
Implementing a practical spatio-temporal
composite event language

Ken Moody1, Jean Bacon1, David Evans1, and Scarlet Schwiderski-Grosche2

1 Computer Laboratory, University of Cambridge,
15 JJ Thomson Ave, Cambridge CB3 0FD, UK

{firstname.lastname}@cl.cam.ac.uk
2 Microsoft Research, 7 JJ Thomson Ave, Cambridge, CB3 0FB, UK

scarlets@microsoft.com

Abstract. An earlier paper introduced SpaTeC, a composite event lan-
guage that enables simultaneous matching of event occurrences over
space and time. The driving case study is taken from a paper that de-
scribes techniques for monitoring small animals in New Zealand. The se-
mantics of SpaTeC is presented in detail with the aid of the case study,
but the syntax is essentially mathematical. This paper describes a pro-
gramming language based on the SpaTeC model, illustrating it through
a practical application, the analysis of GPS traces of buses serving Cam-
bridge, UK. We describe some of the questions that Stagecoach, the bus
operator, wish to have answered, and use these to motivate our exten-
sions to SpaTeC. Composite event patterns are essentially those of the
earlier paper, with the addition of primitive patterns, which enforce re-
strictions on the space and/or time of event occurrences. Data fields
identified during pattern matching can be tested by predicates that fur-
ther restrict the relevant combinations of primitive events. We show how
the language can be used to answer questions posed by Stagecoach and
discuss its realisation.

Key words: Composite event language, mobile systems, spatio-temporal rea-
soning, session types

1 Introduction

SpaTeC, a composite event language that enables simultaneous matching of
event occurrences over space and time, is described in [1]. Primitive event oc-
currences carry both time and location stamps; the target of the work is to
support sensor-based applications in which both clients and the objects moni-
tored can be mobile. The paper defines operators to combine primitive events to
form composite event occurrence patterns, specifying their semantics in terms
of the time and location stamps of participating primitive event occurrences. A
composite event notification service receives primitive (low-level) event occur-
rences, performs composite event matching against the current set of patterns,

and forwards details of composite (higher-level) event occurrences to the relevant
subscribers. There was no implementation, and although the paper presented a
detailed mobile event scenario, the data were not easily available for experiment.
The present paper describes a new scenario with more challenging features for
which data are available, using it to help design a SpaTeC programming lan-
guage that builds on and extends the earlier model. We shall not refer to that
paper again, but we assume the reader has access to it and can discover any
relevant details from it.

Physical measurements in both time and space are subject to error. We fol-
low the approach established in [2] to take account of local error using interval
timestamps, and extend the technique to handle location stamps as well. Time
values are essentially one-dimensional, and it makes sense to say that one event
took place before another, though if the uncertainty intervals overlap we cannot
be sure. For location stamps, the most that we can assert is that two events oc-
curred at different places. Recent work taking account of location, such as [3–5],
is discussed in the earlier paper.

Operators in SpaTeC establish time and location stamps for each composite
event occurrence matched, and the semantics of the composite event language
depends on the details. Two different semantics are described, which correspond
in the time domain to set-based semantics and interval-based semantics respec-
tively. Which is the more appropriate depends on the specific application; here we
adopt interval-based semantics for timestamps, with the corresponding convex-
hull semantics for composite event location stamps.

The application scenario described in [1] stems from work carried out in the
Department of Biological Sciences at the University of Waikato, New Zealand1.
King et al. develop effective techniques for predator-control operations on pas-
toral farmland, where ferrets and other small carnivores are monitored “both for
keeping track of the distribution and numbers of native species, and for locating,
guiding and auditing control operations against alien species” [6]. Monitoring is
done using the so-called Scentinelr, a “smart” tracking tunnel for small mam-
mals that records time, date, weight and a digital photograph of every animal
entering it. Identifiers of tagged animals that get close to a Scentinel but do not
enter are also recorded. Scentinels represent fixed nodes, radio-tagged animals
represent mobile nodes in the system (GPS satellite collars allow continuous
monitoring, but they are only suitable for animals weighing 15 or more kg).

Data rich events occur only in the vicinity of Scentinels, hence at fixed lo-
cations, though at random times. The present paper uses a complementary sce-
nario, inspired by the needs of one of the Computer Laboratory’s current research
projects, TIME-EACM [7]. The local Cambridge bus company, Stagecoach, has
fitted its buses with GPS transmitters supported by a local company, ACIS,
who display anticipated arrival times at bus stops. With the agreement of both
Stagecoach and ACIS the data feeds are also sent to the TIME-EACM project.
Unlike Scentinel data, bus position data is transmitted at fixed times, but bus

1 http://www.bio.waikato.ac.nz/research/research1.shtml]zoology

locations depend on factors such as traffic congestion. A paper giving a sta-
tistical analysis of this bus probe data is forthcoming; see [8]. Stagecoach are
interested in the work, and have suggested other questions that we may be able
to answer for them. The original SpaTeC was designed for applications that re-
quire temporal and spatial reasoning. The detailed requirements stemming from
the Stagecoach questions have helped us to develop a theoretical design into a
practical composite event language.

The rest of this paper is structured as follows: Section 2 gives the background
to the GPS tracking support for the Stagecoach bus fleet in Cambridge, and
discusses some of the questions of interest to the company. Section 3 presents
the syntax and semantics of the SpaTeC programming language, motivating the
extensions using Stagecoach bus scenarios. We describe our experience using
SpaTeC to model the bus scenarios in Section 4. In Section 5 we outline some
of the considerations when implementing SpaTeC in data intensive applications.
Section 6 discusses related work. Section 7 concludes the paper.

2 GPS tracking of buses

Each bus serving Cambridge UK and surrounding areas that is operated by
Stagecoach is equipped with a GPS-based location sensor. Such sensors note the
geographical location of the bus and periodically (about once every 30 seconds)
report it via wireless communication to a central location. Stagecoach, along with
the local County Council and the firm that operates the reporting infrastructure,
use these location reports to provide real-time information to passengers via
displays at bus stops, web sites, and mobile phones.

Each Stagecoach bus therefore produces a series of location events, each
having an associated timestamp. Both the location and the time are subject to
uncertainty, the location because of error in the GPS reading and subsequent
software processing, and the timestamp because location recording and data
transmission are decoupled. Each bus is assigned an offset within a 30 second
window at which to transmit. This means that a location report reflects the
position of a particular bus some time within the previous 30 seconds. More
formally, suppose that the location of bus i is recorded at time t0 and is reported
at time t1 = t0+τi. The timestamp of the location will be t1, whereas the reading
was actually taken at t0. We are guaranteed that τi < 30 for each bus i. Further,
τi will be the same for each report from bus i within some session; the offsets
for a given set of buses may then be updated, but this will happen only a small
number of times per day. We have no easy way of determining the precise value
of τi within a particular session. Further details are reported in [8].

Aside from providing information to passengers, Stagecoach is interested in
using these location reports to answer questions like the following:

– Does wet weather, as sensed by various environmental detectors, correspond
to longer journey times?

– Anecdotes suggest that journey times increase in the build-up to Christmas.
Is this true?

– What is the quantitative effect on journey times of road disruptions (acci-
dents, road works, etc.)?

– Are journey times to and from a local hospital longer on Tuesdays, when
many outpatient appointments are scheduled?

Answering these questions has a component of historical analysis that amounts
to data mining of the GPS traces. However, each question also defines a situation
that can be detected as it is happening, so that consequent alerts can be issued.
For example, the presence of rain and the lengthening of journey times can cause
a “bad weather performance” alert to be issued, possibly triggering operational
changes. A language based on SpaTeC principles must be able to describe these
events.

3 The SpaTeC programming language

The SpaTeC programming language assumes an object-oriented environment.
Events that occur in the application to be modelled conform to some type;
variables in SpaTeC are typed accordingly. Each event occurrence defines an
object instance in the corresponding class; attributes of this class can be used
within the language.

The language has two parts. The first enables construction of match expres-
sions, which are used to define composite event patterns that are always present
in some phenomenon. The result of each match will be a set of primitive events.
A match expression establishes what is, in effect, a session type having receive
primitives only [9]. (If the language runtime used has direct support for session
types, as can be found for Java and Moose as outlined in [10], the facilities can
be used to encode results from match expressions, compare them, move them
between modules of code, and so on. We discuss the use of session types further
in Section 5.) The second part takes the set of composite events found by a
particular match expression and restricts it using filter predicates. Zero or more
filter predicates are attached to a match expression to form a phrase.

Each phrase corresponds to some situation of interest at application level.
The purpose of a given phrase is to identify each composite event occurrence
that identifies a particular instance of that situation. When a specific composite
event is detected, its occurrence will depend on a specific set of primitive events.
The notification service forwards details of each composite event occurrence to
the relevant subscribers, for example by publishing an object instance in a class
specific to this type of composite event; its attributes will reflect the associated
set of primitive event occurrences.

3.1 Primitive event match expressions

Each match expression has a natural tree structure that represents the event
pattern to be identified. Non-leaf nodes in the tree correspond to the operators
introduced in Section 3.3. There are two categories of leaf node.

A primitive event is a typed data structure that represents the reification of
an occurrence. The type of the event is a class (in the object-oriented program-
ming sense) that contains all the information needed to describe a particular
event occurrence of that type. In our model, every such class will contain time
and location attributes.

Assume that e is a primitive event type, for example a GPS bus observation.
The expression e is a primitive event match expression that matches all event
instances of type e. Further, the expression

e → B

is a match expression that, each time it matches an event of type e, unifies B
with the state carried by that event instance. One can think of B as being a
session variable of type e, which in the context of a specific match describes the
corresponding matching event occurrence. We shall see shortly how B is scoped
and why it is useful.

3.2 Primitive patterns

Alongside primitive events are primitive patterns. These are match expres-
sions that match events not by type, as with primitive events, but by space and
time. They can be thought of as matching all possible event types, subject to
conditions on their time and/or location attributes. Examples of patterns are
“Tuesday”, which contains every event with a timestamp that falls on a Tues-
day2; and “point x”, containing all events at all times having location stamps
x.

The rules for matching primitive patterns are as defined in Tables 1 and 2. We
also need to specify the time and location stamps of composite event occur-
rences matched by expressions that include patterns. First, any composite event
expression consisting only of primitive patterns is a pattern. When a pattern
matches some composite event expression that contains at least one event occur-
rence, the combined matched expression is given the time and location stamps
of the non-pattern operand. In particular, any combination of primitive patterns
can match all possible (composite) event types subject to conditions on the time
and/or location attributes, and the result of matching that composite pattern
will leave both time and location stamps unaltered.

We shall meet examples of the use of patterns in Section 4.
2 We are ignoring issues such as time zones and leap years; the motivated reader can

imagine a system that begins by following the ISO 8601 standard for writing down
times.

3.3 General match expressions

Match expressions are combined to form composite events using operators. The
event operators for simultaneous reasoning in space and time are listed in Table
1. When we need to reason in only one of space and time, we can use the simpler
event operators listed in Table 2. Event patterns pose precise space and time
requirements, but sometimes the uncertainty of measurement of the location
and time attributes of primitive event occurrences will mean that we cannot be
certain whether there is a match. Notions of same location and same time must
always be interpreted as within measurement error, meaning that they are too
close to be differentiated. In addition SpaTeC supports Boolean operations on
match expressions in the obvious way.

This allows the construction of complex composite events that represent oc-
currences having some spatial and temporal property (such as primitive events
happening in sequence, at the same place, etc.) and the restriction of these by
spatial and temporal constants.

Table 1: SpaTeC Event Operators for Reasoning in Space and Time

Event Operator Meaning Description

E1

n
<>
;

o
E2 Location overlap, in sequence

The locations of E1 and E2 overlap,

E1 happens before E2

E1

n
><
;

o
E2 Distinct locations, in sequence

E1 and E2 occur at distinct locations,

E1 happens before E2

E1

<>

‖
ff

E2 Location overlap, time overlap

The locations of E1 and E2 overlap,

their timestamps also overlap

E1

><

‖
ff

E2 Distinct locations, time overlap

E1 and E2 occur at distinct locations,

and their timestamps overlap

3.4 Filter predicates

A stream of composite events is likely to be too broad to describe many phe-
nomena of interest. We therefore introduce filter predicates that allow selection
of the composite events emerging from a given match expression.

A filter predicate is defined recursively as the conjunction (∧) or disjunction
(∨) of two other filter predicates. Each predicate can be negated (¬). At the
lowest level, a filter predicate is a Boolean-valued expression containing elements
chosen from the following:

Table 2: SpaTeC Event Operators for Reasoning in Space or Time

Event Operator Meaning Description

E1 {<>}E2 Location overlap The locations of E1 and E2 overlap

E1 {><}E2 Distinct locations E1 and E2 occur at distinct locations

E1 {‖}E2 Time overlap The timestamps of E1 and E2 overlap

E1 {; }E2 In sequence E1 happens before E2

E1 {, }E2 Conjunction Both E1 and E2 occur

E1 {|}E2 Disjunction Either E1 or E2 occurs

– constants
– attributes from variables that are unified as part of the matching composite

event
– simple mathematical operations (by which we mean things like arithmetic

operators and exponentiation)
– functions built from the above, such as computing the distance between two

points (in whatever space those coordinates lie)
– relational operators (<,=, >,≤,≥)

The attributes from variables component of filter predicates needs a little expla-
nation. The variables are like example B in Section 3.1, and represent the data
that characterise matching event instances. This allows predicates to reason over
these data, selecting only composite events of interest. For example, consider the
event type bus that, in addition to the standard attributes time and location,
has a vehicle identification attribute VID that indicates to which bus the event
pertains. Let e1 and e2 represent events of type bus. The expression

(e1 → B1; e2 → B2) [(B1.VID) == (B2.VID)]

matches two observations of the same bus, the first taking place before the
second. The expression

(e1 → B1; e2 → B2) [(B1.VID) == (B2.VID)
∧ distance (B1.location, B2.location) ≥ 450]

matches two observations of the same bus that are at least 450 units apart.
Note that a phrase consists of a match expression and zero or more filter

predicates, each of which must be satisfied. Testing a filter predicate requires
access to the relevant matched variable attributes; supporting multiple predicates
aids specification and offers hints to the optimiser.

4 Using SpaTeC to analyse the bus GPS data

In this section we look in more detail at some of the Stagecoach questions, and
describe some of the basic requirements for answering them. As a first step we
look at two of their interests:

– Anecdotes suggest that journey times increase in the build-up to Christmas.
Is this true?

– Are journey times to and from a local hospital longer on Tuesdays, when
many outpatient appointments are scheduled?

As we have said in Section 2, we are interested not so much in mining the histor-
ical record for answers to these questions as in producing events that correspond
to germane situations as they happen. Of course, anecdotal evidence relates to
past experience and a first step is statistical analysis of the historical record. If
the anecdotal evidence is found to be justified, in general, it is then appropriate
to detect patterns in real time; such a pattern may indicate for example that
congestion is beginning to build up, so appropriate action can be taken, such as
the deployment of extra buses.

Answering these types of question requires selecting bus observations with
particular time or location attributes. The simplest case is that of a single
fixed time or place, for example the stop at the local hospital.

4.1 Constant patterns and their uses

Constant patterns are provided as part of the programming environment when
defining composite event expressions. To say that a pattern is constant does not
mean that its value is necessarily simple; for example, the pattern Tuesday is
constant, but the value requires careful initialisation. We begin with an example
of a point location constant pattern.

To identify observations when a bus is at a particular stop, we have:

(e1 {<>} BusStopX)

BusStopX is a primitive pattern with the location stamp of BusStopX, which
will otherwise match any event. The normal semantics of the {<>} operator will
cause this expression to match all events of type e1 whose location attributes
overlap BusStopX; see Section 3.3. Inevitably buses will not stop precisely at
a single fixed location, and we select an uncertainty radius for the primitive
pattern BusStopX to take account of this.

Suppose that we need to identify, in real time, (composite) events when the
journey time from the hospital to the station is less than 6 minutes.3 e1 and
e2 are bus observation events. We assume that HospitalStop and StationStop
identify the two bus stops.

((e1 → B1 {<>} HospitalStop); (e2 → B2 {<>} StationStop))
[(B1.VID == B2.VID) ∧ (B2.time−B1.time < 6 ∗ 60)] (1)

3 Note that uncertainty in event timestamps means that this can’t be detected pre-
cisely.

The composite event (e1 → B1 {<>} HospitalStop) has the timestamp of event
e1, so we can easily check for quick journeys on a Tuesday (unlikely!) by starting
with

(e1 → B1 {<>} HospitalStop) || Tuesday

This works because of the rule for deriving composite event location and time
stamps from primitive patterns (see Section 3.2). The same effect could be ob-
tained using the expression

(e1 → B1

{
<>

‖
}

(HospitalStop ∧ Tuesday))

4.2 More demanding Stagecoach questions

Detailed statistical study of bus tracking data along two sections of route has
allowed us to answer some more complex Stagecoach questions, see [8]. This
analysis is time consuming, and by its nature cannot deliver answers in real
time. Recall the other two examples given in Section 2:

– Does wet weather, as sensed by various environmental detectors, correspond
to longer journey times?

– What is the quantitative effect on journey times of road disruptions (acci-
dents, road works, etc.)?

We have been able to resolve these questions to some extent using historical
data, for example looking at the correlation between days when it has rained
and longer journey times. However, these can also be detected in real time by
writing appropriate SpaTeC phrases. For example, suppose that an event of
type r occurs when it rains, its time and location attributes describing the
time and place of the rainfall. (r can also be regarded as an event pattern that
represents all the points where it is raining.) Starting from SpaTeC phrase 1, we
can construct the phrase((

(e1 → B1 {<>} HospitalStop)
{

<>

‖
}

r

)
;(

(e2 → B2 {<>} StationStop)
{

<>

‖
}

r

))
[(B1.VID == B2.VID) ∧ (B2.time−B1.time > 20 ∗ 60)]

that detects bus journeys between the hospital and the station, when it is raining
at the beginning and end of the journey and the trip takes longer than 20 minutes
(we shall also need to ensure that the bus is visiting the station for the first time
since it left the hospital).

In addition to the bus tracking data the TIME-EACM project monitors traf-
fic on the nearest main road in real time, and this data can provide early warning
of congestion and consequent delay to buses. Equally, the bus GPS data in itself

provides evidence of congestion; for example, buses do not make good progress
during the morning and evening rush hours, particularly during the school term.
We hope to be able to calibrate bus movement behaviours from the historical
tracking data, and so develop SpaTeC patterns that, if detected, indicate con-
gestion on the roads. A first shot might be to produce an event when the same
bus reports 4 successive location observations that overlap pairwise. Even this
relatively simple example requires some tedious predicates.

5 SpaTeC - Moving Towards Deployment

SpaTeC phrases define sets of composite events, and it is the job of the imple-
mentation to detect these based on primitive event occurrences. Recall that each
phrase consists of an obligatory match expression and optional predicates, which
are tested against each matching set of event occurrences. A possible scenario
is to implement complex event detection as a service above a publish/subscribe
architecture such as Rebeca [11] or Hermes [12]. Clients of the system are pub-
lishers, subscribers or both. Event types are defined and managed by the system.
Potential publishers advertise their ability to publish event instances. Subscribers
subscribe to event types with a subscription filter that represents their particular
interests. Notice that publishers and subscribers are mutually anonymous. The
system is provided as a distributed broker network. A broker may be publisher-
hosting, subscriber-hosting, both or neither; that is, some brokers may merely
act as routers. A common optimisation of publish/subscribe is content-based
routing (CBR), that allows communication paths to be shared when a published
message is transmitted through the network to its subscribers. CBR is typically
set up in the event brokers when events are advertised and subscribed to.

Following [13], each composite event detector (CED) subscribes to events and
advertises and publishes higher-level composite events. A composite event match
expression tree may be split into subtrees that are placed in the distributed
system to optimise communication and detection latency.

Each phrase in a SpaTeC program is handled independently, meaning that
there is no explicit inter-phrase state nor are there references between them.
Therefore, a given program may be implemented as a central service or may be
distributed as an optimisation.

5.1 Centralised implementation

We first outline how a centralised implementation works.

1. The text of the phrase is processed by a front-end to check syntax and extract
the match expression and predicates. At this stage the match expression is
checked to ensure that unified variables are not re-used and are therefore
conflict-free. This is done as it would be for any programming language, so
it is not discussed further in this paper.

2. Event detectors are built from the phrase’s match expression. This is done
using finite automata based on those used by Hermes [14, chapter 7]. The
automata use initial, ordinary, and generative states but have no need for
generative time states, since SpaTeC does not deal with time events in the
same way. The operators in Tables 1 and 2 that compare location stamps
are handled in the same way that Hermes deals with timestamps, with com-
parisons taking account of the inherent uncertainty.
The only complication is that when primitive events are matched as part of
composite event detection and their instance is unified with a variable, the
attributes of that instance must be saved for future evaluation by filter pred-
icates. A näıve approach is to keep a shared dictionary of unified variables,
associating with each its class (derived from the type of the corresponding
primitive event) and its attributes. The automata contain unification states
that are inserted as required following matching transitions. These states are
responsible for updating the shared dictionary.

3. The filter predicates operate on the output of the automata created in step 2,
using the shared dictionary to retrieve any event instance attributes that are
needed. This is done through any suitably efficient rule system, meaning that
a Prolog or Datalog implementation is feasible.

Following these three steps, event processing begins with CED service nodes
evaluating their assigned match expressions.

5.2 Distributed implementation

In reality a centralised implementation is unlikely to be appealing for the
usual reasons, including poor scalability, inflexibility in the context of a hetero-
geneous communication infrastructure, and unreliability. In addition, it is likely
to be inappropriate for multi-organisation systems. A distributed implementa-
tion of a SpaTeC program follows the pattern of a centralised one. Phrases are
parsed and the match expressions and filter predicates extracted. This is likely
to remain centralised as the program is presented to the system at only one
place, and processing is likely to be done only once. In step 2, the automata
are distributed throughout the network in the same manner as are CED sub-
trees. A shared dictionary is no longer an option for maintaining event instance
attributes, but a relevant subset may be included with the composite events pro-
duced by the automata at each node. Filter predicates are similarly distributed
to the CED service(s) that can, based on the decomposition derived above, sub-
scribe to each required event type. In other words, if the allocation of match
expressions means that events of type e are never sent to a particular node, that
node need not be sent predicates involving attributes of variables of type e.

In Section 3 we noted that each phrase establishes a session type associated
with its match expression. Channels of that session type can be used to commu-
nicate attributes of variables to a central site, where the predicates associated

with the phrase can be tested. We are planning to build a prototype implemen-
tation of SpaTeC above Java, with session types provided by SJ [15]. SJ is itself
implemented above Polyglot [16, 17]. Polyglot has been around for some time,
and should help to provide a stable framework.

In practice, for phrases that associate primitive events from widely dis-
tributed locations, some of the predicates may test attributes of variables whose
locations of occurrence are clustered. It may make sense to move the evalua-
tion of such predicates nearer to the relevant locations. Session types associated
with match expressions should support such optimisations, but we shall need to
experiment.

6 Related Work

The event-based paradigm emerged during the 1990s when asynchronous notifi-
cation was seen to be crucial for a wide range of applications. [18] investigates the
use of events for building distributed applications based on an object-oriented
distributed programming environment. Other applications include sensor-based
systems for environmental monitoring and, in general, applications with low la-
tency requirements. For example, in 1999 [19] discusses the need for event-based
middleware in Air Traffic Control.

The detection of meaningful patterns of events (so-called composite events)
became a subject of research, for example [13]. But early composite event lan-
guages supported only temporal reasoning, based on the temporal properties
of events; composite event detection was driven by the times of occurrence of
constituent events.

In distributed systems, times of occurrence are fundamentally uncertain, be-
cause of the way earth-time is measured, the way computers’ clocks are set and
drift, and because clocks are synchronized intermittently. In [20] event operators
sequence and concurrency are used to determine whether one event happened
before another or whether they may have happened “at the same time”, that
is, their order cannot be established due to the closeness of the timestamps. In
1999, Liebig and others proposed source-specific interval timestamps to capture
this uncertainty [2]. A sequence is detected if the uncertainty interval of one
event precedes that of another. If the uncertainty intervals overlap it cannot be
determined which one occurred first. It may be important for the application to
be made aware of this, in cases where physical causality is an issue, such as in
real-time monitoring for the control and audit of physical systems.

Spatial reasoning, that is, monitoring the spatial properties of events, was
not supported in traditional composite event detection. When the nodes in dis-
tributed systems are stationary the location of occurrence of node-related events
is implicit, and spatial reasoning is ”hard-wired” into the system.

Mobile environments were explored in [21–24, 4, 25, 26] where the focus lies on
the adaptation of the publish/subscribe paradigm to different aspects of mobil-
ity, such as client mobility or the lack of a system-wide service infrastructure. In

general, location is being considered in the design of a publish/subscribe archi-
tecture for mobile systems, but not in the underlying event detection capabilities.
In [27], Fiege and others consider mobility in publish/subscribe middleware. The
Rebeca [11] content-based publish/subscribe middleware is extended in [24] to
accommodate mobile clients, achieving location transparent access to the mid-
dleware without loss of quality of service. Chen and others define the notion
of spatial event and enable a spatial subscription model [3]. In [4], Cugola and
Munoz de Cote develop a distributed publish/subscribe middleware where spa-
tial restrictions can be issued by publishers and subscribers. [5] points out that
high-level spatial events are necessary to observe physical world events and men-
tions that traditional composite event systems are not sufficient for this purpose.
However, general spatial reasoning with composite events is not supported.

In [28], Römer and Mattern acknowledge the suitability of event-based mech-
anisms for monitoring physical phenomena and their spatio-temporal properties
in sensor networks, and investigate composite event detection for detecting the
real-world states associated with such phenomena. In later work they propose
spacetime, a four-dimensional vector space where space is represented in three
and time in one dimension, to record the time and location of occurrence of an
event [29].

Limiting the visibility of events is another important requirement in sensor
networks where the lack of an infrastructure and the dynamically changing net-
work topology demand efficient and adaptive event handling. The scoping con-
cept, as introduced in [30], meets this requirement. It represents a fundamental
structuring mechanism for event-based systems where components are bundled
recursively into higher-level components, so-called scopes, yielding a hierarchical
structure. Event notifications are only delivered to subscribers within the same
scope. In [31], Jacobi et al. apply the scoping concept to sensor networks.

7 Conclusions

We have defined the SpaTeC composite event language that enables simultane-
ous matching of event occurrences over space and time. We have built on the
model for SpaTeC presented in [1]. As a source of examples throughout the pa-
per we have used a real application scenario for which data are available; the
analysis of the GPS traces of Cambridge buses made available by Stagecoach to
the TIME-EACM project.

We have described some questions that Stagecoach wish to have answered,
and used them to motivate our extensions to SpaTeC. Composite event patterns
are essentially those of the earlier paper, with the addition of primitive patterns,
which enforce restrictions on the space and/or time of event occurrences. Data
fields identified during pattern matching can be tested by predicates that further
restrict the relevant combinations of primitive events. We have shown how the
language can be used to answer some of the questions posed by Stagecoach.

We have described an implementation scenario for SpaTeC composite event
detection (CED) above a publish/subscribe system. Following [13] we ensure a
clean separation between CED services and the event propagation infrastructure;
a CED service is a subscriber to low-level events and a publisher of higher-level
events. As in [13], processing of composite events arising from a given SpaTeC
phrase may be distributed to optimise communication and detection latency.

A major concern in this area of work is the measurement uncertainty both for
space and time. We have generalised the foundational work of [2], that embodies
the fundamental uncertainty in the measurement of earth-time, to a similar
uncertainty in location stamps. The time and location stamps of the composite
events detected are an open interval and a convex hull respectively, see [1].
The time stamp of a composite event can therefore be represented naturally;
describing a general convex hull is not straightforward, and the location stamp
representation adopted will depend on the semantics of the application.

Future work is to implement SpaTeC as a composite event programming
language and to carry out experimental evaluation.

Acknowledgements

The paper draws on a number of research projects over the years. We acknowl-
edge the support of the UK Engineering and Physical Sciences Research Council
(EPSRC) through grants GR/T28164 (EDSAC21) and EP/C547632 (TIME-
EACM). Stagecoach in Cambridge has greatly assisted TIME-EACM by making
GPS data feeds from their buses available in real time, and by suggesting some
of the scenarios developed in the paper.

We acknowledge the many fruitful interactions with Alejandro Buchmann
and the Databases and Distributed Systems Research Group at the Technische
Universität, Darmstadt. We are grateful for helpful contributions to the paper
from several of our colleagues at the Computer Laboratory, in particular David
Eyers and Alan Mycroft. The latter emphasised the relevance of session types.
Interaction with Simon Gay by e-mail identified SJ as a potential tool for im-
plementation.

References

1. Schwiderski-Grosche, S., Moody, K.: The SpaTeC composite event language for
spatio-temporal reasoning in mobile systems. In: DEBS ’09: 3rd ACM Intl. Conf.
on Distributed Event-Based Systems, New York, NY, USA, ACM (2009) 1–12

2. Liebig, C., Cilia, M., Buchmann, A.: Event composition in time-dependent
distributed systems. In: 4th Intl. Conf. on Cooperative Information Systems
(CoopIS ’99). (September 1999)

3. Chen, X., Chen, Y., Rao, F.: An efficient spatial publish/subscribe system for
intelligent location-based services. In: 2nd Intl. Workshop on Distributed Event-
Based Systems (DEBS’03). (2003) 1–6

4. Cugola, G., de Cote, J.M.: On introducing location awareness in publish-subscribe
middleware. In: Distributed Computing Systems Workshop, IEEE (2005)

5. Bauer, M., Rothermel, K.: An architecture for observing physical world events. In:
ICPADS ’05: 11th Intl. Conf. on Parallel and Distributed Systems (ICPADS’05),
IEEE Computer Society (2005) 377–383

6. King, C., McDonald, R., Martin, R., Tempero, G., Holmes, S.: Long-term auto-
mated monitoring of the distribution of small carnivores. Wildlife Research (34)
(2007) 140–148

7. Bacon, J., Beresford, A., Evans, D., Ingram, D., Trigoni, N., Guitton, A., Skordylis,
A.: Time: An open platform for capturing, processing and delivering transport-
related data. In: IEEE Consumer Communications and Networking Conference,
IEEE (January 2008) 687–691

8. Bejan, A., Gibbens, R., Evans, D., Beresford, A., Bacon, J., Friday, A.: Statistical
modelling and analysis of sparse bus probe data in urban areas. In: 13th IEEE In-
telligent Transportation Systems Conference, Madeira, Portugal, IEEE (September
2010)

9. Takeuchi, K., Honda, K., Kubo, M.: An interaction-based language and its typing
system. In: PARLE’94 Parallel Architectures and Languages Europe, Springer
LNCS 817 (July 1994) 398–413

10. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types.
SIGPLAN Not. 43(1) (2008) 273–284

11. Mühl, G., Ulbrich, A., Herrmann, K., Weis, T.: Disseminating information to
mobile clients using publish-subscribe. IEEE Internet Computing 8(3) (2004) 46–
53

12. Pietzuch, P.R., Bacon, J.M.: Hermes: a distributed event-based middleware archi-
tecture. In: 1st Intl. Workshop on Distributed Event-Based Systems (DEBS’02),
Vienna, Austria (July 2002) 611–618

13. Pietzuch, P.R., Shand, B., Bacon, J.: A framework for event composition in dis-
tributed systems. In Endler, M., Schmidt, D., eds.: 4th ACM/IFIP/USENIX Intl.
Conf. on Middleware (Middleware ’03), Rio de Janeiro, Brazil, Springer (June
2003) 62–82 Best paper award.

14. Pietzuch, P.R.: Hermes: A scalable event-based middleware. Technical Report
UCAM-CL-TR-590, University of Cambridge Computer Laboratory (2004)

15. Hu, R., Yoshida, N., Honda, K.: Session-based distributed programming in java.
ECOOP, Springer LNCS 5142 (2008) 516–541

16. Nystrom, N., Clarkson, M.R., Myers, A.C.: Polyglot: An extensible compiler
framework for java. In: 12th International Conference on Compiler Construction,
Springer-Verlag (2003) 138–152

17. Polyglot: http://www.cs.cornell.edu/projects/polyglot/
18. Bacon, J., Bates, J., Hayton, R., Moody, K.: Using events to build distributed

applications. In: SDNE ’95: 2nd Intl. Workshop on Services in Distributed and
Networked Environments, Washington, DC, USA, IEEE Computer Society (1995)
148

19. Liebig, C., Boesling, B., Buchmann, A.: A notification service for Next-Generation
IT systems in air traffic control. In: GI-Workshop: Multicast-Protokolle und An-
wendungen, Braunschweig, Germany (May 1999)

20. Schwiderski, S.: Monitoring the behaviour of distributed systems. PhD thesis,
University of Cambridge (1996)

21. Meier, R., Cahill, V.: STEAM: event-based middleware for wireless ad hoc net-
works. In: Intl. Workshop on Distributed Event-Based Systems (DEBS’02). (2002)
639–644

22. Huang, Y., Garcia-Molina, H.: Publish/subscribe in a mobile environment. Wire-
less Networks 10(6) (2004) 643–652

23. Caporuscio, M., Carzaniga, A., Wolf, A.: Design and evaluation of a support
service for mobile, wireless publish/subscribe applications. IEEE Transactions on
Software Engineering 29 (2003) 1059–1071

24. Zeidler, A., Fiege, L.: Mobility support with Rebeca. In: 23rd Intl. Conf. on Dis-
tributed Computing Systems (ICDCS’03), Washington, DC, USA, IEEE Computer
Society (2003)

25. Yoneki, E., Bacon, J.: Unified semantics for event correlation over time and space
in hybrid network environments. In: IFIP Intl. Conf. on Cooperative Information
Systems (CoopIS’05), Cyprus (November 2005)

26. Frey, D., Roman, G.C.: Context-aware publish subscribe in mobile ad hoc networks.
In: COORDINATION. (2007) 37–55

27. Fiege, L., Gärtner, F.C., Kasten, O., Zeidler, A.: Supporting mobility in
Content-Based publish/subscribe middleware. In Endler, M., Schmidt, D.C., eds.:
ACM/IFIP/USENIX Intl. Middleware Conference (Middleware 2003). Volume
2672 of LNCS., Springer-Verlag (June 2003) 103–122

28. Römer, K., Mattern, F.: Event-based systems for detecting real-world states with
sensor networks: a critical analysis. In: DEST Workshop on Signal Processing
in Wireless Sensor Networks at ISSNIP, Melbourne, Australia (December 2004)
389–395

29. Römer, K., Mattern, F.: Towards a unified view on space and time in sensor
networks. In: Elsevier Computer Communications. Volume 28(13). (August 2005)
1484–1497

30. Fiege, L., Mezini, M., Mühl, G., Buchmann, A.P.: Engineering event-based systems
with scopes. In Magnusson, B., ed.: Proceedings of the European Conference
on Object-Oriented Programming (ECOOP0́2). Volume 2374 of LNCS., Springer-
Verlag (June 2002) 309–333

31. Jacobi, D., Guerrero, P.E., Petrov, I., Buchmann, A.: Structuring sensor networks
with scopes. In: 3rd IEEE European Conference on Smart Sensing and Context
(EuroSSC), Zurich, Switzerland, IEEE Communications Society (October 2008)

