
DTrace

David Evans

February 24, 2009

What I’ll discuss

1. What’s DTrace all about

2. DTrace mechanisms

3. Instrumenting SBus

4. The end, and after

What I won’t discuss

The D language in detail
Strategies for tracing things
Useful recipes

1. What’s DTrace all about

What does DTrace do?

Provides probe points

dtrace -l | wc -l
24009

Allows straightforward event-driven measurement

Sun propaganda

If you have ever wanted to understand the behavior of
your system, DTrace is the tool for you. DTrace is a
comprehensive dynamic tracing facility that is built
into Solaris. The DTrace facility can be used to
examine the behavior of user programs. The DTrace
facility can also be used to examine the behavior of
the operating system. DTrace can be used by system
administrators or application developers, and is
suitable for use with live production systems. DTrace
will allow you to explore your system to understand
how it works, track down performance problems
across many layers of software, or locate the cause of
aberrant behavior.

The DTrace architecture
The following diagram shows the di!erent components of the DTrace architecture, including
providers, probes, the DTrace kernel software, and the dtrace command.

Now that you understand howDTrace works, let's return to the tour of the D programming
language and start writing somemore interesting programs.

Variables andArithmetic Expressions
Our next example programmakes use of the DTrace profile provider to implement a simple
time-based counter. The pro"le provider is able to create new probes based on the descriptions
found in your D program. If you create a probe named profile:::tick-nsec for some integer
n, the pro"le provider will create a probe that "res every n seconds. Type the following source
code and save it in a "le named counter.d:

syscall profile

sysinfo vminfo

fbt sdt

fasttrap

DTrace

kernel
userland

DTrace
providers

dtrace(7D)

libdtrace(3LIB)

lockstat(1M)dtrace(1M)

plockstat(1M)intrstat(1M)

DTrace
consumers

a.d b.d ...

...

...

D program
source files

FIGURE 1–1 Overview of theDTraceArchitecture andComponents

Variables andArithmetic Expressions

Chapter 1 • Introduction 33

2. DTrace mechanisms

Probes

provider:module:function:name

Providers

dtrace -l | awk ’{print $2}’ | ... |
sort | uniq

...
dtrace
fbt
io
lockstat
mach_trap
mds32
proc
profile
syscall
vminfo

Actions

syscall:::entry
{

@c[execname] = count();
}

Actions with predicates

syscall:::return
/ arg0 == -1 /
{

@c[execname, probefunc] = count();
}

D language features

Variables: lots of types
Aggregations

f (f (x0) ∪ f (x1) ∪ . . . ∪ f (xn)) = f (x0 ∪ x1 ∪ . . . ∪ xn)

Thread local- (self->) and clause local- (this->)
variables
Structs, unions, C preprocessor, . . .

Strings and address spaces

DTrace scripts run in the kernel
Getting at data in user space requires copyin()
copyinstr() is a favourite

Speculative tracing

#pragma D option nspec=100

syscall::stat64:entry
{

self->spec = speculation();
speculate(self->spec);
printf("path of failed %s by pid %d is %s",

probefunc, pid,
stringof(copyinstr(arg0)));

}

Speculative tracing

syscall::stat64:return
/ self->spec /
{

speculate(self->spec);
printf("errno is %d", errno);

}

Speculative tracing

syscall::stat64:return
/ self->spec && errno != 0 /
{

commit(self->spec);
self->spec = 0;

}

Speculative tracing

syscall::stat64:return
/ self->spec && errno == 0 /
{

discard(self->spec);
self->spec = 0;

}

3. Instrumenting SBus

What is SBus?

Messaging middleware
Component-based
Designed with streams of messages in mind

Architecture

OrganisationOrganisation

Organisation

Component

Component

Component

Component
Component

Endpoints

Metrics of interest

RPC response time
Component transit time

Modifications

smessage *sendpoint::rcv()
{
...

if(SBUS_RCV_ENABLED()) {
inc->tree->cookie = 0;
SBUS_RCV(name, type, inc->tree->cookie);

}
}

Modifications

void sendpoint::reply(smessage *query,
snode *result, int exception,
HashCode *hc)

{
if(SBUS_REPLY_ENABLED())

SBUS_REPLY(name, type, result->cookie);
...
}

The D side

#pragma D option mangled
#pragma D option quiet
/*
* This is copied from component.h. It is a

* very good idea to keep them in sync.

*/
enum EndpointType {

EndpointServer,
EndpointClient,
EndpointSource,
EndpointSink

};

The D side

struct message_info {
long cookie;
uint64_t arrival;
string ep_name;

};

struct message_info rpc_msgs[string];

The D side

sbus$target:::rcv
/ arg1 == EndpointServer /
{

this->ep_name = copyinstr(arg0);
rpc_msgs[this->ep_name].cookie = arg2;
rpc_msgs[this->ep_name].ep_name =

this->ep_name;
rpc_msgs[this->ep_name].arrival = timestamp;

}

The D side

sbus$target:::reply
/ arg1 == EndpointServer /
{

msg = rpc_msgs[copyinstr(arg0)];
@rpc_time[msg.ep_name] = avg(timestamp -

msg.arrival);
@rpcs[msg.ep_name] = count();

}

Glue

provider sbus
{

probe rcv(char *, int, long);
probe reply(char *, int, int);

};

and

#include "sbusProvider.h"

4. The end, and after

What DTrace lets you do

Measure things in the OS (find bugs in apps!)
Prepare your apps for instrumentation fairly easily

Why you (probably) can’t have it

Only for Solaris, Opensolaris, and MacOS X
Maybe for FreeBSD
Linux people seem to mistrust it. . .

For further information

Solaris Dynamic Tracing Guide
Sun BigAdmin info
Greg Miller, “Exploring Leopard with DTrace”
Bryan Cantrill, “DTrace Review”
DTrace toolkit

http://docs.sun.com/app/docs/doc/817-6223
http://www.sun.com/bigadmin/content/dtrace/
http://www.mactech.com/articles/mactech/Vol.23/23.11/ExploringLeopardwithDTrace/index.html
http://video.google.com/videoplay?docid=-8002801113289007228&ei=InuiSaQykrCIArzt9awH&q=type%3Agoogle+engEDU+dtrace&so=1
http://opensolaris.org/os/community/dtrace/dtracetoolkit/

	What's DTrace all about
	DTrace mechanisms
	Instrumenting SBus
	The end, and after

