
Explorations in the
Grid/WS Computing Jungle

A Narrative of the Reverse-Engineering Attempts
of a “New” Distributed Paradigm

François Taïani, Matti Hiltunen & Rick Schlichting

Opera Talk, 6 May 2008, Comp. Dept., Cambridge University

2

The best and safest method of philosophizing
seems to be, first to inquire diligently into the
properties of things, and to establish those
properties by experiences and then to proceed
more slowly to hypotheses for the explanation of
them. For hypotheses should be employed only in
explaining the properties of things, but not assumed
in determining them; unless so far as they may
furnish experiments.

Isaac Newton

3

Context: Middleware Complexity

one request,
2065 individual invocations,
over 50 C-functions and 140
C++ classes.

ORBacus Request
Processing

4

Web Services’ Bright New World

 Grid Computing: federating resources
Web Services: integrating services

 Globus (Argonne Lab.): reference implementation

 Large, complex, collaborative middleware (IBM, Apache,...)

 Very poor performances:
 Up to 30s to create a simple distributed object (counter)
 Up to 2s for a roundtrip remote add operation on this counter

over the
Internet

 Where does it come from?
 Does it tell us something about modern mw development?

5

Globus

 Reference Implementation of the Grid Standards.
 Developed by the “Globus alliance”, a partnership around

Argonne National Laboratory.

 Globus is a high level “middleware” (software glue)
 It offers services to share/ use remote distributed “resources”

(CPU, memory, DB, bandwidth)

 Since version 3.9.x use Web Service “connectivity”
 Web Services: “connectivity” middleware across the Internet
 Integration of services across organizations
 Related alphabet soup: SOAP, XML, WSDL, HTTP, .NET, etc.

6

Exploration Goals

 We wanted to understand Globus (at least its connectivity)

 Huge piece of software (3.9.x):
 123,839 lines in Java (without reused libraries)
 1,908,810 lines in C/C++ (including reused libraries)

 Many libraries / technologies involved:
 XML, WSDL (Descr. Lang), WSRF (Resource Framework)
 Axis (Java to SOAP), Xerces (XML Parsing), com.ibm.wsdl

 How to understand that?

 A typical reverse engineering problem

7

Methodology I + First Results
create resource

subscribe to changes

add 3

notify ×4

destroy resource

client container

Java VM
tracing

execution traces

 First attempt: tracing everything (outside the JVM libs)
 client : 1,544,734 local method call (sic)
 server : 6,466,652 local method calls (sic) [+time out]

 How to visualize such results?

8

Program Visualization: a few Notions

 Problem studied for quite a long time now.

 Different aspect : collection, manipulation, visualization.

 Visualization some form of projection (many proposed).

 Our goal: understand software structure:

lib 1

lib 2

lib 3

lib1.Wale .breath
lib1.Mammal.inhale
lib2.Lung .inhale
lib2.Muscle.contract
lib2.Nerve .transmit
lib3.Signal.travel

Growing
Call
Stack

 Tracing calls reveals the software structure.

9

lib1.Wale .breath

lib1.Mammal.inhale

lib2.Lung .inhale

lib2.Muscle.contract

lib2.Nerve .transmit

lib3.Signal.travel

Methodology I

lib3.Blood .flow

lib3.Pressure.foo

0%
20%
40%
60%
80%

100%

1 2 3 4 5 6
Stack Depth

C
al

ls lib3
lib2
lib1

0

1

2

3

1 2 3 4 5 6
Stack Depth

C
al

ls lib3
lib2
lib1

 Aggregates invocations of the same library.
 Chart w.r.t. position in call stack.

A call graph obtained by tracing

lib2.Muscle.stop

lib2.Nerve .transmit

lib3.Signal.travel

10

Methodology I

lib 1

lib 2

lib 3

Package Activity
vs. Stack Depth

Software Structure

11

Package Activity vs. Stack Depth

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

160,000

180,000
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55

Stack Depth

C
al

ls

 org.apache.xerces
 org.apache.xml
 org.apache.axis
 org.apache.log4j
 org.apache.xpath
 org.apache.commons
 com.ibm.wsdl
others

(client, 1 creation, 4 requests, 1 destruction)

12

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

160,000

180,000
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55

Stack Depth

C
al

ls

 org.apache.xerces
 org.apache.xml
 org.apache.axis
 org.apache.log4j
 org.apache.xpath
 org.apache.commons
 com.ibm.wsdl
others

(client, 1 creation, 4 requests, 1 destruction)

0

1

2

3

1 2 3 4 5 6
Stack Depth

C
al

ls lib3
lib2
lib1

Package Activity vs. Stack Depth

13

Package Activity vs. Stack Depth

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

160,000

180,000
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55

Stack Depth

C
al

ls

 org.apache.xerces
 org.apache.xml
 org.apache.axis
 org.apache.log4j
 org.apache.xpath
 org.apache.commons
 com.ibm.wsdl
others

(client, 1 creation, 4 requests, 1 destruction)

Looks better,
but is the same!

89% of invocations (1,372,534) due to XML!

14

0%

20%

40%

60%

80%

100%
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55

Stack Depth

C
al

ls

 org.apache.xerces
 org.apache.xml
 org.apache.axis
 org.apache.log4j
 org.apache.xpath
 org.apache.commons
 com.ibm.wsdl
others

0%
20%
40%
60%
80%

100%

1 2 3 4 5 6
Stack Depth

C
al

ls lib3
lib2
lib1

Package Activity vs. Stack Depth

(client, percentage view)

15

Package Activity vs. Stack Depth

0%

20%

40%

60%

80%

100%
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55

Stack Depth

C
al

ls

 org.apache.xerces
 org.apache.xml
 org.apache.axis
 org.apache.log4j
 org.apache.xpath
 org.apache.commons
 com.ibm.wsdl
others

(client, percentage view)

XML used by org.apache.axis, not by Globus!

Very long stack probably recursive parsing!

16

What does it tell us?

 Most of the local invocations (89%) are related to XML
parsing (org.apache.xerces, org.apache.xml).

 The parsing is used by Axis (the SOAP/Java bridge from
the apache foundation), not directly by Globus.

 The very long stacks we observe (up to 57 frames!) most
probably reflect some recursive parsing loop, rather than
the program structure.

 Similar findings on the server side (only more dramatic,
stack depth up to 108 (sic), 4 times more invocations).

17

New Questions

More insight needed:

 Does invocation count reflect real performance?

 How “bad” is really the platform?

 Can we do the same kind of “structural” projection of
profiling data?

 If yes, is it useful?

 Our choice: 2 step approach
 (1) Black box profiling
 (2) “Internal” profiling using sampling

18

Chosen Approach

 2 steps:
1. Black box profiling: minimal interferences. Coarse results.
2. Sample based profiling: less accurate but more detailed.

 We focused on the connectivity of the WSRF
implementation of GT4-Java:
 Low level “plumbing”. No high level service involved
 Motivation: profile the founding bricks of the Globus platform

 Experimental set-up:
 Standalone SMP server running 4 Intel Xeon @ 1.6GHz
 No network cost involved!
 Avoids context switching overhead!
 Globus 3.9.4 used (last GT4 alpha release, released Dec.04)

19

client

clock instrumentation

Black-Box Profiling: Approach
 Black Box Approach: Measure externally visible latencies

 Many different situations to be considered!

container

create

add 3

notify 3

destroy ×5

influence of resource init

×5

influence of client init

×5

influence of container init

×50

av
er

ag
in

g

(10 000 invocations)

subscribe

20

Resource Set-Up

×5
×5

subscribe
create

client cont.

21

Resource Set-Up
Container init
overhead
(~8.2s!)

Client init
overhead
(~24.8s!)

High lazy initialization costs! (> 30s!)

Stabilized latency remains high (380ms)

22

First Notification

×5
×5client cont.

1st notify

23

First Notification
Container init
overhead
(~430ms)

Client init
overhead
 (~1.4s!)

Stabilized
latency
(~1.1s!)

24

Second Notification

Lazy initialization everywhere

×5
×5client cont.

2nd notify

Resource init
overhead
(~930ms!)

Stabilized
latency 1st

notification
(~1.1s)

Stabilized request latency still h
igh (170ms)

25

Internal Profiling: Basics
 Profiling data obtained through sampling

(SUN hprof basic profiler on Java 1.4)
 JVM periodically stopped. Stack of active thread is captured.
 Result : A set of weighted stack traces. Weight = measures

how often the stack was observed.

 Visualization:
Set of weight stacks = multi-dimensional object
 Time (represented by weights)
 Threads: each trace belongs to a thread
 Control flow (represented by stacks, reflects use relationships)
 Code Structure (package organization, class hierarchy, etc.)

 Projection (aggregation / collapsing) required

 Many possibility. Our choice: code structure + stack depth

26

Methodology III
lib1.Wale .breath

lib1.Mammal.inhale

lib2.Lung .inhale

lib2.Muscle.contract

lib2.Nerve .transmit

lib3.Signal.travel

lib3.Blood .flow

lib3.Pressure.foo

lib2.Muscle.stop

lib2.Nerve .transmit

lib3.Signal.travel

Sampling yields a set of weighted stack traces (weight reflects time spent)

×3 ×1 ×2

0
1
2
3
4
5
6

1 2 3 4 5 6
Stack Depth

Ti
m

e
U

ni
ts lib3

lib2
lib1

 Aggregates invocations of the same library.
 Chart w.r.t. position in call stack.

EXCLUSIVE

0
1
2
3
4
5
6

1 2 3 4 5 6
Stack Depth

Ti
m

e
U

ni
ts lib3

lib2
lib1

INCLUSIVE

27

Experimental Set-Up

containerclient

create
subscribe

add 3
notify 3

destroy ×5
×5

Java VM
hprof

profiling data

28

Sharp drop at
length 13

Container Profiling: Results

Some very deep traces. Look
quite regular beyond depth
28 (recursion?)
org.apache.axis predominant

Layered structured
for upper stack
depths

Busy waiting related to
notification management.
Outside request critical path.

29

subscribe

notify 3

+ extra granularity to observe package
org.apache.axis

New Experimental Set-Up

containerclient

create

add 3

destroy ×5
×5

Java VM
hprof

profiling data

30

This is a recursion in
org.apache.wsdl.symbolTable
(web services).
Symbol management issue?

Traces of length 13 have
disappeared. They were
caused by the notification
management.

org.globus.wsrf

org.globus.gsi (security)

sun.reflect (reflection)

New Results

31

Profiling Breakdown

 Abstracts away low level packages (java.*, etc.)

 Sample breakdown among “higher level” packages:
Package Name Samples %

 org.apache.axis.wsdl 231 21%
 org.apache.axis.encoding 66 6%
 org.apache.axis (others) 113 10%
 org.globus.gsi 249 23%
 org.globus.wsrf 49 4%
 cryptix.provider.rsa 82 7%
 org.apache.xerces 78 7%
 others 237 21%

32

Profiling Breakdown

 Abstracts away low level packages (java.*, etc.)

 Sample breakdown among “higher level” packages:
Package Name Samples %

 org.apache.axis.wsdl 231 21%
 org.apache.axis.encoding 66 6%
 org.apache.axis (others) 113 10%
 org.globus.gsi 249 23%
 org.globus.wsrf 49 4%
 cryptix.provider.rsa 82 7%
 org.apache.xerces 78 7%
 others 237 21%

Symbol management issue?

33

Profiling Breakdown

 Abstracts away low level packages (java.*, etc.)

 Sample breakdown among “higher level” packages:
Package Name Samples %

 org.apache.axis.wsdl 231 21%
 org.apache.axis.encoding 66 6%
 org.apache.axis (others) 113 10%
 org.globus.gsi 249 23%
 org.globus.wsrf 49 4%
 cryptix.provider.rsa 82 7%
 org.apache.xerces 78 7%
 others 237 21%

SOAP + XML: 44%

34

Profiling Breakdown

 Abstracts away low level packages (java.*, etc.)

 Sample breakdown among “higher level” packages:
Package Name Samples %

 org.apache.axis.wsdl 231 21%
 org.apache.axis.encoding 66 6%
 org.apache.axis (others) 113 10%
 org.globus.gsi 249 23%
 org.globus.wsrf 49 4%
 cryptix.provider.rsa 82 7%
 org.apache.xerces 78 7%
 others 237 21%

Security / Cryptography: 30%

35

Many Other Visualisation Ways

0

100

200

300

400

500

600

700

800
Th

re
ad

-3
Th

re
ad

-2
Th

re
ad

-5
Th

re
ad

-9
Th

re
ad

-2
0

Th
re

ad
-0

Th
re

ad
-1

0
Th

re
ad

-2
2

Th
re

ad
-1

1
Th

re
ad

-7
Th

re
ad

-1
7

Th
re

ad
-1

4
Th

re
ad

-1
5

Th
re

ad
-2

5
Th

re
ad

-6
Th

re
ad

-2
1

Th
re

ad
-1

9
Th

re
ad

-2
8

Th
re

ad
-2

4
Th

re
ad

-2
9

Th
re

ad
-1

6
Th

re
ad

-1
8

Th
re

ad
-2

6
Th

re
ad

-1
3

Th
re

ad
-2

7
Th

re
ad

-8
m

ai
n

Th
re

ad
-1

2
Th

re
ad

-2
3

Th
re

ad
-1

Th
re

ad
-4

R
ef

er
en

ce
 H

an
dl

er
pr

oc
es

s
re

ap
er

Ti
m

e
U

ni
ts

0

5

10

15

20

25

30

A
ve

ra
ge

 S
ta

ck
 D

ep
th

Time Units
Average Stack Depth

(v3.9.2)

36

Summing Up
 Globus

 Lazy optimisation: very high latency on first invocation of
operations (up to 30s to set up a resource on a new container!)

 Stabilized latencies still high: ~ 160ms for a round trip
request (with authentication turned on)

 No clear culprit. Technology overload:
WSDL, SOAP, security

 Is lazy optimisation a problem? Yes and No.

37

Longer Term

 Platform and technology come and go
Globus is a moving target

 But experimental approaches stay

 And so do development practices

38

Middleware Practices:
Are we doomed?

 Lazy optimization flexibility paradox

 Poor performance abstraction leaking

 Reverse engineering Frankenstein’s return?

 Can Cognitive-based Middleware save us?

API are for real beings!

39

To look further

 Globus profiling
 The Impact of Web Service Integration on Grid Performance,

François Taïani, Matti Hiltunen, Rick Schlichting, HPDC-14,
2005

 Large graph reverse engineering
 CosmOpen: Dynamic reverse-engineering on a budget,

Francois Taiani, Marc-Olivier Killijian, Jean-Charles Fabre, TR COMP-
002-2008, Lancaster University, 2008

 http://ftaiani.ouvaton.org/7-software/index.html#CosmOpen

 Next Generation Middleware Group at Lancaster

40

The End
(Thank you)

41

Package Activity vs. “Progress”

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Progress (% of Local Calls)

%
 o

f
C

al
ls

 in
 P

ro
gr

es
s

S
lic

e
.

 org.apache.xerces
 com.ibm.wsdl
 org.apache.xpath
 org.apache.xml
 org.apache.axis
 org.apache.log4j
 org.apache.commons
 org.xml.sax
 org.globus.wsrf
 org.apache.naming
others
Remote Calls

client
(1 creation,
 4 requests,
 1 destruction)

42

12
4

0

10

20

30

40

50

60

70

80

90

100

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Stack Depth

H
its

java.net
java.security
sun.security.provider
org.apache.axis
others
java.util.zip
java.lang
org.apache.xerces

11
24

66
6.

Profiling Results (Exclusive, Server)

