
Deontic logic for modelling data flow
and use compliance

David Evans David M. Eyers



Motivation

To do useful work, ubiquitous systems operate on data
The overall system should do more than the sum of its
parts
These data will be owned by different organisations
These organisations will agree to contracts defining to data
use



Our goals

Encode data sharing policies in an intuitive way
Check compliance against these data sharing policies
When organisations are in conflict over policy compliance,
the system should continue to function for others



Reasoning about state changes

Participants move from one state to another
Contradictions will be commonplace during contractual
conflicts
Classical predicate logic cannot represent modalities
elegantly
We need modalities to represent the state of compliance
and thus make sense of these conflicts



Deontic logic

We focus on these deontic concepts:
Obligation Actions need to be performed to progress the state

of affairs.
Prohibition An obligation not to perform some set of actions.

Violation An obligation not to do something is broken, or an
obligation is left undone for too long.

Annulment The effect of some other predicate is cancelled out.



Event Calculus

Kowalski and Sergot’s event calculus provides a straightforward
mechanism for reasoning about changes in states of affairs.

Events are named, instantaneous effects that occur at
some time

Fluents are named, half-open intervals in the same time
domain

A set of application-specific rules relate fluents initiation and
termination to event instances. Both events and fluents can be
parameterised.



Event Calculus extensions

We extend the event calculus with the notion of fluents
deontically holding.

A fluent deontically holds if it holds, and it is not annulled
by a fluent that deontically holds.



Contract representation

We want to preserve a direct correlation between source legal
documents and the operation of the system

We avoid explicit policy encodings that lead to workflow
specifications
We link deontic fluents to particular contract document
sections
The internal semantics of each document region might not
be completely specified

⇒ Triggers driven by or effects visible to humans (“red
buttons” or “flashing lights”) are natural



The TIME project

Our work in this area is focused on a project to construct a
Transport Information Monitoring Environment (TIME)

Collect data regarding the movements of pedestrians,
buses, cyclists, vehicles, trains, etc.
Monitor effects such as pollution, congestion, . . .
The data come from many different organisations



The TIME model

OrganisationOrganisation

Organisation

Component

Component

Component

Component Component

Endpoints



Contract labelling

Labelling involves construction of classes of organisations,
data, and interactions.

1. Organisation classes are defined according to behaviour
that is expected and useful, e.g., “us”, “our partners who
have signed an NDA”, and “our customers”

2. Types of data that might be exchanged are classified, e.g.,
“proprietary data”, “data that we are willing to give to
anyone”, etc.

3. Classes of interactions, and thus data exchange, are
constructed.



The Deontic manager

Classes are used to construct events and fluents that correspond
to the actions and states of compliance in the contract.

A special component—the deontic manager—is placed in each
organisation to monitor the flow of messages passing in and out.

Organisations and their deontic managers form mutual
business relationships using out-of-band mechanisms.



Automatic monitoring

It may be appropriate to deploy software that triggers activation
of deontic fluents automatically.

Fluents corresponding to the prohibition “information has been
disclosed to a third party” may be able to operate by monitoring
the communication network.

An appropriate user interface would map real-world, observable
concerns to the events that are sent to appropriate deontic
managers.



Implementation

Presently the deontic manager uses a Prolog-like
implementation of the event calculus to monitor message
transmissions

The DM sends a message of its own when violation is
suspected

In the future, the deontic manager might take proactive action
such as discarding messages or effecting automatic conflict
resolution



Conclusions

Use as little abstraction as possible
Closely couple implementation to requirements
Provide a natural conduit for human interaction



Future work

Performance measurement: ensuring that the deontic
manager is not an unacceptable performance bottleneck
Further contractual agreements
Real system deployment


