
Event-Driven Database Information Sharing

Luis Vargas, Jean Bacon, and Ken Moody

University of Cambridge, Computer Laboratory
{firstname.lastname}@cl.cam.ac.uk

Abstract. Database systems have been designed to manage business
critical information and provide this information on request to connected
clients, a passive model. Increasingly, applications need to share informa-
tion actively with clients and/or external systems, so that they can react
to relevant information as soon as it becomes available. Event-driven ar-
chitecture (EDA) is a software architectural pattern that models these
requirements based on the production of, consumption of, and reaction
to events. Publish/subscribe provides a loosely-coupled communication
paradigm between the components of a system, through many-to-many,
push-based event delivery. In this paper, we describe our work integrat-
ing distributed content-based publish/subscribe functionality into a da-
tabase system. We have extended existing database technology with new
capabilities to realise EDA in a reliable, scalable, and secure manner. We
discuss the design, architecture, and implementation of PostgreSQL-PS,
a prototype built on the PostgreSQL open-source database system.

1 Introduction

Organisations invest in information technology to realise benefits through lower
business costs, better information and better communication. Through the years,
they have moved most of their critical data into databases, and automated many
business processes using a variety of applications. Database systems and appli-
cations have been deployed incrementally to satisfy the needs of some particular
area or domain of the business (e.g. a company branch). Domains are autonomous;
each administers its own resources independently of others. With the passage of
time, the number of databases, applications, and domains has multiplied. What
once were closely controlled environments have evolved into large-scale informa-
tion spaces that are both highly distributed and dynamic. Within such a domain-
structured environment, the active sharing of information has become vital for the
organisation’s success. This applies not only within a domain, but also between
different domains of the same organisation (and increasingly others).

To meet the need for active information sharing, domains often implement a
large set of targeted tools. Different types of information are captured at different
places (e.g. databases and applications), with different tools, each using its own
propagation mechanism, and implementing its own method of consumption at
the destination. Developers and database administrators must become proficient
in all these tools, and the system must be able to support them all at runtime.
Adding more applications to such an environment becomes a major ordeal.

A. Gray, K. Jeffery, and J. Shao (Eds.): BNCOD 2008, LNCS 5071, pp. 113–125, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



114 L. Vargas, J. Bacon, and K. Moody

Databases are an obvious point to implement active information sharing, since
they maintain most of a business’s critical information and reflect its current
state. For example, an application may cause a change in a database, which can
signal an event that is of interest to other applications within the same domain,
or in other domains. Similarly, the receipt of an event by an application often
results in a change in database state within its domain to record the event persis-
tently. Such a style of interaction is best modelled by an event-driven architecture
(EDA) [1]. In EDA, all interactions between components in a distributed system
build on the production of, consumption of, and reaction to events. In parallel
with the emergence of EDA, publish/subscribe middleware [2] has been designed
and deployed, providing a popular communication paradigm for event-driven dis-
tributed systems. Publish/subscribe realises many-to-many, push-based delivery
of events between loosely-coupled components. In this paper, we describe our
work integrating distributed content-based publish/subscribe functionality into
a database system to realise EDA in a reliable, scalable, and secure manner.

We complete this Section with a motivating scenario. Section 2 sets up the
background in EDA, the publish/subscribe paradigm, and the PostgreSQL da-
tabase system [3]. Section 3 discusses the design of PostgreSQL-PS, a database
system enhanced with publish/subscribe functionality. The architecture of the
system is described in Section 4. Section 5 discusses how events are distributed
between multiple connected databases. The system’s programming interface is
presented in Section 6 and its implementation is discussed in Section 7. Section 8
outlines related work, and Section 9 concludes the paper.

1.1 Motivating Scenario

Consider a large-scale financial services firm. The firm has offices in different
cities across America and Europe, see Figure 1. Each office (domain) is autono-
mous, and maintains a database system that stores its critical data and a set
of applications, e.g. for automated trade processing. In such a scenario, most
interaction lies within a domain, but there is also a need for inter-domain com-
munication. For example, while some data feeds used to publish the latest stock

Fig. 1. A large-scale financial services firm



Event-Driven Database Information Sharing 115

prices are made available only locally, others are also sent to external offices.
Trading applications are specialised and thus expect different subsets of the
available data feeds, e.g. based on the stock symbol, price, risk level, or com-
binations. Besides general stock processing, many other processes continuously
keep track of specific situations, e.g. when a stock’s minimum price-earnings
ratio (PER) falls below a threshold. There will be a number of systems, both
within and outside the local office, that require to be notified of such events, e.g.
for real-time risk analysis.

Notice that information sharing in the scenario is inherently event based. To
remain competitive, the firm requires an event-driven infrastructure to integrate
the applications distributed across the various offices, and to support the active
sharing of information. We believe that such infrastructure can be built efficiently
on the database system. Firstly, database changes frequently trigger events. Sec-
ondly, for scalability, security, or simplicity purposes, business logic associated
with event processing is often moved to the database (as stored procedures or trig-
gers). Lastly, events must be logged in the database for reporting and audit.

2 Background

In this Section we establish the background on event-driven architecture (EDA),
the publish/subscribe paradigm, and the PostgreSQL database system.

2.1 Event-Driven Architecture (EDA) and Publish/Subscribe

EDA [1] is an architectural pattern built on the production, detection, consump-
tion of, and reaction to events. An event is defined as a happening of interest in
the system. Events are generated by event producers. Based on its characteris-
tics, an event is delivered to one or more event consumers. Consumers process
the event and optionally execute an action. The architecture is loosely-coupled
as producers and consumers do not require any knowledge about each other.

Publish/subscribe [2] is an asynchronous many-to-many event-based commu-
nication paradigm. In publish/subscribe, an event client may be an event pro-
ducer (publisher), an event consumer (subscriber), or both. Event producers
advertise the event types they will publish, and publish events, needing no knowl-
edge of the subscribers. An event consumer specifies a set of subscriptions on
events of interest. The event communication substrate, comprising one or more
event brokers, accepts events from publishers and notifies them to subscribers
whose subscriptions match. In a large-scale environment an event broker may
serve a subset of the clients in the environment, for example, being associated
with an administrative domain. Event brokers cooperatively distribute (route)
events, while attempting to exploit locality and contain system complexity. A
number of strategies for distributed event dissemination are discussed in [4].

Publish/subscribe comes in two flavours: topic-based and content-based. In
topic-based publish/subscribe, events are published under a topic and consumers
subscribe to that topic. In content-based publish/subscribe, event types are



116 L. Vargas, J. Bacon, and K. Moody

defined as comprising typed attributes. A subscription includes a filter expression
indicating attribute values of interest. Events with content that matches the filter
expression are delivered to the appropriate consumers.

2.2 PostgreSQL

PostgreSQL [3] is an open-source object-relational database system written in C.
Domain, referential, and transactional integrity, as well as multi-version concur-
rency control, are offered as some of its features. Active functionality is provided
in the form of triggers and active rules. Because its operation is catalogue-driven,
PostgreSQL can be extended, for example by adding new data types and func-
tions. Functions can be written in C, Python, or procedural SQL (PgSQL).

3 PostgreSQL-PS Design

In this section we discuss the design of PostgreSQL-PS, a database system en-
hanced by distributed content-based publish/subscribe functionality. We describe
the EDA aspects to be supported and establish requirements for the system.

3.1 EDA Aspects

The design of the PostgreSQL-PS system covers the four aspects of EDA: event
publication, subscription, consumption and distribution. The first three relate to
the role of the database system as a publish/subscribe event client. The fourth
delegates to the database system the role of event broker.

Event Production: to define events and specify conditions for their generation.

Event Subscription: to define an interest in receiving specific event instances.

Event Consumption: to define local actions to be executed when events match-
ing a subscription are notified.

Event Distribution: to receive events from external parties, e.g. applications
and other database systems. Events (either received or generated at the database
system) should be delivered to the relevant subscribers. Multiple interconnected
database systems should cooperate to route events between locally-connected
applications and applications connected to remote database systems.

3.2 Requirements

In the design of PostgreSQL-PS we have considered the following requirements:
expressiveness, reliability, scalability, access control and operational simplicity.

Expressiveness. The event model must support fine-grained subscriptions.

Reliability. The system must provide guarantees regarding its operation. We
focus on two aspects: transactional semantics and guaranteed event delivery.



Event-Driven Database Information Sharing 117

Transactional Semantics
Event production. We must ensure that events are produced only by committed
operations to avoid dirty reads by event consumers. We therefore need to defer
the publication of an event until its triggering transaction has committed. Fur-
ther, we must guarantee the production of events from committed transactions.

Event consumption. We must guarantee the ACID consumption of events. In
particular, the execution of event-processing actions must be transactional.

Guaranteed Event Delivery. In general, the delivery of an event must be
guaranteed despite failures between producer and consumer. Specifically, a con-
sumer must (eventually) receive each event exactly once. Events from the same
producer must be delivered to a consumer in the same order in which they were
published.

Scalability. System performance must degrade gracefully with the number of
clients, subscriptions, and events. For a single database system this requires
an efficient mechanism for matching events against subscriptions. For multiple
connected database systems, it also entails efficient event distribution.

Access Control. Each database system must be able to control which clients
can publish and subscribe to each event type.

Operational Simplicity. The database system must provide an integrated view
of database and publish/subscribe operations through a simple interface.

4 PostgreSQL-PS Architecture

In this Section we describe the different components of the PostgreSQL-PS sys-
tem architecture. All these components are defined in the context of a database.
Multiple databases, each having different instances of these components, can be
hosted within the same distributed database environment.

4.1 Event Types

Event types are used to structure the event space, each event being an instance
of an event type. An event type has a system-wide unique name [5] and a schema
that describes it. The schema is a set of attribute-name, data-type pairs. Valid
data types are the native types defined by the SQL92 specification [6] (e.g.
varchar, int, datetime). Event types are stored in the database system catalogue.
They are used to verify that a) an event instance conforms to its type schema, b)
a subscription filter refers to existing attributes, and c) functions and operators
in the filter are valid for the attribute types.

4.2 Events

An event is a set of attribute name/value pairs conforming to an event type
schema. In the database it is represented as a tuple structure. Events generated
at the database have two properties: visibility and reliability. The visibility of



118 L. Vargas, J. Bacon, and K. Moody

an event determines when the event is published with regard to the transaction
triggering the event. It can be either immediate or deferred. In the former, the
event is published as soon as it is generated. In the latter, the publication of the
event is deferred until its triggering transaction has committed. The reliability
of an event determines whether its delivery is non-guaranteed or guaranteed. In
the former, events are delivered at-most-once. In the latter, events are delivered
exactly-once, ordered with respect to each producer.

4.3 Subscriptions

A subscription expresses interest in consuming (a subset of) events of some
type. Subscriptions are named and specify an event type, an optional filter, and
a source. The filter is a SQL predicate over the event type’s attributes and,
possibly, stored data. A large number of built-in operators and functions can be
specified as part of the filter. The source of a subscription can be external or
internal. An external subscription is issued by a client application or received
from another database. An internal subscription is defined at the database to
process local events. Subscriptions have a local or global scope. A local subscrip-
tion only applies to events known to the local database. A global subscription
also expresses interest in events known to other databases (directly or indirectly)
connected to the database. Subscriptions are persistently stored in the database
system catalogue, in order to survive system failures and client disconnections.

4.4 Queues

Queues contain events. For each event type there are three queues: in, out, and
exception. Events locally produced or received from external parties are enqueued
in their corresponding in-queue. Events that have been matched against subscrip-
tions are enqueued in their out-queue for their delivery (external subscriptions)
or local processing (internal subscriptions). Events for which processing fails are
enqueued in their exception queue. Each in- and out- queue has two instances,
non-persistent and persistent. Non-persistent queues are volatile data structures
that hold non-guaranteed events in memory. Persistent queues use database stor-
age to store guaranteed events reliably on disk. They are implemented as special
tables with no INSERT, UPDATE, DELETE, or trigger statements. Events stored in
a queue can be consulted via SELECT queries on the event schema and additional
system information (e.g. enqueue time). Persistent queues can be non-auditable
or auditable. In the first (default) case, an event is deleted from a queue when it
is no longer required (e.g. it has been successfully delivered to a consumer). In
the second, the event is retained in the queue for auditing purposes.

4.5 Advertisements

Advertisements are either directly created at a database or introduced by a
local application. A database must advertise an event type before it can produce
or distribute events of that type. Advertisements are stored persistently in the
database system catalogue.



Event-Driven Database Information Sharing 119

4.6 Links

A link represents a connection to a remote database. It specifies contact infor-
mation and associated authentication data. On startup, a database connects to
all its defined links. Advertisements, global subscriptions, and events are prop-
agated through these links. A connected set of databases forms a distributed
system that actively shares information as described in the next Section.

5 PostgreSQL-PS Cooperative Event Distribution

In this Section we describe the mechanism used to distribute events cooperatively
between connected databases. In the current prototype, we consider a peer-to-
peer interconnection model in which databases communicate symmetrically in an
acyclic topology. In practice databases can be connected in any way, provided that
we identify a spanning tree for routing purposes. Factors to consider when con-
necting two databases include: administrative constraints, knowledge about the
locality of consumers (or producers) of events of interest, and network latency.

Events are cooperatively distributed using an advertisement-based filtering
scheme [7]. In this scheme, databases build event dissemination trees by propa-
gating advertisements and subscriptions as follows:

1. An advertisement for an event type is propagated by following every database
link. Each database stores advertisements received from the previous database.
This builds, for the event type, a dissemination tree from the advertising data-
base to every other database.
2. A subscription is propagated by reversing the links of databases with stored
advertisements for that type. Each database stores the subscription received from
the previous database. This builds, for the event type, a dissemination tree from
the subscribing database to every database that produces events of that type.

Events are distributed by following the links of databases with stored subscrip-
tions that match their type and content. After receiving an event, a database
evaluates 1) the set of internal subscriptions and external subscriptions issued
by local client applications, and 2) the external subscriptions received by linked
databases. If no subscription matches the event, it is discarded.

We illustrate event distribution in Figure 2. For clarity we consider a single
event type t. We show six connected databases DB1−6 and a set of applications
App1−6. App1 and DB2 produce events of t, and App3 and DB6 are event consumers.

First, App1 advertises t with a1, via its local database DB1. a1 is propagated to,
and stored by DB2−6. Then DB2 creates the advertisement a2 which is propagated
to, and stored by DB3, the only DB with a new source of events for t.

Next, DB6 creates the global subscription s6, which by reversing the paths of
a1 and a2, is propagated to, and stored by DB4, DB3, DB1, and DB2. On request of
App3, DB3 creates the global subscription s3, which is propagated to, and stored
by DB1 and DB2, extending the dissemination route for t. When DB1 receives the
event e1 from App1, it is propagated to App3 and DB6.



120 L. Vargas, J. Bacon, and K. Moody

Fig. 2. Cooperative Event Distribution

6 PostgreSQL-PS Programming Interface

PostgreSQL-PS provides two interfaces to programmers. A database program-
ming interface supports system administration and database-side event process-
ing. An application programming interface is available to client applications.

6.1 Database Programming Interface

This interface, see Table 1, extends SQL with a number of publish/subscribe re-
lated statements. It is accessible from the database system console (Psql), as
well as from client-level interface implementations such as JDBC.

An event type is created using the CREATE EVENT TYPE statement. This state-
ment also creates in, out, and exception queues for the event type. ALTER QUEUE
sets the auditable behaviour of a queue. An event type must be advertised be-
fore events of that type can be published or subscribed to. This is done using
ADVERTISE. Events are generated at the database using PUBLISH; the statement
is parametrised with the event visibility and reliability. PUBLISH can be used as
a separate statement or within a transaction. It can also be set as the action of
an active rule. This automates the production of events after data manipulation
commands, possibly referring to the transition tables NEW and OLD. A database

Table 1. Database Programming Interface

CREATE EVENT TYPE event type AS (att1 datatype, att2 datatype, .. )
ALTER QUEUE queue name SET [NON-AUDITABLE|AUDITABLE]
ADVERTISE event type

PUBLISH [IMMEDIATE|DEFERRED] [NON-GUARANTEED|GUARANTEED] event type

(attvalue1, attvalue2, .. )
CREATE RULE rule name AS ON {INSERT|UPDATE|DELETE} TO table

[WHERE filter] PUBLISH event type (attvalue1, attvalue2, .. )
CREATE [LOCAL|GLOBAL] SUBSCRIPTION sub name ON event type

[WHERE filter] EXECUTE func name (args) [WITH priority]
CREATE LINK link name TO address port USING user password

GRANT [PUBLISH|SUBSCRIBE] ON EVENT TYPE event type TO {user|role }



Event-Driven Database Information Sharing 121

subscribes to events of some type using CREATE SUBSCRIPTION; the statement
is parametrised with the subscription scope. As an optional filter, an SQL pred-
icate can be specified via a WHERE clause on attributes of the event type, as well
as on stored data. Subscriptions created at the database are always internal, and
must specify a function to process received events. Functions can be written in
any of the languages supported by the database, allowing developers to focus
on the most suitable for a given task (e.g. PgSQL for data-centric operations or
C for computationally intensive logic). The way in which a function is passed
an event depends on its implementation language, e.g. as a pointer to an Event
structure in C, or a top-level RECORD variable in PgSQL. An optional priority can
be assigned to the subscription, an absolute value that determines the order of
evaluation for subscriptions to a given event type. A link is defined using CREATE
LINK, which specifies the address and port on which a remote database services
publish/subscribe connections, and an authorised user and password in that da-
tabase. There are DROP statements for EVENT TYPE, RULE, SUBSCRIPTION, and
LINK, as well as an UNADVERTISE statement. Privileges on each of these state-
ments can be assigned and removed from database users and roles using GRANT
and REVOKE. Information about existing publish/subscribe-related objects (e.g.
event types, subscriptions, and links) is made available through restricted cata-
logue views.

6.2 Application Programming Interface (API)

This interface, depicted in Table 2, allows applications to access the database
system publish/subscribe functionality. We provide a Java implementation of
the API. In this, functions are supported via a Client object as described next.

An application connects to the database system using the Client connect
method. This requires the address and port where the database services pu-
blish/subscribe clients. A valid user and password are needed to authorise the
client, and to associate any stored subscriptions to the connection. Event types
are created by instantiating the EventType class. This class contains a name,
and a Map of two attributes: name and type. Valid types are String, Date, and
all subclasses of Number. The API translates these types to SQL92 data types
when an application requests the database to advertise an event type using
the advertise method. Events are created by instantiating the Event class.
This class has an associated event type and a Map of two attributes: name and
value. The value is an object of the corresponding attribute type. Events are
published, with the requested reliability, via publish. A subscription is issued,
with the specified scope, via subscribe. An optional filter can be defined via

Table 2. Application Programming Interface

Client.connect(address, port, user, password)
Client.advertise(EventType)
Client.publish(reliability, Event)
Client.subscribe(sub name, EventType, scope, filter, Callback)



122 L. Vargas, J. Bacon, and K. Moody

an SQL predicate. Finally, a class implementing the Callback interface must
be specified to process any events received. The API keeps a persistent Map of
subscriptions and callbacks. Events from the database are piggybacked with the
matched subscription name. Based on the SQL92 data types of attributes in
events received, the programming interface builds an Event Java object that is
passed to the callback class.

7 PostgreSQL-PS Implementation

We have implemented PostgreSQL-PS by extending the PostgreSQL [3] 8.0.3
code base. We chose PostgreSQL for its rich set of features and the ability to
analyze and extend its source code. We now describe the PostgreSQL-PS process
architecture and discuss how we fulfil the requirements established in Section 3.2.

7.1 Process Architecture

Figure 3 shows the PostgreSQL-PS process architecture. The various PostgreSQL
components that are reused are shown on the left.

Fig. 3. PostgreSQL-PS Process Architecture

As in PostgreSQL, a Postmaster listens on a well-known port and forks a
new database-serving process for each database client TCP connection. These
clients, usually Psql or JDBC-based, are served using synchronous request-reply.
The PostgreSQL parser was extended to provide clients with the database pu-
blish/subscribe programming interface. A process dedicated to publish/subscribe
handles TCP connections from publish/subscribe clients and remote databases.
The Postmaster forks this process on startup. Communication with publish/
subscribe clients is message-oriented and asynchronous, via non-blocking sockets.
We notify the publish/subscribe process of relevant operations (e.g. events and
subscriptions) issued from a database-serving process; for this we use a set of
control queues in a shared memory segment. Database-serving processes enqueue
notifications that are dequeued and analysed by the publish/subscribe process.



Event-Driven Database Information Sharing 123

7.2 Transactional Event Production and Consumption

We currently implement two event visibility and reliability combinations, im-
mediate non-guaranteed and deferred guaranteed, as we expect them to cover
most application scenarios. For the former, a published event is enqueued in its
non-persistent in-queue. There is no dependency between the transaction pro-
ducing the event and the publish operation. When the event is dequeued from
its in-queue, it is matched against subscriptions and immediately sent to its
consumers, via its non-persistent out-queue. For the latter, a publish operation
enqueues the event in its persistent in-queue. This is done within the running
transaction to ensure the atomicity of publish with other operations. If enqueuing
fails, the transaction rolls-back and the user is notified of the error. Otherwise
the event, together with the ID of its producing transaction, is stored in the
queue. When the transaction commits, a notification containing the transaction
ID is enqueued in a control queue. On-commit hooks [8] have been incorporated
for this purpose. When the publish/subscribe process dequeues the notification,
it matches events with the notified transaction ID against subscriptions. For each
matched consumer, one instance of the event is enqueued in the event’s persis-
tent out-queue for processing or delivery. Once matching is completed, the event
is removed from its persistent in-queue. The insertion of the event instances in
the out-queue and the removal of events from the in-queue are executed within
the same transaction.

On consumption, the dequeue of an event from its persistent out-queue and
the execution of its processing function take place within a transaction. The
execution of multiple functions for the same event is serial. Functions are exe-
cuted in turn, in separate transactions, according to subscription priority. This
ensures atomicity of function execution and isolation of execution for indepen-
dent functions. If processing an event fails (e.g. due to a violated constraint),
the event is removed from its out-queue and enqueued in its exception-queue
with a description of the error. These two operations are executed in a single
transaction.

7.3 Guaranteed Event Delivery

We ensure exactly-once ordered delivery of events between a sender and a re-
ceiver on a direct connection using an acknowledgement-based protocol with
unbounded sequence numbers [9]. At the application side, the protocol is han-
dled automatically by the API. Sender S keeps a sequence number s that is
incremented for each event e to be sent to receiver R. Before sending e[s], i.e.
event e with sequence number s, S persistently stores it with an associated
timestamp. We denote as S.e[s] the event e with sequence number s sent by S.
To enforce ordering, a receiver keeps an array N of sequence numbers, one for
each sender. N [S] denotes the sequence number associated with sender S. N is
stored persistently so it survives receiver failures. On receipt of an event S.e[n]:
if n < N [S], R acknowledges n to S and discards the event. If n = N [S], R
processes the event, increments N [S], and acknowledges n to S. If n > N [S], R
acknowledges N [S] to S and discards the event. The sender can delete e[s] when



124 L. Vargas, J. Bacon, and K. Moody

it receives an acknowledgement for s. If S does not receive an acknowledgement
for e[s] within a predefined timeout, it resends using an exponential backoff. In
this, the timeout starts at 4 seconds and doubles at each retry up to a maximum
of 64 seconds.

7.4 Scalability

Publish/Subscribe-related data indexing: At a database we need to quickly
retrieve 1) the event type schema used to validate an event, 2) the in, out, or
exception queue where an event must be stored, and 3) the set of subscriptions
to be evaluated against the event. Fetching this data from disk every time would
damage database performance. Therefore, we cache and index publish/subscribe-
related data in main memory. A hash table indexes event types by name: each
bucket stores the schema of the event type, its associated queues, and a pointer
to a dynamic array of subscriptions. Because of sequential locality, this structure
allows efficient iteration over the set of subscriptions for a given event type.

Execution Plan Caching for Subscription Filters: When the database
receives a subscription, its filter is parsed and translated into an execution plan.
When the subscription is evaluated, the database query engine needs only to
execute this plan. Parsing and planning is thus performed only once, instead of
at each evaluation. The performance gain is more significant if the subscription
filter refers to stored data, as planning of queries on tables takes more time.

Logical Event Deletes: An event in an in-queue is deleted after it has been
processed locally and matched against subscriptions. An event in an out-queue
is deleted after it has been acknowledged. In PostgreSQL a DELETE operation is
logical, i.e. it does not physically remove a tuple from disk. To reclaim the space
of deleted tuples, a separate VACUUM operation is used. This approach reduces
the time to delete an event from a queue, at a cost in disk space utilisation.
We expect that all queues in the database are vacuumed periodically (e.g. once
a day at a low-usage time), with more frequent vacuuming of heavily updated
queues.

8 Related Work

“Queues are databases” was stated more than ten years ago [10]. Accordingly,
some vendors have incorporated message queuing into their database systems.
SQL Server Service Broker [11] provides asynchronous and reliable dialogues
between databases to support distributed applications. Communication is bi-
directional between two databases; publish/subscribe is not supported. Oracle
Streams [12] supports one-to-many asynchronous replication via multi-consumer
queues. Replicas can specify content-based rules to propagate only a subset of
data changes from the master database. Rules are not global (they must specify
a source and a destination queue) so that a replica cannot express interest in
data beyond its master, unlike PostgreSQL-PS’s global subscriptions.



Event-Driven Database Information Sharing 125

9 Conclusions

Maintaining most of a business’s critical information and reflecting the state of
its daily processes, database systems are in a cardinal position to support active
information sharing. EDA provides an appropriate model for active data sharing
based on the production and consumption of events. Publish/subscribe is a suit-
able loosely-coupled communication paradigm. Integrating distributed content-
based publish/subscribe functionality into the database system is therefore a
promising approach to active information sharing. On one hand, databases al-
ready provide many features that an event-driven architecture can exploit, such
as persistent storage, transactions, and active rules. On the other hand, inte-
grating publish/subscribe into the database system leads to information-sharing
systems that are simpler to deploy and maintain. We are currently evaluating
PostgreSQL-PS against a decoupled database - publish/subscribe system. Pre-
liminary experimental results show that the execution of functions that require
to access the database frequently, e.g. logging events or evaluating subscriptions
that refer to tables, is faster in PostgreSQL-PS. However, the evaluation of sub-
scriptions that refer only to event content is, on average, slower, as the query
engine incurs an additional overhead. We are thus planning to incorporate an
event/subscriptions matching algorithm that pre-filters subscriptions based on
event content and employs the query engine only as needed.

References

1. Luckham, D.: The Power of Events: An Introduction to Complex Event Processing
in Distributed Enterprise Systems. Addison-Wesley Professional, Reading (2002)

2. Eugster, P., Felber, P., Guerraoui, R., Kermarrec, A.: The Many Faces of Pub-
lish/Subscribe. ACM Computing Surveys 35(2), 114–131 (2003)

3. The PostgreSQL Global Development Group (2008), www.postgresql.org
4. Mühl, G., Fiege, L., Pietzuch, P.: Distributed Event-Based Systems. Springer, Hei-

delberg (2006)
5. Pesonen, L.I.W., Bacon, J.: Secure Event Types in Content-Based, Multi-domain

Publish/Subscribe Systems. In: Proc.of the 5th International Workshop on Soft-
ware Engineering and Middleware, pp. 98–105 (2005)

6. American National Standards Institute: Standard x3.135-1992 (1992)
7. Carzaniga, A., Rosenblum, D., Wolf, A.: Design and Evaluation of a Wide-Area

Event Notification Service. ACM Tran. on Computer Systems 19(3), 332–383
(2001)

8. Paton, N.W., Dı́az, O.: Active Database Systems. ACM Computing Surveys 31(1),
63–103 (1999)

9. Comer, D.E.: Internetworking with TCP/IP vol II. ANSI C Version: Design, Im-
plementation, and Internals. Prentice-Hall, Englewood Cliffs (1998)

10. Gray, J.: Queues are Databases. In: Proc. of the 7th High Performance Transaction
Processing Workshop (1995)

11. Aschenbrenner, K.: SQL Server 2005 Service Broker. Apress (2007)
12. Oracle: 11g Streams Replication Administrator’s Guide (2007)

www.postgresql.org

	Event-Driven Database Information Sharing
	Introduction
	Motivating Scenario

	Background
	Event-Driven Architecture (EDA) and Publish/Subscribe
	PostgreSQL

	PostgreSQL-PS Design
	EDA Aspects
	Requirements

	PostgreSQL-PS Architecture
	Event Types
	Events
	Subscriptions
	Queues
	Advertisements
	Links

	PostgreSQL-PS Cooperative Event Distribution
	PostgreSQL-PS Programming Interface
	Database Programming Interface
	Application Programming Interface  (API)

	PostgreSQL-PS Implementation
	Process Architecture
	Transactional Event Production and Consumption
	Guaranteed Event Delivery
	Scalability

	Related Work
	Conclusions



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (Color Management Off)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




