
Integrating Messaging Middleware and
Information Flow Control

Jatinder Singh, Thomas F. J.-M. Pasquier, Jean Bacon
Computer Laboratory, University of Cambridge

Email: firstname.lastname@cl.cam.ac.uk

David Eyers
Department of Computer Science, University of Otago

Email: dme@cs.otago.ac.nz

Abstract—Security is an ongoing challenge in cloud computing.
Currently, cloud consumers have few mechanisms for managing
their data within the cloud provider’s infrastructure. Information
Flow Control (IFC) involves attaching labels to data, to govern
its flow throughout a system. We have worked on kernel-level
IFC enforcement to protect data flows within a virtual machine
(VM). This paper makes the case for, and demonstrates the
feasibility of an IFC-enabled messaging middleware, to enforce
IFC within and across applications, containers, VMs, and hosts.
We detail how such middleware can integrate with local (kernel)
enforcement mechanisms, and highlight the benefits of separating
data management policy from application/service-logic.

Keywords-Information flow control, middleware, cloud com-
puting, distributed systems, policy, security

I. INTRODUCTION

Issues of data management hinder the more widespread
adoption of (public) cloud services, especially for regulated
sectors such as healthcare, finance and government. Cloud
providers and tenants not only have an interest, but often a
legal responsibility in ensuring proper data protection [1].

Addressing these concerns requires mechanisms for en-
abling control within cloud services. Specifically, access to
data must be protected (including where it flows), in accor-
dance with user-requirements, contracts and regulations, and
compliance with these must be demonstrated.

Cloud isolation techniques (virtual machines (VMs) and
containers) separate tenant data/processing. These are cloud
provider-managed, without tenant input. Tenants usually have
some ability to manage their data, as relevant to the service
offering (IaaS, PaaS, SaaS). General access controls operate
between tenants and the cloud providers, and between users
and cloud-deployed applications, at ingress-egress points: as
data enters and leaves the cloud. This means tenants/users lose
some ability to manage and audit data once it is in the cloud.

It follows that cloud consumers must rely on the
provider to properly manage their data. Though we assume
a non-malicious provider—they are businesses with legal
obligations—data leakage may occur due to bugs, misconfigu-
rations, over-permissive policies and so forth. Further, tenants
and providers may have data handling obligations, and thus
must often demonstrate that appropriate policy and controls are
in place irrespective of whether a leak has actually occurred.

Current control technologies are, of themselves, inappro-
priate to meet the pressures described. We are therefore

exploring the potential for Information Flow Control (IFC)
in cloud computing [2]. IFC is a data control mechanism
where policy attributes (labels) are attached to data to give
control and visibility as data flows throughout the system. This
enhances traditional, principal-centric access controls offering
a complementary, orthogonal mechanism that provides con-
tinuous enforcement of data-centric control policy at runtime.
Such functionality provides assurance, useful for tenants and
providers alike.

Towards this, we have designed and implemented a kernel
module, FlowK, that enforces IFC constraints on all data
flows within an OS [3] (and thus within a VM). We have
not attempted hypervisor-level IFC, though would leverage a
verified and hardware-signed trusted substrate, see [4].

This paper presents a messaging-middleware that enforces
IFC across systems, to protect flows within and between
applications and services (e.g. storage), be they local to the
tenant, VM, cloud provider or external. We are the first, to
our knowledge, to explore IFC at this level of abstraction. We
detail how the middleware integrates with a local-system’s IFC
mechanism (FlowK), with a view towards the goal of end-to-
end enforcement. Our approach abstracts policy, meaning IFC
is enforced regardless of the involvement (or knowledge) of
principals, tenants and applications; but provides mechanisms
for direct IFC intervention when appropriate. This facilitates
system-wide data management, deployment and control.

II. BACKGROUND

Middleware provides a layer of abstraction for applications
over lower-level communication concerns. It aims to simply
communication, targeting intra- and inter-application commu-
nication across hosts.

In message-oriented middleware (middleware), applications
communicate by sending and receiving messages: data struc-
tures encapsulating a set of related data values. In a cloud con-
text, messaging systems can enable communication between
applications and services running in the same VM; between
different VMs run by the same providers; and with external
machines. These flows result a) directly from users of a
tenant’s application, or b) as a result of a provider provisioning
their service (e.g. interacting with shared data storage services,
etc). Many cloud providers offer a messaging service of some
form; e.g., RabbitMQ is integrated with PaaS platforms such



as Heroku and CloudFoundry, and available in Amazon Web
Services, Rackspace and Google Compute Engine.

Middleware is ideally placed for regulating distributed
information flows. By providing the application-level com-
munication interface, it desirably allows the separation of
management policy from application-logic. Operating across
applications/hosts, this allows policy to control, for instance,
which data streams can flow between which system compo-
nents under what circumstances. Further, messages provide a
level of data abstraction that is more easily associated with
policy and management concerns (cf. a socket or pipe).
IFC-enabled middleware offers benefits at all service levels:
PaaS: Here, the IFC capability can be directly leveraged by
application developers. This gives tenants fine-grained control,
as application-specific policy can regulate the data flows
(at the data-item level) between applications and/or service
offerings (storage, processing agents e.g. billing services, etc.),
regardless of whether software is tenant or provider deployed.
IaaS: Though IaaS providers strongly isolate tenants, a tenant
deploying IFC-aware infrastructure can control and track flows
with other instances of their own infrastructure and also with
external applications. In practice, the line between IaaS and
PaaS can blur, where IaaS offerings provide default VM
images and services that tenants can leverage, while PaaS
clouds may simply offer a management tier over an IaaS stack.
SaaS: Though the cloud provider offers and manages the
application, being IFC aware enables both SaaS tenants (e.g.
corporate email underpinned by Gmail) or direct end-users
to a) have visibility over their data flows; and b) with the
appropriate interface, label data to specify its flow constraints.
Motivations and Assumptions

This work aims to provide infrastructure for tenants and
providers to meet their data management obligations, by the
ability to define policy and demonstrate compliance.

It follows that we assume the cloud provider to be non-
malicious, bound through legal requirements (legislation, con-
tracts) to protect tenants’ data (and possibly that of their
users) [1]. Similarly, we also assume that tenants do not
actively try to leak their users’ data. Rather, they are most
likely legally bound to protect it, e.g. in accordance with data
protection and contractual obligations. Even so, a providers’
infrastructure could be misconfigured and leaks could happen
through shared infrastructure, and in interactions with any sub-
providers (those assisting in service provision). And of course,
an application provided by a tenant could accidentally leak
data, e.g. via bugs. So tenants and providers have a direct
interest in infrastructure aiding management and compliance.

We do not directly consider malicious attacks, though IFC
audit data could assist digital forensics. Also, IFC compart-
mentalises risk by confining the effects of such attacks, by re-
stricting the flow of information between system components,
and thus can—depending on the attack—limit the effect of a
successful attack through its confinement capabilities.

Here we explore the practical aspects of IFC for distributed
systems. Our prototype is an exemplar, highlighting the feasi-
bility and benefits of enforcement at this level of abstraction.

III. IFC MODEL

IFC controls information exchange, preventing leakage. We
now briefly outline our model (see [3] for more) that provides
the general IFC guarantees of secrecy (no read up, no write
down [5]) and integrity (no read down, no write up [6]).

In IFC, entities, such as a processes (representing a source/
sink) and data, are associated with secrecy (S) and integrity
(I) labels. A label is a set of a tags, each tag representing
a security concern. The current state of these labels, and the
privileges to manipulate them is the entity’s security context.

A flow of information A→ B is safe if and only if:

A→ B, iff {S(A) ⊆ S(B) ∧ I(B) ⊆ I(A)}
For example, the UK “Government Protective Marking

Scheme”,1 representing four security classes, would have its
hierarchical secrecy policy expressed here as follows:

S Label Tag set
Stop−secret {protected, secret, top–secret}
Ssecret {protected, secret}
Sprotected {protected}
Sunclassified ∅

Thus for two entities A and B such that S(A) = Ssecret and
S(B) = Stop−secret , we have A→ B and B 6→ A.

Entities may be assigned privilege enabling them to modify
their labels (change their security context):
Declassification concerns removing secrecy tags, thus making
data more accessible. For example, plain-text may have a
secret tag whereas that data when encrypted, may flow more
freely. A process that encrypts data must be trusted to have
the privilege to declassify the derived encrypted data; i.e. to
create encrypted data without the secret tag in its S label.
Endorsement involves adding integrity tags, e.g. input data
may need sanitisation before it can be safely used. A certifier
process can have an integrity label allowing the input of
untrusted data, and the privilege to create an integrity label
for the verified output data to indicate its validation.

IV. SBUS-IFC: IFC-ENFORCING MIDDLEWARE

IFC in a cloud-integrated middleware is concerned with
controlling flows intra-cloud, inter-cloud and between tenant
VMs, and users’ end-systems. We now present SBUS-IFC, an
IFC enabled version of the SBUS middleware.

A. SBUS-IFC Overview

SBUS is a messaging middleware that supports strongly-
typed messages; a range of interaction paradigms, including
request-reply, broadcast, and stream-based; flexible resource
discovery mechanisms; and security including access controls
and encrypted communication. Importantly, SBUS supports
dynamic reconfiguration, where third-parties (subject to priv-
ilege) have the same ability to manage an application’s com-
munication as the application itself. This simplifies application
development and deployment, as concerns can be abstracted

1This has changed since this work began. The current version is here: https:
//www.gov.uk/government/publications/government-security-classifications

https://www.gov.uk/government/publications/government-security-classifications
https://www.gov.uk/government/publications/government-security-classifications


and tailored to the environment, rather than embedded within
application code. Here we only introduce SBUS concepts as
relevant to IFC; see [7], [8] for detailed specifics.

We present SBUS-IFC to illustrate the potential for,
and design-considerations of IFC-aware middleware. Similar
mechanisms could be implemented in other middleware; we
chose SBUS because we are familiar with its code-base, and
we envisage its dynamic-reconfiguration capabilities will be
useful for controlling applications within managed (cloud)
infrastructure, and in IFC label and privilege management.

In SBUS, a component is a dedicated process that is
associated with an application to manage its (message-based)
communication. Each component reflects the set of labels of its
attached application. Components (thus, applications) commu-
nicate through messages. Labels are assigned within messages.
IFC is enforced as messages move between components.

B. IFC in SBUS Messages

SBUS messages are strongly typed, where a message type is
defined by a schema describing its set of attributes (see [8] for
details, and Fig. 2 for an example). For a message instance, an
attribute consists of a name, primitive-type and value. SBUS
supports hierarchical message structures, meaning an attribute
may contain a number of sub-attributes (children).

IFC within messages is fine-grained, applying to attributes.
The labels of an attribute a are no more restricted than those of
its child c; S(a) ⊆ S(c) and I(c) ⊆ I(a). All child attributes
are subject to the same labelling constraints, with the most
top-level attribute being the label of the message type.

Labels can be assigned statically, defined within message
type schema. This sets the attribute’s IFC label for all message
instances of the type. For those not statically defined, the
application producing the message sets the attribute security
labels, directly (through the API), and indirectly (according
with the application’s security context §VI).

C. IFC Enforcement and Privileges

IFC operates to authorise the message flows between com-
ponents. Enforcement involves the middleware inspecting all
attributes of a message, testing for compliance against those
of the application/component. This entails a message transfor-
mation removing values for the attributes that do not comply.

Enforcement occurs on: receiving, enforced before the mes-
sage is delivered to the application, preventing improper reads;
and sending, enforced as a component sends a message, so
only the appropriate data is transmitted. On sending, any
attributes that do not have labels assigned by the application,
are set to the current runtime level of the component.

Declassification is possible if the component has the priv-
ilege(s) to alter its labels, and changes its security context
correspondingly, before message sending (see §III and §VI).

All flows are audited, capturing the security context of the
particular message flow. The audit can be configured to include
metadata and/or message content pre- and post-enforcement.

Applications do not see the labels within the messages they
receive. This prevents a side-channel; though privileged to see

message content, they need not know about sending specifics.
However, as labels are ‘lost’ between hops, this prevents
the building of (application-layer) networks, e.g. those with
content-based brokers. As such, we define a privilege that al-
lows components to view such labels. Though this entails trust,
brokers would likely function within a managed infrastructure
(e.g. in a government-wide service), perhaps on behalf of other
‘sensitive’ (top-secret) components.

D. Reconfiguration and application awareness

Given our middleware focus, here we do not explore privi-
lege management issues. However, the SBUS-IFC mechanisms
that embody the privileges of the applications/components can
also be dynamically and transparently reconfigured at runtime
by third parties (policy engines), where authorised.

It follows that cloud software and services need not be IFC
aware. Policy is enforced by the middleware without appli-
cation intervention, including label assignment on sending,
where applicable. Further, SBUS’ reconfiguration capabilities
enable connections between components to be defined and
managed at runtime, providing another mechanism for control.

Clearly, this facilitates the development and deployment of
cloud software and systems. But importantly it also provides
the possibility for management policy to be adapted, when and
where necessary, at runtime without application involvement.

V. CLOUD SCENARIO: MONITORING AND ADMIN

We now present a scenario concerning cloud system mon-
itoring and administration to: (1) demonstrate the capability
that an integrated IFC-middleware brings to a cloud context
(2) indicate the associated performance overheads.

This example uses the system-wide IFC model described in
§III, consisting of the security contexts: unclassified, protected,
secret, top-secret. To simplify explanation, we only consider
secrecy labels S, assuming the integrity labels I are null.
Components hold a label with appropriate tags from the above
set to describe their current runtime privilege level.

A. System monitoring and administration

Production systems must be properly monitored and man-
aged. Syslog is a common standard2 for system logging, where
syslog messages can encapsulate statistical, debugging and
error information produced from applications, services, and
devices. These messages give insight into system state, enable
better system administration and management.

Logging is a real issue in cloud computing; there are
commercial offerings to assist.3 A cloud service entails a
number of VMs, many of which with operating systems run-
ning a syslog server (daemon) to which running applications
push relevant information about their state, including potential
issues or faults. Often, such information must be accessible
from remote machines, particularly for data centres, cloud
providers, and in distributed systems in general. Thus, many
syslog implementations provide remote logging capabilities.

2http://tools.ietf.org/html/rfc5424.
3For example: https://logentries.com/ and https://www.loggly.com/.

http://tools.ietf.org/html/rfc5424
https://logentries.com/
https://www.loggly.com/


Asia%Europe%

VM% VM% VM% VM% VM% VM% VM%

Fig. 1. Syslog information flows from various VMs to administration
consoles. Each VM will run a number of applications and processes,
some of which will deal with personal and/or sensitive information.
There will be circumstances in which log information may flow to
other jurisdictions (dashed lines).

Syslog messages can be sensitive. The more detail encapsu-
lated in such messages, the greater the sensitivity of the log.
Machines and applications that are used for sensitive tasks,
e.g. for billing purposes, or healthcare, are likely to produce
sensitive log messages. Thus, syslog data flows require control.

B. System monitoring scenario

Providers and tenants may be subject to data management
obligations. For instance, the EU Data Protection Directive
states that personal data is considered sensitive, imposing
certain requirements, e.g. that personal data must not leave
the EU (subject to exceptions [9], [1]). We feel that IFC can
help meet and demonstrate compliance with such obligations.

Many cloud services will deal with personal information,
e.g. customer data and billing information, and many sensor-
driven applications. Log data may come from tenant ap-
plications (particularly in IaaS), or from provider-managed
infrastructure, such as databases or other shared resources.
Some log data will encapsulate sensitive, personal information.

To manage the runtime environment, log information must
flow to various locations; e.g. hardware-related issues (CPU/
memory issues) are relevant to system administrators, while
application-specific logging may need to flow elsewhere to
particular tenants. This must all be properly isolated. To illus-
trate, we consider the flow of log information to administration
consoles.4 The global nature of cloud means the consoles are
geographically spread, in order to meet local legal obligations
and also for business/operational concerns (e.g. timezones,
financial incentives). In some circumstances, systems may be
managed from remote ‘jurisdictions’, so logs may flow there
under certain circumstances. Fig. 1 presents this scenario.

We manage syslog data flows, by using SBUS-IFC to
balance the adherence to data protection (location-based)
principles, and the need for distributed logs. Our focus is on
the interaction between a syslog server for a machine dealing
with sensitive data and an administration console, which may
belong to the cloud provider (for SaaS or PaaS management)
or a tenant (e.g. IaaS).
Scenario Implementation

Each syslog component operates at Stop−secret to enable the
trusted syslog process to properly view, manage, control and

4These could equally be some aggregation service, storage service, etc.

protect the flow of that information. It also holds declassifi-
cation privileges enabling a relaxation of the constraints for
any (critical) messages considered important or urgent, that
require some active intervention or response.

A critical event is determined by the syslog component,
which can be configured to account for various factors, in-
cluding priority (a syslog field), the application’s purpose, the
labels assigned by tenants/users, etc. For example, failures in
a customer billing service may be particularly important. Note
that message criticality is not determined solely by message
content. The syslog component actively sets the IFC labels for
messages; the console is not so trusted and privileged.

C. Data protection demonstration

We now demonstrate the ability to capture different data
disclosure policy, considering an administration console in the
EU, and one in Asia that should not receive EU personal
information (Fig. 1). The syslog server component runs at
Stop−secret . Non-critical event attributes remain at this level,
assuming there is no reason for them to be disclosed.

The server declassifies critical events, setting non-specific
fields (priority, timestamp, host) to Sprotected , and those detailed
(process, content) to Ssecret . This makes critical events more
visible, though the sensitive attributes are still more protected.
We consider four situations:
Scenario 1: The console operates at the lowest privilege
Sunclassified , and thus sees no data. This represents a non-EU
(Asia) console that lacks the privileges to view EU syslog data.
Scenario 2: A console running at Stop−secret is able to receive
all messages, critical or not. This represents an EU console.
Scenario 3: The console runs at Sprotected , to be notified
of critical messages, without detail on the sensitive attributes
(process, content). This enables the administrators in Asia
to be informed of potential issues without violating data
protection rules.5 We illustrate this in Fig. 2.
Scenario 4: The console runs at Ssecret , thus receiving all crit-
ical message details. This may be baseline EU-console policy,
to ensure a focus on important events, or may be a deliberate
violation of data protection rules, where messages flow to Asia
to enlist extra administrative support for mitigating potential
loss, e.g. when a system is under attack.

These scenarios show IFC controlling data disclosure, as
a mechanism orthogonal to that of access control (which is
principal focused) and content-based filters (which focus on
data values cf. semantics) [10]. We also see the power of
combining IFC privilege management with dynamic reconfig-
uration. Changing the labels of the console, which can occur at
runtime through a single SBUS control message, directly de-
termines the data transmitted/disclosed. This demonstrates the
power of the application-logic/policy separation, where simple
reconfigurations can realise different functionality, at runtime,
without application involvement. Further, this approach paves
the way for tenants/users to specify data sensitivity levels, for
which the infrastructure should enforce and audit the flows.

5Perhaps to inform the EU administrators ‘on call’ outside business hours.



Message as published by syslog server

<syslog tag="P">
<priority tag="P">4</priority>
<timestamp tag="P">

23:17:59.00, 15/04/2014</timestamp>
<host tag="P">morena</host>
<process tag="PS">locd[69]</process>
<content tag="PS">

SSLHandshake failed 192.168.1.43:22412
</content>

</syslog>

Message read by console running at Sprotected .

<syslog>
<priority>4</priority>
<timestamp>

23:17:59.00, 15/04/2014
</timestamp>
<host>morena</host>
<process />
<content />

</syslog>

Fig. 2. Example of a declassified critical message, read-enforced for
a process running at level Sprotected (as per Scenario 3).

D. Performance Overheads of SBUS-IFC Integration
To indicate IFC overheads, we compared the SBUS-IFC

with the non-IFC SBUS implementation. Our concern was the
relative performance. We used two Macbook Airs (one a Core
Duo 1.3 running OSX 10.6, the other a 1.7GHz i7 running
OSX 10.9), connected by 100BASE-T Ethernet.

Using a workload of 5000 syslog messages, sent in imme-
diate succession, 20% of which critical, we measured:
1. The IFC read measurement, representing Scenario 3 above,
where only some attributes of the critical messages are visible
to the receiver. This prevents an unauthorised read-leakage.
2. IFC send considers data leakage at source. This differs from
the scenarios above as the server no longer holds the declas-
sification privilege; thus, when sending critical messages, the
attribute values are removed before message transmission.
3. Non-IFC is the standard SBUS implementation. As there is
no IFC enforcement, there is leakage on send and receive.

Fig. 3 shows the overhead of IFC enforcement. The dif-
ference in numbers between the IFC scenarios is because
in the send scenario the server lacks the declassification
privilege. Enforcing send policy entails analysing the attributes
of each message before transmission; this is bypassed when
the declassification privilege is held (as in the read scenario).

The results indicate that IFC enforcement introduces ∼13%
overhead in performance time for the workload over stan-
dard SBUS. The workload transmission in bytes for the read
IFC (where all messages are transmitted) was approximately
1.91MB, and for non-IFC was approximately 1.84MB for all
trials. Thus attaching IFC labels to message attributes intro-
duced 3.6% extra traffic. The send IFC scenario prevented
certain attribute values from propagating, thus transmission
was ∼1.52MB (a reduction of ∼17% cf. the non-IFC scenario).

VI. IFC-ENFORCING KERNEL INTEGRATION

We have described middleware that protects flows across
machines. It is also important that once data is delivered to

538$

578$

609$

0$ 100$ 200$ 300$ 400$ 500$ 600$

non.IFC$

IFC.read$

IFC.send$

Fig. 3. Performance evaluation between SBUS and SBUS-IFC for
the entire 5000 message workload (x-axis time in ms).

the application layer, it remains protected. As such, we have
integrated SBUS-IFC with FlowK, which enforces IFC in the
kernel space and provides an API for user-space applications.
The goal is to enable an end-to-end IFC capability, whereby
FlowK enforces I/O within a machine, and the SBUS-IFC
protects communication between machines.

In a Linux-like OS, the IFC entities are processes, files,
pipes and sockets. Information flows between these are
through system calls (FlowK prevents shared memory). FlowK
intercepts system calls,6 enforcing IFC based on the security
contexts of these entities, while accounting for (process-level)
privilege management. For more on FlowK, see [3].

Inter-machine communication is via sockets. In IFC sys-
tems, sockets connected to remote machines have been consid-
ered public, thus unlabelled [11], [3]. IFC-aware middleware
rectifies this, by enforcing IFC across machines.

Middleware typically uses system calls to provide its func-
tionality. Further, a distributed IFC-middleware must enforce
labels consistent with those of the local machine. Thus, to
manage the middleware-kernel interplay, we have defined User
Space Helper (Usher) processes (Fig. 4). An Usher is a FlowK
trusted process, privileged with respect to system-calls and the
label-management concerns of the application it represents.

Ushers allow FlowK to delegate remote enforcement aspects
to the middleware. To integrate with FlowK, the SBUS-IFC
process is an Usher. This: (1) prevents FlowK from enforcing
IFC constraints on the system calls between the applica-
tion and its SBUS process, and between SBUS components
(leaving IFC enforcement to SBUS); (2) allows SBUS to
access and manage the application’s FlowK privilege and label
allocations, as well as local-to-global label mappings to enable
IFC enforcement across machines.

Note that FlowK imposes an overhead of ∼10% [3], similar
to the ∼13% observed for SBUS-IFC (§V-D).

IFC Library

User Space

Kernel Space

Application Process

Kernel

Messaging

S = {tA}
tA → tG

Network
Message S = {tG}

Intercepted
System Calls
Unmonitored

System Calls

usher

IFC Enforcement Kernel Module

Fig. 4. FlowK architecture, integrating messaging middleware.

6We are currently reworking FlowK into a Linux Security Module.



VII. RELATED WORK

Cloud-based access controls typically protect at the point of
provider-tenant interaction, but not within the cloud. Encryp-
tion allows tenants/users to protect data ‘out of their hands’,
but this brings key-management issues, and generally pre-
cludes cloud-processing services. Tenant isolation mechanisms
are blunt, provider-centric, and do not account for flexible
application-level data sharing. We explore these issues in [12].

A survey of IFC implementations is given in [2]; few
consider communication. Component Information Flow [13]
is a design framework for component-based system archi-
tectures where security constraints (labels) can be specified
on communication interfaces. It provides tools for model
validation and code generation. DIFCA-J [14] is an approach
that modifies Java bytecode to enforce IFC throughout the
JVM, including remote method calls. External objects (files,
databases) can be labelled, in order to regulate flows to and
from the JVM. Aeolus [15] uses abstractions to control data
flows in a distributed system, where IFC is enforced against
interactions between Aeolus nodes (isolated applications),
boxes (shared objects) and the custom, label-aware filesystem.
Interactions with entities (files, applications, etc.) outside these
abstractions are untrusted, thus unlabelled. In DStar [16], each
machine has a dedicated exporter component, through which
all inter-machine communication occurs. Leveraging the IFC-
compliant OS, the exporter translates between local machine
and global labels, to regulate flows across machines.

Our approach differs as it integrates IFC functionality into
a general, distributed communications middleware. Further,
the work on IFC in networked environments tends to impose
constraints on system design, architecture, implementation
and/or the operating environment. We made a deliberate design
decision not to impose a structure on system design; but rather
to integrate IFC functionality into the kind of communica-
tions infrastructure already common in enterprise and cloud
systems. Moreover, current cloud platforms do not support
IFC, which is the key motivator for our work. We have
discussed how IFC techniques could be provided as part of
cloud services [2]. Integrating SBUS-IFC with FlowK moves
us further towards this goal.

VIII. CONCLUSION

There is real need for cloud users/tenants to be able to
specify policy to manage and control their data within a cloud
service. To this end, we have been working towards bringing
IFC-enforcement capabilities to cloud infrastructure.

In this paper we show the practicality of an IFC-capable
middleware. Specifically, we demonstrate the means for IFC
control in distributed environments, across applications, ser-
vices, containers, VMs, tenants, providers, etc. The policy
specifying how software, services and applications are used
can be separated from their code, thus facilitating deployment
and management within the cloud. We showed how IFC-aware
middleware can be integrated with a local enforcement mech-
anism (FlowK), enabling protection both within and across

systems. Initial results indicate an IFC enforcement overhead
of approximately 10-13%, which we anticipate would be
acceptable for many cloud-based application scenarios.

This work moves us towards our goal of end-to-end IFC
enforcement. However, naming remains a major consideration:
how to design globally unique names for distributed systems
is well-known, but to incorporate such a scheme for the tags of
applications world-wide requires a global naming specification
and a service support framework akin to DNS. Another consid-
eration is structured data. While the middleware can naturally
enforce at the level of message attributes (data fields), IFC
work generally considers channels and bytes. More work is
required on enabling this more fine-grained IFC policy, end-to-
end. We also intend to explore IFC for the emerging ‘internet
of things’, where mobile devices, sensors, actuators interact
with applications, cloud services and each-other.

Acknowledgement

This work was supported by UK EPSRC grant EP/K011510,
and Microsoft (via MCCRC) for the cloud-legal issues.

REFERENCES

[1] C. J. Millard, Ed., Cloud Computing Law. OUP, 2013.
[2] J. Bacon, D. Eyers, T. Pasquier, J. Singh, I. Papagiannis, and P. Pietzuch,

“Information Flow Control for Secure Cloud Computing,” IEEE TNSM,
Special Issue on Cloud Service Management, vol. 11, no. 1, pp. 76–89,
March 2014.

[3] T. F. J.-M. Pasquier, J. Bacon, and D. Eyers, “FlowK: Information
Flow Control for the Cloud,” in 6th International Conference on Cloud
Computing Technology and Science (CloudCom). IEEE, Dec 2014.

[4] K. R. Jayaram, D. Safford, U. Sharma, V. Naik, D. Pendarakis, and
S. Tao, “Trustworthy Geographically Fenced Hybrid Clouds,” in ACM/I-
FIP/Usenix Middleware. ACM, 2014.

[5] D. E. Bell and L. J. LaPadula, “Secure Computer Systems: Mathematical
Foundations and Model,” The MITRE Corp., Bedford MA, Tech. Rep.
M74-244, May 1973.

[6] K. J. Biba, “Integrity Considerations for Secure Computer Systems,”
MITRE Corp., Tech. Rep. ESD-TR 76-372, 1977.

[7] J. Singh, D. Eyers, and J. Bacon, “Policy Enforcement within Emerging
Distributed, Event-Based Systems,” in ACM Distributed Event-Based
Systems (DEBS’14), 2014.

[8] J. Singh and J. Bacon, “SBUS: A Generic, Policy-enforcing Middle-
ware for Open Pervasive Systems,” University of Cambridge Computer
Laboratory Technical Report TR, vol. 847, 2014.

[9] “European Commission: Proposal for a General Data Protection Reg-
ulation, 2012/0011(COD), C7-0025/12, Brussels COM(2012) 11 final,”
2012.

[10] J. Singh, D. M. Eyers, and J. Bacon, “Disclosure Control in Multi-
Domain Publish/Subscribe Systems,” in Proc. ACM Distributed Event-
Based System (DEBS’11). ACM, 2011, pp. 159–170.

[11] M. Krohn, A. Yip, M. Brodsky, N. Cliffer, M. F. Kaashoek, E. Kohler,
and R. Morris, “Information Flow Control for Standard OS Abstrac-
tions,” in 21st ACM Symposium on Operating Systems Principles, 2007,
pp. 321–334.

[12] J. Singh, J. Bacon, J. Crowcroft, A. Madhavapeddy, T. Pasquier, W. K.
Hon, and C. Millard, “Regional Clouds: Technical Considerations,”
University of Cambridge, Computer Laboratory, Tech. Rep. UCAM-CL-
TR-863, 2014. [Online]. Available: http://www.cl.cam.ac.uk/techreports/
UCAM-CL-TR-863.pdf

[13] L. Sfaxi, T. Abdellatif, R. Robbana, and Y. Lakhnech, “Information
Flow Control of Component-based Distributed Systems,” Concurrency
and Computation: Practice and Experience, vol. 25, no. 2, pp. 161–179,
2013.

[14] S. Yoshihama, T. Yoshizawa, Y. Watanabe, M. Kudoh, and K. Oyanagi,
“Dynamic Information Flow Control Architecture for Web Applica-
tions,” in ESORICS 2007, ser. LNCS, J. Biskup and J. Lopez, Eds.
Springer Berlin Heidelberg, 2007, vol. 4734, pp. 267–282.

[15] W. Cheng, D. R. K. Ports, D. Schultz, V. Popic, A. Blankstein,
J. Cowling, D. Curtis, L. Shrira, and B. Liskov, “Abstractions for
Usable Information Flow Control in Aeolus,” in Proc. USENIX Annual
Technical Conference, Boston, 2012.

[16] N. Zeldovich, S. Boyd-Wickizer, and D. Mazières, “Securing Distributed
Systems with Information Flow Control,” in 5th USENIX Symposium on
Networked System Design and Implementation, 2008, pp. 293–308.

http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-863.pdf
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-863.pdf

