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Abstract

Abstract

In this talk the problems of inference and optimal design for
stochastic interaction models based on random graphs are
considered. By a design it is meant a (spatial) arrangement of
locations of observation nodes in some (metric) space within a
framework of a certain probabilistic rule of the appearance of
edges.

As traditionally, such probabilistic rule may involve parameter(s)
that one would like to infer on. A host of questions is put for
such models. These questions include the problems of
inference, optimal design, elaboration of algorithms of
identifying such designs, etc.

An optimal design is the “most informative” arrangement.
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Introduction

The model

Figure: n objects are considered in the region D ⊆ Π; there is a link
between each pair (u, v) of them with probability
P(u ↔ v ; θ) = p(ρ(u, v); θ), θ ∈ Θ ⊆ Rk .

The function ρ is defined on D and may well be considered to
represent a metric. If so, then (i) p : R+ ×Θ → [0, 1]; (ii) the
function p(ρ, θ) is monotonically decreasing in ρ for any fixed θ.
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The model

Names for p(ρ, θ):
edge probability function
connectivity kernel
edge probability profile

Example

Functions

p(ρ, θ) = e−θρ, θ ∈ Θ ≡ [0,∞), (1)

p(ρ, θ) = (1 + θ1ρ)−θ2 , θ ∈ Θ ≡ R+ × R+ (2)

p(ρ, θ) = (1 + θρ2)−1, θ ∈ Θ ≡ R+ (3)

satisfy the above conditions and can be considered as
connectivity kernels. These decay laws are called exponential,
power and Cauchy, correspondingly.
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The model
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Figure: Realisation of a random graph on a square 45×45 grid
governed by the power law connectivity kernel p(ρ, θ) = (1 + θ1ρ)−θ2

(a latent process for smaller graphs within this region).
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The model

Model

A family of parametrised connectivity kernels

K = {p(ρ, θ)}θ∈Θ,

where θ specifies a probability edge function.

Statistical interest

After observing a random graph on n nodes, formation of which
is based on K (assumption!), we want to be able to infer on θ.

Design question

Being able to choose n nodes within a set of potential nodes to
observe a random graph on them governed by K, to design an
optimal arrangement of these n nodes, so that the observation
is “the most informative” on θ.
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Introduction

Motivation

Different processes from the following fields give rise to the
described model:

chemical kinetics (e.g. Firth and Hinde (1997), Atkinson
and Donev (1992))
first order reaction: A → B, µ(t ; θ) = exp(−θt)

two consecutive first order reactions: A θ1−→ B θ2−→ C,
η(t , θ1, θ2) = θ1

θ1−θ2
{e−θ2t − e−θ1t}, provided that

θ1 > θ2 > 0.
radio networks (random mobile graphs introduced by
Tyrakowski and Palka (2005) for analysis of distributed
algorithms requiring synchronous communication in radio
networks)
disease evolution on networks (e.g. Read and
Keeling (2003))
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Introduction

Motivation

Figure: The growth of mycelial colonies as a percolation process
(e.g., D.J. Bailey, W. Otten, C. Gilligan (2000) Saprotrophic invasion
by the soil borne fungal plant pathogen Rhizoctonia solani and
pecolation thresholds).
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Motivation

Figure: The edge probability profile may be “combined” from simpler
kernels: e.g., Bailey and Gilligan (1997) studying the progress of
disease in a population of radish plants exposed to primary infection
by R. solani in the presense/absence of T. viride used the following
form for the probability of infection: p(ρ, θ) = (θ1 + θ2ρ)e−θ3ρ.
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From locally D-optimum to Bayesian utility based designs

A toy example

d1

d2

d3

Figure: What are the optimal lengths d1, d2, and d3?

The Fisher information function is additive:

I(θ; d1, d2, d3) =
3∑

i=1

d2
i

e−θdi

1− e−θdi

with the triangle inequality imposed on d1, d2, and d3.
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summands, hence:

d1 = d2 = d3 = ρmax ≈ 1.6θ−1.
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So called locally D-optimal designs require a good knowledge
of the true parameter values.
Cochran (1973): “... and I promise to design the best
experiment for estimating θ”.
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From locally D-optimum to Bayesian utility based designs

So called locally D-optimal designs require a good knowledge
of the true parameter values.
Cochran (1973): “ You tell me the value of θ and I promise to
design the best experiment for estimating θ” or, in other words:
“if we happen to perform the experiment with ρ being very
different from ρmax(θ) then we loose a considerable amount of
information”.
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From locally D-optimum to Bayesian utility based designs

Proper prior -> experiment -> posterior

How to formulate the optimality in designing an experiment in
these settings?

Solution

How to obtain the solution to the optimal design problem?

“Equilateral” designs?

Is equilateral design (equidistant or regular arrangement) still
optimal under the new formulation of the problem?
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Utility based optimal design problem within a Bayesian framework

Formulation and examples

Employing a utility!

Let y = {e(xi , xj) = 0 or 1} ∈ Y represent observations,
d ∈ D—the design vector, and θ ∈ Θ—the model parameter.
Through using a utility function u(d, θ, y) we could represent the
purpose and the value of the experiment after observing its
outcome. Choices include:

the negative squared error loss: u = −{θ − E[θ|y, d ]}2

u(d, θ, y) =
∑

1≤i<j≤n
yi,j = the total number of present edges

precision in the Bayesian sense—the inverse of the
posterior variance: u = [V(θ|y, d)]−1

discrimination between the prior and the posterior:
Kullback-Leibler divergence (Lyndley information measure,
Shannon or differential entropy...)



Utility based optimal design problem within a Bayesian framework

Formulation and examples

Employing a utility!

Let y = {e(xi , xj) = 0 or 1} ∈ Y represent observations,
d ∈ D—the design vector, and θ ∈ Θ—the model parameter.
Through using a utility function u(d, θ, y) we could represent the
purpose and the value of the experiment after observing its
outcome. Choices include:

the negative squared error loss: u = −{θ − E[θ|y, d ]}2

u(d, θ, y) =
∑

1≤i<j≤n
yi,j = the total number of present edges

precision in the Bayesian sense—the inverse of the
posterior variance: u = [V(θ|y, d)]−1

discrimination between the prior and the posterior:
Kullback-Leibler divergence (Lyndley information measure,
Shannon or differential entropy...)



Utility based optimal design problem within a Bayesian framework

Formulation and examples

Employing a utility!

Let y = {e(xi , xj) = 0 or 1} ∈ Y represent observations,
d ∈ D—the design vector, and θ ∈ Θ—the model parameter.
Through using a utility function u(d, θ, y) we could represent the
purpose and the value of the experiment after observing its
outcome. Choices include:

the negative squared error loss: u = −{θ − E[θ|y, d ]}2

u(d, θ, y) =
∑

1≤i<j≤n
yi,j = the total number of present edges

precision in the Bayesian sense—the inverse of the
posterior variance: u = [V(θ|y, d)]−1

discrimination between the prior and the posterior:
Kullback-Leibler divergence (Lyndley information measure,
Shannon or differential entropy...)



Utility based optimal design problem within a Bayesian framework

Formulation and examples

Employing a utility!

Let y = {e(xi , xj) = 0 or 1} ∈ Y represent observations,
d ∈ D—the design vector, and θ ∈ Θ—the model parameter.
Through using a utility function u(d, θ, y) we could represent the
purpose and the value of the experiment after observing its
outcome. Choices include:

the negative squared error loss: u = −{θ − E[θ|y, d ]}2

u(d, θ, y) =
∑

1≤i<j≤n
yi,j = the total number of present edges

precision in the Bayesian sense—the inverse of the
posterior variance: u = [V(θ|y, d)]−1

discrimination between the prior and the posterior:
Kullback-Leibler divergence (Lyndley information measure,
Shannon or differential entropy...)



Utility based optimal design problem within a Bayesian framework

Formulation and examples

Employing a utility!

Let y = {e(xi , xj) = 0 or 1} ∈ Y represent observations,
d ∈ D—the design vector, and θ ∈ Θ—the model parameter.
Through using a utility function u(d, θ, y) we could represent the
purpose and the value of the experiment after observing its
outcome. Choices include:

the negative squared error loss: u = −{θ − E[θ|y, d ]}2

u(d, θ, y) =
∑

1≤i<j≤n
yi,j = the total number of present edges

precision in the Bayesian sense—the inverse of the
posterior variance: u = [V(θ|y, d)]−1

discrimination between the prior and the posterior:
Kullback-Leibler divergence (Lyndley information measure,
Shannon or differential entropy...)



Utility based optimal design problem within a Bayesian framework

Formulation and examples

Problem formulation

The design has to be chosen before observing the experiment
and one needs to maximise the expectation of the utility
function with respect to θ and y. Thus,

d∗ = arg max
d∈D

U(d),

where

U(d) =

∫

Θ×Y

u(d, θ, y)pd(θ, y)dθdy =

∫

Θ×Y

u(d, θ, y)pd(y|θ)π(θ)dθdy.

Here

pd(y|θ) =
∏

1≤i<j≤n

[
p(ρ(xi , xj); θ)

]e(xi ,xj )
[
1− p(ρ(xi , xj); θ)

]1−e(xi ,xj ) .
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Formulation and examples

Lyndley information measure and Kullback-Leibler
divergence

Kullback-Leibler divergence between posterior and prior

DKL(π(θ|y) ‖ π(θ)) =
∫
Θ

log
(

π(θ|y,d)
π(θ)

)
p(θ|y, d)dθ.

Averaging over Y gives the Lyndley information measure

Ey [DKL(π(θ|y) ‖ π(θ))] = . . . = Ey,θ

[
log

(
π(θ|y, d)

π(θ)

)]
.
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Formulation and examples

Kullback-Leibler divergence: two views

Progressive experimental design

There is just an experimenter A who is in possession of π(θ)
and is designing an experiment d to update his or her prior
knowledge to π(θ|y, d)in the most informative way:

U(d) =

∫

Θ

∫

Y

log
π(θ|y, d)

π(θ)
p(y|θ, d)π(θ)dθdy −→ max

d∈D
.



Utility based optimal design problem within a Bayesian framework

Formulation and examples

Using Kullback-Leibler divergence: two scenarios

Instructive experimental design

In contrast to the progressive design scenario, in the instructive
case there is an experimenter A, holding a prior π(θ), and a
better informed trainer B whose knowledge about the model
parameter is summarised in a distribution π∗(θ). The purpose
of B here is to design an experiment for A in order to increase
his/her knowledge (π(θ) → π(θ | y) using the existing superior
(A’s) knowledge π∗(θ):

U(d) =

∫

Y

DKL{π(θ | y , d) ‖ π(θ)}p∗(y) dy −→ max
d∈D

,

where p∗(y) =
∫
Θ

p(y|θ, d)π∗(θ)dθ.
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Formulation and examples

Maximisation of the expected utility

Müller (1999) discusses simulation based methods for optimal
design, where the expected utility U(d) is evaluated by
Monte-Carlo simulation:

Û(d) =
1
N

N∑

i=1

u(d , θi , yi),

where θi ∼ π(θ), and yi ∼ pd(y |θ).

Alternatives: augmented modelling, simulated annealing,
genetic algorithms, etc.
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Formulation and examples

Maximisation of the expected utility

Augmented modelling

Define an artificial distribution

h(d , θ, y) ∝ log u(d, θ, y)π(θ)p(y|θ, d)π(θ).

Under h the marginal in d is proportional to the expected utility
U(d). So, construct an MCMC scheme with stationary
distribution h(d , θ, y) and take a sample of d′s—its histogram’s
profile should give us information about the maximum of U(d).



Utility based optimal design problem within a Bayesian framework

Unimodality / multimodality of the expected utility

Two dimensional optimal design problem
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Figure: Expected utility plots for two independent random edges.
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Unimodality / multimodality of the expected utility

Geometric random graph case

Consider the following “step” probability edge function:

p(y |d , θ) = yI{d ≤ θ}+ (1− y)I{d > θ}, (4)

where y is either 0 (there is no edge) or 1 (there is an edge).
Thus, the likelihood for (admissible) independent observations
is either zero or one.

Theorem

The solution to the optimal design problem on a geometric
random graph (4) where θ has a proper (prior) continuous
increasing cdf Fθ on a non-negative support, is given by its
quantiles of the order n + 1.



Utility based optimal design problem within a Bayesian framework

Unimodality / multimodality of the expected utility

Example

θ ∼ U[0, 1]

d1 =
1

n + 1
, d2 =

2
n + 1

, . . . , di =
i

n + 1
, . . . , dn =

n
n + 1

.

Example

θ ∼ Exp(λ)

d1 =
log n+1

n
λ

, d2 =
log n+1

n−1

λ
, . . . , dn =

log (n + 1)

λ
.
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d1 =
log n+1

n
λ

, d2 =
log n+1

n−1

λ
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Unimodality / multimodality of the expected utility

Cook et al. (2008) use the derived result to provide a trivial
example for showing that the sequential optimal design of
replicated experiments need not be the same as the optimal
design of simultaneous replicated experiments.

Reference: Cook, A. R., Gibson, G. J., Gilligan, C. A. (2008) Optimal
observation times in experimental epidemic processes. Biometrics,
64(3), pp. 860-868.
Web Appendices available at
http://www.biometrics.tibs.org/datasets/070104.pdf
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Figure: Bond percolation process in Z2, p = 1
2 .
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Inference and optimal design for percolation models

Suppose we are given an extinct (due to natural extinction or to
the boundness of the plot, or both) simple epidemic with
constant life-times and some infection spread rate λ evolved in
Π ⊆ Z2. In other words, suppose that we are given a set of n
sites C from a connected component resulted from a bond
percolation with p = 1− e−λ/4. The purpose is to infer on p.
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Figure: A connected component on C in Z2, p = 0.478. Infected sites
are brown, their nearest heighbours are gray.
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the boundness of the plot, or both) simple epidemic with
constant life-times and some infection spread rate λ evolved in
Π ⊆ Z2. In other words, suppose that we are given a set of n
sites C from a connected component resulted from a bond
percolation with p = 1− e−λ/4. The purpose is to infer on p.
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Figure: The “fully saturated” graph SC derived from C, p = 0.478.
Infected sites are brown, their nearest heighbours are gray.
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Inference and optimal design for percolation models

Algorithm 1 Sites are visible, edges are not: MCMC steps.
Require: C, current Markov chain state X2t = (p2t , G2t).
Ensure: a sample from the likelihood f (p|C).

1: Gibbs step: p2t+1 ∼ Beta(e(G2t)+1, e(SC)−e(G2t)+m+1)
2: X2t+1 := (p2t+1, G2t)
3: Metropolis-Hasting steps: choose eSG

∼ Uniform(SG)
4: if eSG

∈ G2t then
5: if I{G2t+1\{eSG

} is connected} then

6: X2t+2 := (p2t+1, G2t+1\{eSG
}) w.p. min

(
1,

1−p2t+1
p2t+1

)

7: else
8: X2t+2 := (p2t+1, G2t+1)
9: end if

10: else
11: X2t+2 := (p2t+1, G2t+1 ∪ {eSG

}) w.p. min
(

1,
p2t+1

1−p2t+1

)

12: end if
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Figure: Likelihood for full information about the epidemic from the
earlier slide and π(p|C) for the case when we only know the infected
sites.
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Inference and optimal design for percolation models

The epidemic’s size is known, the configuration is not

u

v

G

edges added with v, 

each independently with 

probability p

edges deleted with u

potential u-edges in G

links from u to the boundary

of  G (excluding v)

potential edges which 

were not added with v

in the proposal graph

links from v to the boundary 

of the proposal graph 

(excluding u)

this shows the possibility 

for v and u to be neighbours

Figure: Updating connected component: graphical representation of
the Metropolis-Hastings step of the MCMC algorithm
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Inference and optimal design for percolation models

Theoretical limit results

Let Pp(|C| = n) be the probability that an open cluster is of size
n in percolation with the edges density p. This is just the
likelihood function Ln(p) for p:

Ln(p) = Pp(|C| = n).

Let p̂n be the mle for p derived from Ln(p).

Theorem

The sequence of maximum likelihood estimators p̂n for p
converges to the critical probability pc (n →∞).

Conjecture

π(p|n) ∝ Ln(p)π(p) → δ(p − pc).
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Corresponding MCMC results

Figure: Ln(p) from MCMC
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Inference and optimal design for percolation models

Optimal design for percolation process: sparsification
of the grid
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Figure: Inner-outer design plots A, B, and C, and marginal h(d , p, y)
in d , d ∈ {A, B, C}.
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Inference and optimal design for percolation models

Instructive design: the fewer — the better!
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Figure: Optimal instructive design; here π(p) = I(p ∈ (0, 1)), and the
true value of p was taken to be 0.9; N=6.
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Optimal lattice shape

Rectangular, triangular, hexagonal ... grids
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Figure: Reducing dimensionality of the design space.

Ongoing joint work with Alex Cook...



Conclusions and further work

Conclusions

MCMC algorithms for inference in nearest-neighbour interaction
models under incomplete observations are suggested. These
algorithms can be extended to long range interaction processes
and can be used for solving utility based optimal design
problems via augmented probability simulation or simulated
annealing.



Conclusions and further work

Further work

Optimal lattice shapes.
Optimal arrangement of the nodes in a metric space in
general settings: such problem remains to be a difficult
computational task. However, grid approximation is
possible and the methodology of genetic MCMC
algorithms can be applied.
Classification of the models and utility choices that give
rise to unimodal expected utility surfaces: seems difficult.
Model robustness issues (+designing experiments for
checking the model assumptions?)
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