Computer Science, vol. 197, no. 1, 2008.

